MOTION IN TWO AND THREE DIMENSOIONS

Exercise problems

- 1) A particle is acted upon by a force of constant magnitude which is always normal to velocity of particle. The motion of particle is in plane. Then its
 - a) velocity as well as acceleration are constant
 - b) velocity is constant
 - c) acceleration is constant
 - d) Kinetic energy is constant.

2) A body moving in circular motion with constant speed has

- a) constant velocity
- b) constant displacement
- c) constant kinetic energy
- d) Constant acceleration.
- 3) When a body moves with a constant speed along a circle.a) Its velocity remains constantb) no
 - b) no force acts on it

c) No work is done on it

- d) no acceleration is produced in it.
- 4) Taking air resistance to be effective, which out of the following may increase in the projectile?
 - a) Maximum height
 - b) Rage
 - c) Speed of strike
 - d) Angle of strike
- 1) A particle moves in a circular orbit under the action of a central attractive force inversely proportional to distance r. The speed of particle is
 - a) Proportional to r
 - b) Proportional to r²
 - c) Proportional to 1/r
 - d) Independent of r
- 2) At the top of the parabolic trajectory of a projectile, the acceleration isa) Maximumb) minimumc) zerod) g
- 3) The linear velocity and acceleration of a particle moving in a circular motion are related as
 - a) Both in the same direction
 - b) Normal to each other
 - c) Both in the opposite direction
 - d) Independent of each other
- 4) A particle projected from earth with speed u and angle with ground θ covers range R. The new range for same u and θ at moon is
 a) R
 b) 6R
 c) R/6
 d) 13.6R
- 5) Which out of these does not affect the maximum height of projectile?a) mass of the projectile b) angle of projection c) acceleration of projectile d) velocity of projection
- 6) The range of projectile projected at angle of 15⁰ with the horizontal is 1.5 km. The range of the projectile projected at an angle 45⁰ to the horizontal is
 a) 1.5 km
 b) 3 km
 c) 6 km
 d) 0.75 km
- 7) Maximum height of a bullet when fired at 30⁰ with the horizontal is 11 m. Then height when it is fired at 60⁰ is.
 a) 7.8 m
 b) 6 m
 c) 33 m
 d) 22 m
- 8) A stone of mass 1 kg tied to the end of a string of length 1 m, is whirled in a horizontal circle with a uniform angular velocity 2 radian/sec. The tension of the string is (N)
 a) 4 b) 1/4 c) 2 d) 1/2
- 9) Range or a projectile is R. when the angle of projection is 30⁰. Then, the value or the other angle of projection for the same range, is
 a) 50⁰
 b) 40⁰
 c) 35⁰
 d) 60⁰
- 10) An aeroplane is flying with a uniform speed of 100 kmph along the circumference of a circle. The change in velocity in half the revolution will be (in kmph)

a) 200	b) 100	c) 150	d) 300		
		p at 30 m/s with		aks into two equal parts due to an inter ground. Then the other part will move d) 50 m/s	
12) A ball is projec the ball rises is		to the horizonta	I. If the horizor	ntal range is 20 m, the maximum heigh	t to which
a) 2.5 m	b) 5.0 m	c) 7.5 m	d)	10.0 m	
	ted with a speed of	f 10 m/s. What ar	e two angles c	r projection for which range is 5.0 m?	(g=10
m/s²) a) 15º, 75º	b) 30 ⁰ ,	60 ⁰ c)	45 ⁰ , 45 ⁰	d) none of these	
	moving with a cons ing on the platform		ps a ball on the	e platform. The path of the ball as seen	by an
a) a straight lin		c) parab	ola d	I) none of these	
speed of the pa	article when it reac	hes the ground is	(g=10 m/s ²)	the ground at a horizontal distance of 1	0 m. The
a) 10 m/s	b) 10√2 m/s) m/s	d) $20\sqrt{2}$ m/s planet are given by y = $8t-5t^2$ and x =	(+
where t is in se a) 6 m/s		c) 10 m/s) none of these	ot meter
17) A bag is dropp the aeroplane l a) direc b) ahea c) behir	,	ne flying horizont reaches the grou	ally at a consta	ant speed. Neglecting air resistance, wh	nere will
18) The speed of a a) u²/√3g	projectile at the m b) 2u²/√3g	aximum height is c) √3u/2		al speed u. Its horizontal range is d) √3u²/g	
monkey starts a) will go b) will hit c) will go	a bullet directly tov falling freely. The l above the monkey the monkey below the monkey may not hit the m	pullet		. Just when the bullet leaves the gun,	the
	m is thrown vertica heights attained b			h is thrown at angle $\theta.$ If their times of	acent are
a) 1:1	b) 2:1	c) 1:cosθ	d) 1:	secθ	
horizontally sir a) M reac b) N reacl c) Both th	nultaneously. Then hes the ground firs nes the ground firs ne bodies reach the	t t ground at the sa	ime time	ops M vertically downwards and throws ding on their masses	Ν
will be in the ra	atio			of horizontal range and maximum heigl	nt reached
a) 1:2	b) 2:1	c) 1:4	d) 4:1	For longest jump () should be beriterate	I rango will
be a) 1:1	b) 1:√3	c) √3:1	d) 2	For longest jump θ should be horizonta : $\sqrt{2}$	range will
-,		0, 1011	., z		

- 24) A body thrown horizontally from the top of a building. The horizontal component of velocity
 - a) increasesb) decreases

 - c) remains constant
 - d) first increases and then remains constant
- 25) A particle moves along circular path. Then its
 - a) velocity is transverse and acceleration radial
 - b) velocity is radial and acceleration is transverse
 - c) both velocity and acceleration is radial
 - d) both velocity and acceleration is transverse
- 26) Railway tracks are usually banked on the curves, so that
 - a) the weight of train may be reduced
 - b) the train may not fall down inwards
 - c) friction force between wheels and the track is reduced
 - d) the necessary centripetal force may be obtained from the normal reaction due to the track

NEWTON'S LAWS OF MOTION

MULTIPLE CHOICE QUESTIONS

	body during this interval a		10 s. The velocity acquired c) 200m/s, 10 m	and the distance traveled by the d) 10 m/s, 200m
2)		st accelerates at a rate a=2 m	· ·	
	5) 5N c) 0	d) none	
		m fired from a gun passes thr 80 m/s. The resistance offere b) 400 N		ickness 20 cm, its velocity d) 550 N
	-		,	s shot from it, The time taken
	by the bullet to hit a targe a) 100 s		c) 1 s	d) none
	rails is 0.04 N per kg. The	mass 2500 kg along horizontal acceleration of a truck is	m/s ² .	
	a) 8	b) 0.008	c) 0.08	d) 0.8
	The average force require a) 500	d to stop a hammer with 25 N b) 125	Is momentum in 0.5 s expr c) 50	essed in N is d) 25
) kg. What is the tension in the	e cable of the lift when it is	moving upwards with an
	acceleration of 2 m/s ² ? a) 5000 N	b) 5600 N	c) 5900 N	d) 6200 N
	mass of the gun is	g with a velocity of 30 m/s. Th		-
	a) 5.5 kg	b) 3.5 kg	c) 1.5 kg	d) 0.5 kg
	A canon shell explodes in a) momentum increases	air. Its total b) momentum decreases	c) K.E. increases	d) K.E. decreases
		onal and strong forces are rep b) F _E > F _G >F _S		
	A rocket works on the prina) angular momentum	nciple of conservation of b) only kinetic energy	c) only total moment	um d) none of these
12)	Change in linear momentu a) impulse b) kir		lar momentum d) t	angential velocity
	a) the body must change (st along strait line. If it is then direction to move in same direction wi	b) the	force then, body must slow down ne of these
	A body is acted upon by c) acceleration	onstant force then it will have b) momentum	a uniform c) velocity	d) speed
	A rider on horseback falls a) the inertia of horse	forward when the horse sudd b) the inertia of rider	enly stops. This is due to c) large weight of horse	e d) losing the balance
	the spring balance will be			eely downwards. The reading on ss than 100 kg
		ball of mass 0.1 kg moving wi b) 4 N c) 2 N	-	s. Force exerted by him is

18) A car is moving with	n an acceleration of 4 m/s ² . If the	nis car pulls another car of same i	mass, the acceleration
produced will be a) 8 m/ ²	b) 2 m/s ²	c) 4 m/s ²	d) none
19) A particle of mass n a) mv	n is collides elastically a wall at b) 2mv	an angle 60 ⁰ with a velocity v. Th c) -mv	ne change in momentum is d) 1/2mv
	y by virtue of which the body is form linear motion only c) dire	unable to change by itself the sta ection of motion only d) rest a	te of nd of uniform linear motion
21) A car is moving on a a) no force is acting		ne with a uniform motion, then we on the car c) no work is beir	
22) If the mass and for a) 2 times b) 4 t	ce are doubled, then acceleratio imes c) same as before		
	is moving upward in a rocket v) 4 mg c) 5 mg	vith acceleration 4g. The apparen d) mg	t weight inside the rocket is
velocities 9 m/s and	odes into three parts of equal n l 12 m/s respectively. Find spee) 20 m/s c) 10 m/s	nasses. Two parts fly at right ang ed of 3 rd part. d) 5 m/s	les to each other with
	f motion gives the concept of) force only c) both inertia a	nd force d) none	
26) An athlete runs som a) it helps to apply he gains energy to			d reaction force increases c) tia of motion
a) of inertia of rest	n from a moving bus tends to fa of upper part of the body		of lower part of the body c)
28) Newton's second lawa) acceleration	w of motion gives the concept o b) force c) angular n		
29) A body will continue a) the resultant for the resultant force of	ce on it is increasing continuous	ly b) the resultant force on it is d) the resultant force on it begin	
force required is	-	m/s ² . To increase the acceleration	n to 20 m/s 2 , the additional
a) 4 N	b) 2 N c) 1 N	d) 8 N	
same time. The acc	on a body of mass 1 kg for t s. elerations produced in the ratio b) 3:1 c) 3:4	another force of 15 N acts on se d) 4:3	cond body of mass 2 kg for the
32) According to Newtoa) equal and act inequal and act in op		on and reaction are b) unequal and act in opposite d) unequal and act in the same di	
33) A boy jumps out ofa) moves forward	a boat stationary in water. The b) moves backward	boat c) moves sideways	d) remains at rest
34) To keep a particle n a) should act contin		a frictionless horizontal surface a ble force c) not necessary	an external force d) none
35) A body is moving w a) g/a b) –g		tion of a force 'g'. The weigh t of d) a ² g	the body is
36) When a force of 1 N a) a speed of 1 m/s		e to move freely, the body receiv $/s^2$ c) an acceleration of 9.8 m/	

37) An elevator is moving vertically up with an acceleration a. The force exerted on the floor by a passenger of mass m is	•
a) mg b) ma c) mg-ma d) mg+ma	
38) A boy sits on the pan of a spring scale in an elevator. The reading of the spring scale will be maximum when the elevator	
a) is stationaryb) cable breaks and it falls freely towards the earthc) accelerates downwardsd) accelerates upwards	
39) A force of 12N gives an object an acceleration of 4 m/s ² . The force required to give it an acceleration of 10 m/s^2 is	
a) 15 N b) 20 N c) 25 N d) 30 N	
 40) Two spheres of masses 10 kg and 20 kg are sliding down a frictionless an inclined plane that makes an angle 30^d with the horizontal. The ratio of acceleration produced in two spheres a) 1:1 b) 1:2 c) 2:1 d) none of these 	C
41) A body rolling freely on the surface on the earth eventually comes to rest becomesa) it has massb) it suffers frictionc) it has inertia of restd) it has momentum	
 42) Friction between two bodies a) adds the motion between the bodies sometimes helps and sometime opposes the motion b) destroys the relative motion between the bodies c) d) none)
43) Two blocks A and B are sliding on the same road area of contact of A is twice that of the B. The frictional force between A and the roada) twice that of Bb) half that of Bc) same that of Bd) none	
44) Friction can be reduced bya) lubricantsb) polishingc) streamliningd) all the above	
45) Good lubricant should be highly a) viscous b) non-volatile c) both a and b d) none	
 46) the following graph drawn between the frictional force between a body and a surface and the external force actin on the body. Then AM and DN represent, a) static and kinetic friction b) kinetic and static friction c) both kinetic friction d) both static friction friction 	ıg
47) Kinetic friction isa) greater than rolling friction b) equal to rolling friction c) less than rolling friction d) none	
 48) A block of mass 'm' resting on the floor of a lift. The coefficient of friction between the floor is μ when the lift is falling freely, the work done to move the block on the floor to a distance 's' is a) μmg b) μmg/s c) mgs d) zero 	
49) Theoretically which of the following are best lubricantsa) solidsb) liquidsc) gasesd) all have same lubricating capacity	
50) Breaks are effective if their surface area isa) smallb) very largec) some times large and some times smalld) none	
51) When a moving body is suddenly stopped a) frictional force increases c) tyres of the vehicles burstb) roughness is found on the road d) the frictional force reduces to zero as it is a self adjusting force	
52) A body of mass 1 kg is placed on a rough inclined lane of inclination 30° . the frictional force acting on it when $\mu = 0.9$ is.	μ
a) 4.9 N b) $4.5x\sqrt{2}$ N c) $4.5x\sqrt{3}$ N d) none	

53) A block B rests (on A. A rests on hori	zontal surface	C which is frictionless	. There is friction between A and B.	If B is
pulled to the rig a) B move forwa	ht,			d) A and B move together to the r	
54) The maximum s a) (μg/r) ^{1/2}	peed of a car on a c b) (µgr) ^{1/2}	urved path of r c) (μr/g)	adius r and the coeffic) ^{1/2} d) (gr/		
55) If an external fo a) rolling frictior		0	on a body cancel each friction d) none	other, the frictional force is	
56) The wheels are	made circular becau	se			
	nanufacture circular		b) they	v look good	c)
rolling friction is			d) kinetic	friction is least	
,	statement. e can be made zero s more for area of co	ontact	, 0	s more than rolling friction ver act in the direction of motion	c)
58) two masses rest	on smooth surface	as shown in the	e figure. The force exe	erted by A on B is	
a) 0.5 N			Ă	5	
b) 1 N		2kg	B 1 kg		
c) 2 N d) 1.5 N					
u) 1.5 N					
59) A block of mass coefficient of kir		nclined plane w	ith angle θ with horizo	ontal, slides down at uniform speed.	The
a) sinθ	b) cosθ	c) g	d) tanθ		
	th speed 72 km/h is stion $\mu = 0.5$. The di		at stopped at shortes	t distance while moving ao a road o	ıf
a) 30 m	b) 40 m	c) 72 m	d) 20 m		

WORK-ENERGY-POWER

MULTIPLE CHOICE QUESTIONS

1)	What energy is s a) Kinetic	tored in a wound b) heat		ch? ectrical	d) potential	
2)	The equivalent u a) kg-m/s	nit of energy of er b) kg-m²/s²	nergy in dimen: ²	sional formula kg-ms	is d) kg-m²/s	
3)	A quantity repres a) Surface tensic			c) force	d) work	
4)		is equal to in Wa b) 760	tts c) 770	d) 746		
5)	Electron Volt is a a) Force b)	unit of pressure	c) power	d) en	ergy	
6)	A force of 100 N a) 100J	displaces a body b) 2			ergy is increase 300J	d by 400 J. Energy lost in friction is d) 400J
7)	A body of mass (a) 0.16 J).2 kg is moving a b) 1.6 J	at a velocity 4 n	n/s. To bring it c) 16 J	to rest in 10 m	nutes the work done is d) 160J
8)	The dimensional a) Force	formula for poten b) powe		ame as c) work		d) stress
9)	The fundamental	unit which does r	not have the sa	nme power in d	limensional form	ula of energy and surface tension
	a) Length	b) time		c) mass		d) none
10) If a force vector Watts is a) 20	-	akes a body to) 15	move with a v	elocity of(3i-2j c)10	+5k) m/s. The power applied in d) 5
	,	,			,	,
11) If the momentun	n of a body is incr	eased by 100%	6 then the perc	entage increase	in kinetic energy is%
11) If the momentun a) 200	n of a body is incr b) 225		6 then the perc c) 150	centage increase	in kinetic energy is% d) 300
		b) 225	helps to calcula	c) 150	-	
12	a) 200) Of the following (a) velocity-time	b) 225 graphs which one b) acceleratio	helps to calcula on-time	c) 150 ate work c) force-tim	le c	d) 300
12 13	a) 200) Of the following g a) velocity-time) What is the natu	b) 225 graphs which one b) acceleration re of graphs for for b) ellipse	helps to calcula on-time prce-displaceme ne is tripled, the	c) 150 ate work c) force-tim ent curve for a c) parabola	body projected s increased by	d) 300 I) force-displacement vertically upwards?
12 13 14	 a) 200) Of the following g a) velocity-time) What is the nature a) straight line) If the unit of mass 	b) 225 graphs which one b) acceleration re of graphs for for b) ellipse ss, length and tim b) six time	helps to calcula on-time prce-displaceme ne is tripled, the nes g electron in an	c) 150 ate work c) force-tim ent curve for a c) parabola e unit of work i c) nine tim	body projected s increased by es	d) 300 d) force-displacement vertically upwards? d) hyperbola
12 13 14 15	 a) 200) Of the following g a) velocity-time) What is the nature a) straight line) If the unit of massing three times) The energy possed 	b) 225 graphs which one b) acceleration re of graphs for for b) ellipse ss, length and tim b) six tim essed by revolving b) only for t conserves during	helps to calcula on-time prce-displaceme te is tripled, the nes g electron in an kinetic c)	 c) 150 ate work c) force-time ent curve for a c) parabola e unit of work i c) nine time orbit is both kinetic ar a simple pend 	body projected s increased by es nd potential lulum is	 d) 300 d) force-displacement vertically upwards? d) hyperbola d) twenty seven times
12 13 14 15	 a) 200) Of the following g a) velocity-time) What is the nature a) straight line) If the unit of mass a) three times) The energy possed a) only potential) The quantity that a) kinetic energy) A simple pendulu 	b) 225 graphs which one b) acceleration re of graphs for for b) ellipse ss, length and tim b) six tim essed by revolving b) only for t conserves during b) po	helps to calcula on-time prce-displaceme e is tripled, the nes g electron in an kinetic c) g the motion of ptential energy ely and when it	 c) 150 ate work c) force-time ent curve for a c) parabola e unit of work i c) nine time a orbit is both kinetic ar a simple pendic) t's in equilibriu 	body projected s increased by es ad potential lulum is sum of potential m position.	 d) 300 d) force-displacement vertically upwards? d) hyperbola d) twenty seven times d) none and kinetic d) none
12 13 14 15 16	 a) 200) Of the following g a) velocity-time) What is the nature a) straight line) If the unit of mass a) three times) The energy possed a) only potential) The quantity that a) kinetic energy) A simple pendulu 	b) 225 graphs which one b) acceleration re of graphs for for b) ellipse ss, length and tim b) six tim essed by revolving b) only for b) only for t conserves during b) por um is swinging fre gy is zero b) pote	helps to calcula on-time prce-displaceme te is tripled, the nes g electron in an kinetic c) g the motion of otential energy ely and when it ential energy is	 c) 150 ate work c) force-time ent curve for a c) parabola e unit of work i c) nine time orbit is both kinetic ar a simple pend c) t's in equilibriu minimum c) 	body projected s increased by es ad potential lulum is sum of potential m position. kinetic energy is	 d) 300 d) force-displacement vertically upwards? d) hyperbola d) twenty seven times d) none and kinetic d) none s zero d) none he body will rise
12 13 14 15 16 17 18	 a) 200) Of the following g a) velocity-time) What is the nature a) straight line) If the unit of massing three times) If the energy possed a) only potential) The energy possed a) only potential) The quantity that a) kinetic energy) A simple pendulute a) potential energing) Potential and kin 	b) 225 graphs which one b) acceleration re of graphs for for b) ellipse ss, length and tim b) six tim essed by revolving b) only f t conserves during b) por um is swinging fre gy is zero b) pote etic energies are of b) h	helps to calcula on-time prce-displaceme e is tripled, the nes g electron in an kinetic c) g the motion of ptential energy ely and when it ential energy is equal at height um which body	 c) 150 ate work c) force-time ent curve for a c) parabola e unit of work i c) nine time a orbit is both kinetic ar a simple pend c) t's in equilibriu minimum c) h. To what mach a c) 2h 	le c body projected s increased by es and potential lulum is sum of potential m position. kinetic energy is aximum height t d) netic energy	 d) 300 d) force-displacement vertically upwards? d) hyperbola d) twenty seven times d) none and kinetic d) none s zero d) none he body will rise
12 13 14 15 16 17 18 19	 a) 200 a) velocity-time a) velocity-time b) What is the natural straight line c) What is the natural straight line c) If the unit of massing three times c) If the energy possed a) only potential c) The energy possed a) only potential c) The quantity that a) kinetic energy c) A simple pendulutal a) potential ener c) Potential and kin a) h/2 c) If two bodies have a) lighter c) An iron ball and lighter 	b) 225 graphs which one b) acceleration re of graphs for for b) ellipse ss, length and tim b) six tim essed by revolving b) only f t conserves during b) por um is swinging fre- gy is zero b) pote etic energies are of b) h	helps to calcula on-time prce-displaceme e is tripled, the nes g electron in an kinetic c) g the motion of ptential energy ely and when it ential energy is equal at height um which body ivier co	 c) 150 ate work c) force-time ent curve for a c) parabola e unit of work i c) nine time a orbit is both kinetic ar a simple pend c) t's in equilibriu minimum c) h. To what ma c) 2h has greater kinc both (a) and 	le c body projected s increased by es ad potential lulum is sum of potential m position. kinetic energy is aximum height t d) netic energy i (b)	 d) 300 d) force-displacement vertically upwards? d) hyperbola d) twenty seven times d) none and kinetic d) none s zero d) none he body will rise 4h

21) A ball hits the floor	and rebounds after an	inelastic collisi	ion. In this case	2	
,	m of ball is conserved m and earth is conserve		b) linear mome d) none	ntum of earth is alone is	s conserved
22) A lorry and car mov Then	ving with same kinetic of	energy are bro	ught to rest by	applying the same retai	ding force.
a) lorry will come t	o rest in shorter distand o rest in same distance		b) car will comd) data insuffic	e to rest in shorter dista cient	ince
	es in a circular path, no cement are perpendicul ys away from the cente	lar to each othe	er b) there i	ce. s no displacement of the s no net force	e body
24) The kinetic energy a) thrice the initial c) same as the initi	value	r times its valu		he initial value	
25) Two bodies of mass a) 2:1	ses 12 kg and 2 kg have b) 3:1	e equal momei c) 1		e ratio of their kinetic er d) 1:1	ergies is
26) When a force is app a) positive	blied on a moving body b) negative	, its motion is c) zero		the work done is positive or negative	
	stance of 10m along a s rce makes with the dire b) 30 ⁰			of 4 N. If the work done d) 60 ⁰	is 20J, the
28) A body moves alon Proportional to	g a straight line with co	onstant power.	The distance tr	raveled by the body in t	seconds is
a) t ^{3/2}	b) t ^{3/4}	c) t ²	d)	t ^{1/2}	
29) A constant force F a) Fv	is applied on a body an b) F/v	d it moves with c) Fv ²		ocity v. The power devel F/v ²	oped is
30) Two bodies of diffe a) m ₁ :m ₂	rent masses m ₁ and m ₂ b) m ₂ :m ₂	have equal mo c) m ₁ ² :m	omentum. Their ${n_2}^2$	tkinetic energies are in a) √m₁:√m₂	the ratio
	the system will increas a conservative force a conservative of a no	b)	on the system	by a non-conservative f none	orce
Of the system will I	be			of mass 3m and strikes	to it. The speed
a) $u/3$	b) u/4	c) 4u	d) zero		
32) Velocity of a movina) doubled	b) halved	c) triplec		d) quadrupled	
33) Two bodies of mass a) 1:2	s m and 16m move with b) 2:1	h equal kinetic c) 1:4	energies. The r	atio of their linear mom d) 4:1	enta is
b) move withc) move with	est explodes into two each the same velocity and in the same velocity but in different velocities in the different velocities and	in the same dir n the opposite ne same directi	ection direction on	111	

35)	A bullet is	fired from a gun, if the	gun recoils then	kinetic energy of the gun is	that of bullet
a)	lesser than	b) greater than	c) equal to	d) none	

		<u>AVITAION</u> cise Problems	
	 Kepler's second law is a consequence of a) law of conservation of energy b) law of conservation of linear momentum c) law of conservation of mass c) law of conservation of angular momentum 		
	2) The force responsible for the motion of planets aroua) gravitationalb) magneticc) elect		
	 3) The intensity of gravitational field of the earth is main a) equator b) poles c) center of 		9
	4) Newton's law of gravitation is applicable toa) planets onlyb) small bodies	c) both small and planets d) none	e of these
	5)The force of attraction between two objects separate that of the other is halved, and the distance between a) F / 9 b) F / 3 c) 3F		
6)	 If F₁ is magnitude of the force exerted by the eart the sun on the earth, then 	-	of the force exerted by
	a) $F_1 > F_2$ b) $F_1 < F_2$	c) $F_1 = F_2$ d) $F_1 \ge F_2$	
7)	 7) If M is mass and R is radius of the earth, then acc a) G = Mg / R b) G = gM / R² 		constant G is related as G = R ² G / M
8)	 8) The units of gravitational constants are a) Nm²kg² b) Nm²kg⁻¹ 	c) Nmkg ⁻¹ d) Nmkg ⁻²	
9)	 9) The value of universal gravitational constant G is a) 6.66 × 10⁻⁶ N-m²kg⁻² b) 6.66 × 10⁻¹⁰ N-m²kg 	c) 6.66 × 10 ⁻¹¹ N-m ² kg ⁻² d) 6	5.66 × 10 ⁻⁵ N-m ² kg ⁻²
10)	 10) The value of G depends a.directly on the masses b.on the nature of the masses c.inversely on the square of the distant betwe d.it does not depend on any of these 	n the masses	
11)	11) The weight of the body at the center of the earth a) zerob) infinityc) same even		ned
12)	 12) Weightlessness experienced in a spaceship is due a.absence of inertia b.absence of gravity c.absence of accelerating force d.free fall of the spaceship 	0	
13)	13) Two satellites are moving in the same circular orb a) mass b) angular momentum c) k	s around the earth. They must have t netic energy c) speed	he same
14)	 14) The period of a satellite moving in a circular orbit a.radius of the planet b.mass of the planet c.mass of the satellite d.none of the above 	ear the surface of a planet is indepen	dent of
15)	 15) A geostationary satellite is taken to another orbit. two times that in the earlier orbit. The period of real 48 hours b) 48√2 hours c) 5 		th in the new orbit is
16)	16) Gas escapes from the surface of a planet because depend on		
	a) mass of the planetc) temperature of the planet	b) mass of the particle esd) radius of the planet	scaping
17)	17) The tidal waves in the sea are primarily due to a.the gravitational effect of the sun on the ear b.the gravitational effect of the moon on the e c.the rotation of the earth d.the atmospheric effect of the earth itself		
18)		nat it moves from south to north in the polar plane west to east in the polar plane	

- 19) A satellite is moving in a circular orbit around the earth. If gravitational pull suddenly disappears, then it a.continues to move with the same speed along the same path
 - b.moves with the same speed tangential to the original orbit
 - c. falls down with increasing speed
 - d.comes to rest after moving a certain distance along the original path
- 20) The figure shows the motion of a planet around the sun in an elliptic orbit with the sun at one focus. The shaded areas A and B can be assumed to be equal. If t_1 and t_2 represent the times taken by the planet to move from a to b and from c to d respectively, then b A a
 - $\begin{array}{l} a.t_1 < t_2 \\ b.t_1 > t_2 \\ c.t_1 = t_2 \\ d.none \mbox{ of the above } \end{array}$

- b A a c B d
- 21) The acceleration due to gravity on the surface of a planet whose mass and radius are one-fourth of the earth will be
 - a) g b) 4g c) g/4 d) g/3
- 22) The escape velocity of the body of mass m varies as
 a) m
 b) m²
 c) 1/m
 d) independent of m
- 23) If V_e and V₀ represent escape velocity and orbital velocity of a satellite for a circular orbit of radius R then a) V_e = V₀ b) V_e = V₀/ $\sqrt{2}$ c) V₀ = V_e/ $\sqrt{2}$ d) none of these
- 24) Moon does not have any atmosphere because,
 a) it is closer to the earth
 b) it gets light from the sun
 c) it revolves around earth
 d) the escape velocity of gas molecules is less than their rms velocity
- 25) A satellite is revolving round the earth. The centripetal force acting on the satellite is F and the gravitational force of the earth acting on the satellite is also F. The resultant force acting on the satellite is
 a) 2F
 b) F/2
 c) F
 d) Zero
- 26) Two satellites A and B revolve round a planet in circular orbits of radii 4:1. The ratio of their critical speeds is a) 1:4 b) 4:1 c) 1:2 d) 2:1
- 27) The time period of geostationary satellite isa) 24 minb) 24 secondc) 12 hoursd) 24 hours
- 28) If value of acceleration due to gravity changes which of the following is affected?a) electrical forceb) force of buoyancyc) magnetic forced) viscous force
- 29) In an atom two electrons move round the nucleus in circular orbits of radii R and 4R. The ratio of their periods a) 8:1 b) 1:8 c) 4:1 d) 1:4
- 30) The period of planet round the sun is 3√3 years. Radius of the earth orbit round the sun is R. The radius of the planet round the sun is
 a) √3R
 b) R/3
 c) R/√3
 d) 3R
- 31) When a planet revolves round the sun the physical quantity that remains constant is
 - a) angular velocity b) linear velocity c) linear acceleration d) areal velocity
- 32) For a planet revolving round the sun, when it is nearest to the sun its
 - a) K.E. is minimum and P.E. is maximum
 - b) Both K.E. and P.E. are minimum
 - c) K.E. and P.E. are equal
 - d) K.E. is maximum and P.E. is minimum
- 33) A body is projected with a velocity greater than orbital velocity but less than the escape velocity its orbit will bea) hyperbolicb) parabolicc) ellipticald) circular
- 34) A man weighs 60 kg on the surface of the earth. The altitude where his weight will be 30 kg is (R is radius of the earth)
 a) h = 2√R b) h = 2R c) h = R/√2 d) h = R/2
- 35) The radius and acceleration due to gravity of moon are 1/4 and 1/5 of the earth. The ratio of mass of earth to mass of moon is
 a) 1:80
 b) 80:1
 c) 1:20
 d) 20:1