Mechanical Effect of Current And Electro Magnetic Induction

2) An electron accelerated through a p.d. of V volts enters into a uniform magnetic field and experience a force of F. f the accelerating potential is increased to 2V, the electron in the same field will

b) straight line

d) cycloid

1) A charged particle is released from rest in a region of steady and uniform electric and

magnetic fields which are parallel to each other. The particle will move in a

a) Circle

c) Helix

	experience a	force					
a	ı) F	b)2F	c) $\frac{F}{2}$	d) $\sqrt{2}$ F			
3) On	3) On connecting a battery to the two corners of a diagonal of a square conductor frame of side 'a', the magnetic field at the centre will be						
a)) zero	b) $\frac{\mu_0}{\pi a}$	c) $\frac{2\mu_0}{\pi a}$	d) $\frac{4\mu_0}{a}$			
4) Mark	the correct o	ption					
a) b) c) d)	Electric and	Magnetic fields are basica Magnetic fields are two a Magnetic fields may be p are correct	spects of the electromage roduced by charge at re-	st			
,		alvanometer the current					
a) .	Ιαθ	b) I $\alpha \theta^2$	c) I $\alpha \sin \theta$	d) I $\alpha \tan \theta$			
 6) Two parallel beam of positrons moving in a same direction will a) Repeal each other b) Attract each other c) will not interact with each other d) be deflected normal to the plane containing two beams 							
7) A galvanometer of 50Ω resistance has 25 divisions. A current of 4X10 ⁻⁴ A gives a deflection of one division. To convert this galvanometer to voltmeter having a range of 25 volt, it should connected a resistance of							
a) 1	2500Ω as a s	hunt b)2450	0Ω as a shunt				
 c) 2550Ω in series d)2450Ω in series 8)A galvanometer has a resistance of G and range of I ampere. The value of resistance used in parallel to convert it into an ammeter of range nI. 							
a) -	$\frac{n-1}{G}$	b)nG	$c)\frac{G}{n}$	$d)\frac{G}{n-1}$			
9) A cer shu	rtain current on the of 1 Ω is Ω	on passing through a galva connected, the deflection	anometer produces a d reduces to 1 division the	eflection of 100 divisions. When a en the galvanometer resistance is.			
a)	99 Ω	b) 990 Ω	c) 9.9 Ω	d) 0.99 Ω			
			_				

- 10) A voltmeter has a resistance G ohm and range of V volt. the value of resistance used in series to convert it into a voltmeter nV volt is
 - a) nG
- b) (n+1)G c) (n-1)G d) $\frac{G}{G}$
- 11) Three long straight wires A,B and C are at equidistant 'd' carrying currents as shown in the figure. The resultant force on B is directed
 - a)Perpendicular to the plane of the paper and directed outward.
 - b) Perpendicular to the plane of the paper and directed inward.
 - c) towards A
 - d) towards C

- 12) A moving coil galvanometer has 150 equal divisions. Its current sensitivity is 10 divisions per milliampere and voltage sensitivity is 2 divisions per millivolt. In order that each division reads 1 volt, the resistance (in ohm) needed to connect in series with the coil will be
 - a) 99995

- b)9995
- c)1000

- d) 1050
- 13) A wire PQR bent as shown in the figure and is placed in a region of uniform magnetic field B. The length PQ=QR= L. A current I ampere flows through the wire as shown. The magnitude of force on PQ and QR will be
 - a)BIL,0
- b)2BIL,0

0.0(0)

c) 0,BIL

- 14) When deuterium and helium are subjected to an accelerating field simultaneously, then
 - a) both acquire same energy
 - b) deuterium accelerate fast
 - c) helium accelerates faster
 - d) neither of them accelerate
- 15) A straight wire of mass 200gm and length 1.5m carries a current of 2A. It is suspended in the midair by uniform magnetic field B. The magnetic of the field(in tesla) $(g = 9.9 \text{ms}^{-2})$
 - a)2
- b) 1.5
- c) 0.55
- d) 0.66
- 16) Two long parallel straight conductors carries currents I_1 and I_2 ($I_1 > I_2$). When currents are in same direction the magnetic field at the point midway between the wires is 20µT. If the direction of I₂ is reversed, the field becomes 50 μ T. The ratio of currents I_1/I_2 is

17)The electrons in the beam of a television tube move horizontally from south to north. The vertical component of earth's magnetic field points down. The electrons deflected towards						
a) west	b) no deflection	c) east	d) north to south			
18) In a shunted am resistance of the		ent passes through the g	galvanometer of resistance G. The			
a) 9G	b)10G	c) $\frac{G}{9}$	$d) \frac{G}{10}$			
19) The resistance of	of an ideal ammeter is					
a) low	b) high	c) infinite	d) zero			
20)) The resistance	e of an ideal voltmeter is					
a) low	b) high	c) infinite	d) zero			
21) The deflection i galvanometer re		50 division to 20 when	n a 12 ohm shunt is applied. The			
a) 18 ohm	b) 36 ohm	c) 24 ohm	d) 30 ohm			
parallel to one	e of the sides of the loop a	and is in the plane of	g straight wire such that wire is loop. If steady current I is			
a) rotate about b) move away : c) move toward	established in the wire as shown in the figure. The loop will a) rotate about an axis parallel to the wire b) move away from the wire c) move towards the wire d) remain stationary					
	to investigates the variation stance 'd' apart. A straight l		wo long parallel current carrying on plotting			
a) F against d	b) F against 1/d	c) F against d ²	d) log F against d			
	ring resistance of $50X10^3 \Omega$ rement three times, the addit		voltage in a circuit. To increase the required is			
a) $10^5 \Omega$	b) 150k Ω	c)900k Ω	d)9X10 6 Ω			
*	25) The electric bulb is designed to operate at 12V DC.It is connected to AC and gives a same brightness as when connected to DC, then peak Ac voltage is					
a) 12V	b) 24V	c) $12\sqrt{2}$ V	d) $\frac{12}{\sqrt{2}}$ V			
26) The dimensional formula of inductance is a) M L ² T ⁻² A ⁻² b) M ⁰ LT ⁻³ A ⁻² c) M ² A ⁻² d) MLT ⁻² A ⁻¹ 27) When a current changes from +2A to -2A in 0.05 second, an emf of 8V is induced in a coil. The coefficient of self inductance of the coil is a) 0.1 H b) 0.2H c) 0.4H d) 0.8H						

28) If V_{rms} is rms voltage and V_m be the mean value (over half cycle)of an alternating voltage then

$$\frac{V_{\rm rms}}{V_{\rm m}}$$
 is

- b) $\frac{\pi}{\sqrt{2}}$
- c) $\frac{\pi}{2\sqrt{2}}$

- 29) The Q-factor of a series resonance circuit can be given by
- b) $\frac{1}{\omega_0 CR}$
- c) $\frac{1}{R}\sqrt{\frac{L}{C}}$ d) all the above
- 30) The motional emf produced across a conductor moving through a magnetic field does not depend on
 - a)speed
- b) length
- c) orientation with the field
- d) thickness
- 31) an electron moves along the line AB which lies in the same plane as a circular loop of conducting wire as shown in the figure, what will be the direction of current induced if any in the loop?
- a) no current will be induced
- b)the current will be clockwise
- c) the current will be anticlockwise
- d) the current will change the direction as the electron passes by

- 32) In LCR circuit, the voltmeter and ammeter readings are respectively
 - a)250 v,4A
 - b) 200 v,2A
 - c) 150 v,2A
 - d) 100v,2A

- 33) To induce an emf in a coil ,the linking magnetic flux
 - a) must increase

b) must decrease

c) must remain constant

- d) can either or decrease
- 34) A coil rotated in a uniform magnetic field about an axis perpendicular to the field. The emf induced in the coil would be maximum, when the plane of the coil is
 - a) parallel to the field

b) perpendicular to the field

c) at 45° to the field

- d) in none of above positions
- 35) The armature of the a d.c. motor has 20 ohm resistance. It draws a current of 1.5A when run by a 220v dc supply. The value of back emf induced is
 - a) 150v
- b) 170v
- c)190v
- d)220v

36) In an a.c. circuit, V and I are given by V=100 $\sin(100t)$ volt. I=100 $\sin(100t + \pi/3)$ mA. The power dissipated in the circuit is a) 10⁴ watt b) 10 watt c) 2.5 watt d) 5 watt 37) Average power dissipated in a pure capacitor in a complete cycle of a.c. is b) cv² d) zero 38) power factor of a series LCR circuit at resonance is b)0.5a) 1 c) zero d) none of these 39) The magnetic flux linked with a coil at any instant of time 't' is given by $\varphi=5t^3-100t+300$ Wb. The emf induced in the coil at t = 2 second is a) 40v b) -40v c)300v d)140v 40) Time taken by AC of 50Hz in reaching from zero to maximum value is a) $50X10^{-3}$ s b) $5X10^{-3}$ s $c)1X10^{-2}s$ 41) A small bar magnet is allowed to fall through a fixed horizontal conducting ring. Let 'g' be the acceleration due to gravity, then the acceleration of the magnet will be a) >g when it is below R and moving away from R b) =g when it is below or above R and moving towards or away from R c) <g when it is above the R and moving towards R d) >g when it is above R and moving towards R 42) The dimensions of \sqrt{LC} where L inductance and C is capacitance a) length c) time b) mass d) no dimension 43) An inductance of $\frac{200}{\pi}$ mH ,capacitance of $\frac{10^{-3}}{\pi}$ F and a resistance of 10Ω are connected in series with a AC source of 220v,50Hz. The phase angle of the circuit is b) $\frac{\pi}{3}$ c) $\frac{\pi}{6}$ d) $\frac{\pi}{4}$ a) $\frac{\pi}{2}$ 44) Maximum value of current from an AC source of 50 HZ is 5A. The time taken by current to grow from 0 to 2.5A is a) 0.6ms b) 1.67ms c) 5µs $d)0.5 \mu s$ 45) Two similar circular loops carry equal currents in the same direction. On moving the coils further apart the electric current will b) Remain unaltered a) increase in one and decrease in second c) decrease in both d) increase in both

46)	An a	llternating emf is r	epresented as V=10 sin ((314t). The instanta	aneous en	on f at t = $(\frac{1}{600})$ s is	
	a)	10v	b) 4v	c)5v		d)6v	
			rds north with a speed of 0^{-4} T.The emf induced in			omponent of earth's	
	a)5.4	mv	b)54mv	c) 15mv		d)1.5mv	
		step up transforme ary. The voltage th	er the turns ratio is 1:2 . As secondary is	A dc source of emf	1.5v is co	onnected across the	
	a) z	eero	b) 1.5v	c) 3.0v		d) 0.75v	
			operates on a 230v line a 1:25. The current in the J		of 2A. The	eratio of primary an	d
	a) 2	5A	b)50A	c) 15A		d)12.5A	
-	_	are conducting loont of i	op is placed in the neigh	borhood of a copla	nar long	straight wire carrying	g a
г	ı) if	$\frac{di}{dt} = 0$, current is i	nduced in the coil.				
ł	o) if	$\frac{di}{dt} > 0$, current i	s not induced in the coil	/	i		
C	e) if	$\frac{di}{dt} > 0$, current in	the loop is clockwise				
Ċ	d) if	$\frac{di}{dt} > 0$, current in	the loop is anticlockwis	se			
_	51) In an oscillating LC circuit the maximum charge on the capacitor is Q. The charge on the capacitor when the energy stored equally between the electric field and the magnetic field is						
	$a) = \frac{Q}{a}$	$\frac{Q}{2}$ b) $\frac{Q}{\sqrt{3}}$	=	c) $\frac{Q}{\sqrt{2}}$	d) Q		
			ively represent inductant $\frac{L}{RCV}$ is same as that $\frac{L}{RCV}$		sistance a	nd potential differen	ce>
	a) c	current	b) $\frac{1}{current}$	c) charge		d) $\frac{1}{ch \arg e}$	

53) A and B are two of moving in same di		rrent I in same direction.	X and Y two electrons beams			
a) there will be a repulsion between A and B and attraction between X and Y						
b) there will be a attra	a) there will be a repulsion between A and B and attraction between X and Y b) there will be a attraction between A and B and repulsion between X and Y c) there will be repulsion between A and B and also between X and Y					
c) there will be repuls	sion between A and B an	d also between X and Y				
d) there will be attract	ction between A and B ar	nd also between X and Y				
	of energy 15ev moves thout of magnetic field is	nrough a perpendicular m	nagnetic field . The energy of the			
			d) none of these along the same direction in a f the fields with a certain			
			uniform magnetic field along paths described by the proton and			
a) 1:2	b)1:4	c) 1:16	d) 4:1			
	proton enter a magnetic fig statement is true?	field perpendicularly. Bo	th have same kinetic energy.			
a) Trajectory of ele	ectron is less curved	b) Trajectory of	proton is less curved			
c) Both trajectories	equally curved	d) Both move in	d) Both move in straight line.			
	owing particle will experi ne velocity perpendicular	to a uniform magnetic f				
a)electron	b) proton	c) He ⁺	d) Li ⁺⁺			
,	ange of 10mA has a coil connected in series with		it as a voltmeter of range 10v,the			
a) 9 Ω	b)99 Ω	c)999 Ω	d) 1000 Ω			
	0-10V. To double the ra		resistance 100Ω , it act as Ω is to be connected in series with			
a) 1100	b)1000	c) 900	d)800			
61) A moving charge	produces					
a) electric field only	ý	b) magnetic field o	nly			
c) both electric and magnetic fields		d) none of them.				

62) The resistance of an ammeter is 13Ω and its scale is graduated for a current up to 100 mA. After an additional shunt has been connected to this ammeter it becomes possible to measure 750 mA by this ammeter. The value of shunt resistance is						
a)2 Ω		b) 0.2 Ω	c)2k Ω	d)20 Ω		
	63) When a changed particle moving with a velocity \vec{v} is subjected to a magnetic field of \vec{B} , the force on it is non zero, it implies that					
a) angle bet	tween \vec{v} and \vec{l}	B either zero or 180°				
b) angle bet	ween \vec{v} and \vec{l}	\vec{B} is necessarily 90°				
c) angle bet	ween \vec{v} and \vec{l}	is can have any value of	her than 90°			
d) angle bet	ween \vec{v} and \vec{l}	B is can have any value ot	her than zero and	180^{0}		
, I		flowing through an instrum		<i>c</i> ,		
		t. Then the power dissipa				
a) 0 Wa		b) 2.5 Watt	c) 5 Watt	d) 10 Watt		
65) P is a pointing figure. Field	nt mid way bet at a point 'P' o	tween two infinite thin stradue to either wire is B. Th	aight wires carrying net field at P du	ng same current as shown in the e to both the wires is		
a) B	b) 2B]	I		
c) Zero	d) B/2			P		
50 cps in	gular coil of 30 uniform magn the induced em	etic field strength of 4X10	of 25 cm X 10 cm	n. The coil rotates with a speed of perpendicular to field. The peak		
a) 300π		b) 3000π	c) 3π	d) 30π		
	ow flying air coreen. This is		ometimes notice a	slight shaking of the picture on		
a) diffrac	tion of signal r	eceived from the antenna				
b) interfer air craf		signal received by the anti-	enna with the wea	k signal reflected by the passing		
c) change	of magnetic fl	lux occurring due to the pa	assage of air craft			
d) vibrati	ons created by	the passage of air craft				
	68) The ratio of secondary to the primary turns in a transformer is 3:2 and output power is P. Neglecting the all power losses the input power must be					
a) P		$\frac{P}{2}$	c) $\frac{2p}{2}$	$d)\frac{3p}{2}$		

- 69) The case of a transformer is laminated so as to
 - a) make it robust and strong

- b) increase the secondary voltage
- c) reduce the energy loss due to eddy currents
- d) make it light weight
- 70) A hot wire ammeter reads 10 A in an A.C. circuit. The peak value of current is
 - a) 5π A
- b) $10\sqrt{2}$ A
- c) $\frac{10}{\sqrt{2}}$ A

- d) $\frac{2}{\pi}A$
- 71) In an A.C circuit the reactance of the coil is $\sqrt{3}$ times its resistance, the phase difference between the voltage across the coil to the current through the coil is
 - a) $\frac{\pi}{4}$

b) $\frac{\pi}{6}$

c) $\frac{\pi}{2}$

d) $\frac{\pi}{3}$

- 72) A transformer changes
 - a) voltage
- b) power

- c) frequency
- d) none of these

- 73) The role of self inductance in a circuit is equivalent to
 - a) Momentum
- b) force

- c) energy
- d) inertia
- 74) A copper ring having a cut. A bar magnet is dropped through the ring with its length along the axis of the ring. Then the acceleration of the falling magnet is
 - a) g

- b) less than g
- c) more than g
- d) zero
- 75) Three identical coils A, B and C are placed with their planes parallel to one another. Coils A & C carry currents as shown in the figure. Coils B & C are fixed and A is moved towards B. Then induced current in B is

- a) no current induced in B
- b) clockwise current induced in B
- c) anticlockwise current induced in B
- d) current induced only when both the coils move
- 76) An aluminum ring B faces an electromagnet A. The current 'I' through A can be altered
 - a) whether I increases or decreases B will not experiences any force
 - b) if I decrease A will repel B
 - c) if I increases A will attract B
 - d) if I increases A will repel B

77)		pended from a spring an connected to a galvanom			et moves in and out of the scillates
	a) G shows no defle	ection			
	b) G shows deflection	on to the left and right be	ut the amplitu	de steadily decre	ases T
	c) G s shows deflec	tion on the left and right	with a consta	nt amplitude	
	d) G shows deflection	on on one side			5
					N G
78)	• 1	moves along the line AB shown in the figure, then		the same plane of	of a circular loop of
	a) the current induce	ed will be anticlockwise		(
	b) the current induc	ed will be clockwise		(
	c) no current will be	e induced in the loop		$A \longrightarrow$	B
	d) the current induc	ed in the loop will chang	ge its direction	s as the charged	particle passes by
79)	Two coils have mut equation $I=I_0 \sin \omega t$ secondary coil (in v	tual inductance 0.005 H. t, where I_0 =10 A and ω =volt) is	The current $e^{-100\pi}$ rad s ⁻¹ .	changes in the fir The maximum v	est coil according to the value of emf in the
	a)2π	b) 5π	c) π	(d)4π
80)	The resonant freque then the resonant fr	2	f the capacitar	nce is made four	times of the initial value,
	a) f	b) f/2	c) 2f		d) f/4
81)	_	owards a coil at rest with charge in the coil. If the	_		s a induced emf, induced rrect statement is
	a) emf increases	b) current increases	c) charge re	mains same	d) charge increases
82)	PQRS and directed	held perpendicular to un into the plane of the pap 1.5s. During this time	er. The circu	it is pulled out of	extending over the region f the field at a uniform
	a) 0.6mA from B to	C b) 0.9mA from B	to C P		Q
	c) 0.9mA from C to	B d)0.6mA from C t	о В	A ← 0.5g	B 5Ω

Page

92)	working of a transf	former is based on the p	orincip	ole of	
a)	self inductance	b) mutual inductance	c) he	ating effect of current	d) chemical effect of current
93)	If a current is passe	ed through a spring, the	n the	spring will	
a)	expand	b) compress	c) re	main same	d) none of these
94)	An induced emf is independent of	produced when a magr	net is p	lunged into a coil. The	e strength of the induced emf is
a)	the strength of the	magnet		b)number of terms i	n the coil
c)	the resistivity of the	e wire of the coil		d) speed with which	the magnet is moved
95)	A straight conductor is	or falling vertically do	wnwai	rds with its ends pointing	ng north-south direction, there
a)	an induced current	from south to north dir	ection		
b)	an induced current	from north to south dir	rection	ı	
c)	no induced emf alo	ng the length of the co	nducto	or	
d)	an induced emf alo	ng the length of the co	nducto	or	
96)) In a step – up tran $a)n_s \le n_p \text{ and } V_s$			b) $n_s > n_p$ and $V_s <$	$\leq V_p$
	c) $n_s < n_p$ and V_s	$_{ m s}$ $<$ $V_{ m p}$		d) $n_s > n_p$ and $V_s > n_p$	V_p
97)	A current flow in a	a conductor form east t	o west	. The direction of the n	nagnetic field at a point above
	the conductor i	is.			
	a) towards north	b) towards	south	ı	
	c) towards east	d) towards	west		
98)	consider the follow	ving statements			
	(A) An emf can be	e induced by moving a	condu	ctor in a magnetic field	l
	(B) An emf can b	e induced by changing	the m	agnetic field	
	a) Both A and B	are correct b) A is	s true l	out B is false	
	c) A is false but	B is true d) Bo	th A a	nd B are false	
99)	Ferromagnetic ma	terial used in transform	ner mu	st have	
	a) low permeabi	lity and low hysteresis	loss	b) low permeability a	nd high hysteresis loss
	c) high permeab	ility and low hysteresis	s loss	d) high permeability a	and high hysteresis loss
100) Lenz's is based o	on the principle of			
	a) conservation o	f energy		b) conservation of line	ar momentum
	c) conservation o	f charge	(d) conservation of angu	ılar momentum

101)	11) The materials suitable for making electromagnets should have					
	a) high retentivity and	high coercitity	b) low retentivity and	low coercitity		
	c) high retentivity and	low coercitity	d) low retentivity and l	nigh coercitity		
102)	Which of the following	statements is correct	t ?			
	a) The core of a transformay be increased	ormer is laminated so	that the ratio of voltage	in the primary and secondary		
	b) Power on high volta	ge is generally transr	nitted over a long distan	ces using smaller currents		
	c) In a transformer a large alternating current at low voltage can be transmitted into a small curren alternating at high voltage					
	d) Hot wire ammeter ca	an be used to measur	e both AC and DC			
103)	103) A galvanometer is connected to the secondary coil. The galvanometer shows an instantaneous deflection of 7 divisions when current is started in the primary coil. Now if the primary coil is suddenly rotated through 180°, then new instantaneous deflection in galvanometer will be					
	a) 7 units	b) 14 units	c) 0 units	d) 21 units		
104)	A charged particle mov	es through a magneti	c field perpendicular to	its direction . Then		
	 a) both kinetic energy and momentum of the particle are not constant b) both kinetic energy and momentum of the particle are constant c) kinetic energy changes but momentum is constant d) kinetic energy is constant but momentum changes 05) In an LCR series AC circuit voltage across each of the component is 50volt. Voltage across the combination of LC will be a) zero b) 50 volt c) 100 volt d) 25 volt 					