

Electrostatics

1)Two charges 4q and –q are placed a distance 'r' apart. A charge Q is placed exactly mid-way between them. What will be the value of Q so that charge 4q experiences no net force?

- q/4
- -q/4
- 49
- -4q

2)Two point charges of +4 μ C and +2 μ C repel each other with a force of 8N. If a charge of -4 μ C is added to each of these charges, the force would be

- Zero
- 8N
- 4N
- 12N

3)Force between two charges separated by a certain distance in air is 'F'. If each charge were doubled and distance between them also doubled, Force would be

- 2F
- F
- 4F
- F/4

KEA

4)Two point charges certain distance apart in air repel each other with a force F. A glass plate is introduced between the charges. The force becomes F¹ where

- 1) $F^1 < F$
- $\mathbf{2}) \mathbf{F}^{1} = \mathbf{F}$
- 3) $F^1 > F$
- 4) Data is insufficient.

5)Two equally charged identical metal spheres A and B repel each other with a force 3X10⁻⁵ N. Another identical uncharged sphere c is touched with A and then placed at the mid point between A and B. Net force on 'c' is

- 1) 1X10⁻⁵ N
- 2) $2 \times 10^{-5} \text{ N}$
- 3) 1.5x10⁻⁵ N
- 4) 3x10⁻⁵ N

6) If charge q is placed at the centre of the line joining two equal charges Q. The system of three charges will be in equilibrium if q is

- -Q/2
- -Q/4
- -4Q
- \bullet +Q/2

7) In one gram of a solid, there are 5x10²¹atoms. If one electron is removed from every one of 0.01% of the solid, the change gained by the solid is

- +0.08c
- +0.8c
- -0.08c
- -0.8c

8) When air is replaced by dielectric medium of constant k the maximum force of attraction between two charges separated by a distance

- Increases k⁻¹ times
- Increases k times
- Remains unchanged
- decreases k times

9) In paper and cotton industries, the atmosphere is kept moist. This is to

- Remove dust and dirt
- Conduct the charges produced due to friction as material is dried
- Reduce the temperature of surrounding
- Prolong process of drying

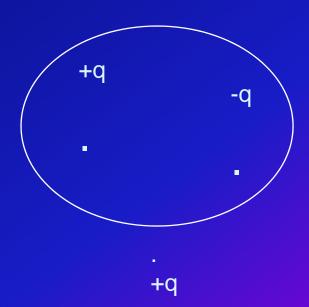
10) The statement which is incorrect is

- Gravitational force may be attractive while electrostatic force ma be attractive or repulsive
- Both gravitational and electrostatic forces very inversely as the square of the distance
- Gravitational force is a short range force while electrostatic force is a long range force
- Gravitational force is very weak compared to electrostatic force

11) There is an electric field E in X-direction. If work done in moving a charge 0.2c through a distance of 2m along a line making an angle of 60° with X-axis is 4J, what is the value of E?

- 1) $\sqrt{3}NC^{-1}$
- 2) 4Nc⁻¹
- 3) 5NC⁻¹
- 4) none of these

KEA



12) Shown below is a distribution of charges. The flux of electric field due to these charges through the surface is

1)
$$\frac{3q}{\epsilon_0}$$

$$3)\frac{2q}{\epsilon_0}$$

4)
$$\frac{q}{\epsilon_0}$$

13) If the electric flux entering and leaving an enclosed surface respectively is ø1 and ø2 the electric charge inside the surface will be

1)
$$\frac{\phi_2 - \phi_1}{\varepsilon_0}$$

$$2)\frac{\phi_1+\phi_2}{\varepsilon_0}$$

$$3)\frac{\phi_1-\phi_2}{\varepsilon_0}$$

14) Two metal pieces having a potential difference of 800v are 0.02m apart horizontally. A particle of mass 1.96x10⁻¹⁵ Kg is suspended in equilibrium between the plates. If 'e' is the elementary charge, then charge on particle is

- 8e
- 6e
- 3e
- e

15) An electron is projected into a region of uniform electric field with a velocity v such that it moves in the direction of the field. As the electron moves, its velocity

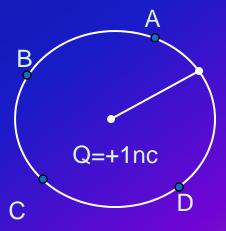
- Remains the same
- Increases
- Decreases
- Continuously charges in direction

16) If a particle of mass 'm' and charge +q moves from rest in an electric field from a point at a higher potential to a point at a lower potential and V be the potential difference between the two points, then the velocity acquired by the particle is

$$1)\sqrt{\frac{2qv}{m}}$$

$$2)\sqrt{\frac{2m}{qv}}$$

$$4)\sqrt{\frac{m}{2qv}}$$



17) A point charge of +1nc is at centre of circle of radius 5cm as shown in the diagram. A, B, C and D are points on the circumference of the circle. The amount of work done in taking +1c of charge

is

- Greatest for the path AD
- Greatest for the path AB
- Same for the paths AC & BD
- Zero for all the paths

KEA

18) A particle of mass 6mg carrying a charge of - 1μc is projected with a velocity v towards a charge of -10μc from a point A as shown in the diagram. It comes to rest at a point B distant 1m from 'O' and then turns back. Then v is nearly

4) 325ms⁻¹

19) The number of electron to be removed from a neutral copper sphere of radius 1m in order that there exists an electric intensity of 9vm⁻¹ on the surface of the sphere is

- 1) 625x10⁷
- $2) 6.25 \times 10^7$
 - 3) 625x10⁸
- 4) 6.25x10⁸

20) Can a sphere of radius 1m hold a charge of 1c?

- Yes
- No
- Depends upon the metal of the sphere
- Depends upon whether the charge is +ve or-ve

21) The energy stored in a capacitor is actually stored

- Between the plates
- On the positive plate
- On the negative plate
- On the outer surface of the plates

22) If an uncharged capacitor is charged by connecting it to a battery, then the amount of energy lost as heat is

23) A variable capacitor is permanently connected to a 100volt battery. If the capacity is changed from $2\mu F$ to $10\mu F$, then the change in energy is equal to

- 2X10⁻¹J
- 2.2X10⁻²]
- 3.5X10⁻²J
- 4X10⁻²J

24) The capacity of a parallel plate capacitor depends on

- The type of metal used
- The thickness of plates
- The potential applied across the plates
- The separation between the plates

25) A capacitor of capacitance 6µF was originally charged to 10volt. Now the potential difference is made 20volt. What is the increase in its potential energy?

- 3x10⁻⁴J
- 6x10⁻⁴J
- 9x10⁻⁴J
- 12X10⁻⁴]

26) Two copper spheres of same radius, one hollow and the other solid are charged to the same potential, then

- The hollow sphere will hold more charge
- The solid sphere will hold more charge
- Both of them will hold same charge
- Hollow sphere cannot hold any charge

27) The capacitance of a capacitor does not depend upon

- Distance between the plates
- Area of the plates
- Curvature of the plates
- Material of the plates

28) Two capacitors with capacitances c_1 and c_2 are charged to potentials v_1 and v_2 respectively. When they are connected in parallel, the ratio of their respective charges is

1)
$$\frac{c_{1}^{2}}{c_{2}^{2}}$$

$$\frac{V_{1}^{2}}{V_{2}^{2}}$$

$$\frac{V_1}{V_2}$$

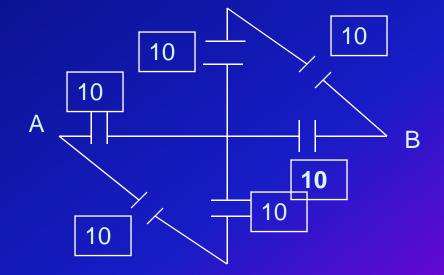
$$4) \frac{c_1}{c_2}$$

29) Three capacitors each of capacity $4\mu F$ are to be connected in such a way that the effective capacitance is $6\mu F$, this can be done by

- Connecting all of them in series
- Connecting all of them in parallel
- Connecting two in series and one in parallel
- Connecting two in parallel and one in series

30) Three capacitors of capacity C each are joined first in series and then in parallel. The capacity becomes n times, where n is

- 3
- 6
- 9
- 12



31) The effective capacitance between A and B is

32) In a parallel plate capacitor of capacitance c, a sheet of copper is inserted between the plates, parallel to them. The thickness of the sheet is half the separation between the plates. The capacitance now becomes

- 2C
- 4C
- c/4
- c/2

33) Two conducting spheres of radii R_1 and R_2 are given the same charge. The ratio of their potentials will be

$$1)\sqrt{\frac{R_2}{R_1}}$$

$$\frac{2}{R} \frac{R_{2}}{R_{1}}$$

$$\frac{R_{2}^{2}}{R_{1}^{2}}$$

4)
$$\frac{R_2^3}{R_1^3}$$

34) Two conducting spheres of radii r_1 and r_2 are charged such that they have the same electric field on their surfaces. The ratio of the charge on them is

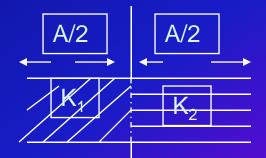
1)
$$\sqrt{\frac{r_1}{r_2}}$$
2) $\frac{r_1}{r_2}$
3) $\frac{r_1^2}{r_2^2}$
4) $\sqrt{\frac{r_1}{r_2}}$

35) A parallel plate capacitor is charged and is disconnected from the battery. If the plates of the capacitor are moved apart by means of insulating handles,

- The charge on the capacitor becomes zero
- The capacitance becomes infinity
- The charge on capacitor increases
- Voltage across the plates increases

36) A parallel plate capacitor with oil between the plates (dielectric constant of oil K=5) has capacitance c. If the oil is removed, then capacitance of the capacitor becomes

2)
$$\frac{\mathbf{c}}{\sqrt{5}}$$



37) A parallel plate air capacitor has a capacitance of $1\mu F$. The space between its plates is then filled with two slabs of dielectric constants

 K_1 =2 and K_2 =4 as shown. The new capacitance is

38) A particle of mass m and charge q is placed at rest in a uniform electric field E and then released. The kinetic energy attained by the particle after moving a distance y is

- qEy²
- qE²y
- qEy
- q²Ey

39) An alpha particle is accelerated through a potential difference of 10⁶volt. Its kinetic energy will be

- 1Mev
- 2Mev
- 4Mev
- 8Mev

40) In bringing an electron towards another electron, the electrostatic potential energy of the system

- remains same
- becomes zero
- increases
- decreases

41) Two spheres of radii R_1 and R_2 respectively are charged and joined by a wire. The ratio of electric field of sphere is

1)
$$\frac{R_{\frac{2}{2}}^{\frac{2}{2}}}{R_{\frac{1}{2}}^{\frac{2}{2}}}$$

2)
$$\frac{R_{1}^{2}}{R_{2}^{2}}$$

$$\frac{R}{R}$$

$$4)\frac{R_1}{R_2}$$

42) The electric potential v is given as a function of distance x (metre) by $v=5x^2+10x-4$. Value of electric field at x=1metre is

- -23v/m
- 11V/m
- 6v/m
- -20v/m

43) An alpha particle and a proton are accelerated through same potential difference from rest. Find the ratio of their final velocity.

44) The potential difference applied to a x-ray tube is 5kv and current through it is 3.2mA. Then the number of electrons striking the target per second is

- 2X10¹⁶
- 5x10⁶
- 1X10⁷
- 4X10¹⁵

KEA

45) Equal charges q each are placed at the vertices A and B of an equilateral triangle of side a. the magnitude of electric intensity at the point

c is

$$1)\frac{1}{4\pi\epsilon_0}\frac{q}{a^2}$$

$$2)\frac{\sqrt{2}}{4\pi\epsilon_0}\frac{q}{a^2}$$

$$3)\frac{\sqrt{3}}{4\pi\epsilon_0}\frac{q}{a^2}$$

$$3)\frac{2}{4\pi\epsilon_0}\frac{q}{a^2}$$

46) 27 identical drops of mercury are charged simultaneously to the same potential of 10volt each. Assuming drops to be spherical, if all the charged drops, are combined to form a single large drop, then potential, of larger drop would be

- 45V
- 135V
- 270V
- 90V

47) The capacitance of arrangement of 4 plates of area A at a distance d as shown in figure is

48) A parallel plate capacitor is first charged and then a dielectric slab is introduced between the plates. The quantity that remains unchanged is

- Charge
- Potential
- Capacity
- energy

49) Two capacitors of capacitances c_1 and c_2 are connected in parallel across a battery. If Q_1 and Q_2 respectively be the charges on the capacitors, then Q_1/Q_2 will be equal to

$$1)\frac{c_2}{c_1}$$

$$2)\frac{c_1}{c_2}$$

$$\frac{c_{1}^{2}}{c_{2}^{2}}$$

4)
$$\frac{c_{2}^{2}}{c_{1}^{2}}$$

50) The surface encloses an electric dipole. The electric flux through the surface is

- Zero
- Positive
- Negative
- infinity

Thank you

Wish you all the best