Sol.1:
Light is traveling from denser to rarer medium i.e. $\mathrm{r}>\theta$

$$
\begin{aligned}
& X+r+\theta=180 \\
& X=180-r-\theta \\
& X<180-2 \theta \quad \mid \text { since } r>\theta
\end{aligned}
$$

Ans (C)

Sol. 2

$$
\begin{aligned}
& \quad r=\frac{i}{2} \\
& n=\frac{\sin i}{\sin r}=\frac{\sin i}{\sin \frac{i}{2}}=\frac{2 \sin \frac{i}{2} \cdot x \cos \frac{i}{2}}{\sin \frac{i}{2}} \\
& =2 \cos \frac{i}{2} \\
& \rightarrow \cos \frac{i}{2}=\frac{n}{2} \\
& \rightarrow i=2 \cos ^{-1}\left[\frac{n}{2}\right] \\
& \text { Ans }=(\mathrm{d})
\end{aligned}
$$

Sol. 3
(A)

(B)

(c)

(D)

Light is traveling from glass to air. Therefore maximum light is transmitted if the angle of incidence is less than the critical angle. And very little light is reflected.

If the angle of incidence is greater than critical angle, no light is transmitted. Hence intensity of transmitted light becomes zero.
Ans = (c)

Sol. 4:

Refraction at lens,
Object is at $2 \mathrm{f}=30 \mathrm{~cm}$ therefore image is at $2 \mathrm{f}=30 \mathrm{~cm}$
For reflection at mirror, virtual object is at 20 cm behind the mirror.
Therefore image formed at 20 cm in front of the mirror.
Again for refraction through lens, $u=-10 \mathrm{~cm}$

$$
\begin{aligned}
\frac{1}{v}= & \frac{1}{f}-\frac{1}{u} \\
\frac{1}{v}= & \frac{1}{15}+\frac{1}{10}=\frac{2+3}{30}=\frac{5}{30} \\
& \quad \mathrm{v}=6 \mathrm{~cm}
\end{aligned}
$$

The final real image is formed at $10+6=16 \mathrm{~cm}$ from the mirror.
Ans = (b)

Sol. 5
The radius of the circular area through which the light is passed is
$\rightarrow R=\frac{h}{\sqrt{\left(n^{2}-1\right)}}$
$\mathbf{R}=\frac{8}{\sqrt{(25-9)}} \times 3$

$$
\mathbf{R}=\frac{8}{4} \times 3=6 \mathrm{~cm}
$$

Ans = (b)

Sol. 6

$$
\begin{gathered}
\left|\frac{P_{\text {concave }}}{P_{\text {convex }}}\right|=\frac{2}{3}=\frac{f_{\text {convex }}}{f_{\text {concave }}} \\
\frac{1}{F}=\frac{1}{f_{\text {concave }}}+\frac{1}{f_{\text {convex }}} \\
=\frac{-2}{3 f}+\frac{1}{f} \\
\frac{1}{30}=\frac{-2+3}{3 f}=\frac{1}{3 f} \\
f=10 \mathrm{~cm}
\end{gathered}
$$

Where f is the focal length of convex lens
Ans= (a)

Sol. 7

For given lens

$$
\frac{1}{f}=(n-1)\left[\frac{2}{r}\right] \text { since } r_{1}=r_{2}=r
$$

For a piece of lens,
$r_{1}=r$ and $r_{2}=\infty$

$$
\begin{aligned}
\frac{1}{F} & =(n-1)\left[\frac{1}{1}+\frac{1}{\infty}\right] \\
& =(n-1) \frac{1}{r} \\
& =\frac{1}{2 f}
\end{aligned}
$$

$$
\mathrm{F}=2 \mathrm{f}
$$

Ans (d)

Sol. 8

Since $\mathrm{i}=45$ which is greater than C for blue and green. So they undergo TIR. But red light gets refracted.
Ans = (a)

Sol. 9
$\mathrm{n}=\frac{\text { real thickness }}{\text { apparenthickness }}=\frac{t}{10}$

$$
\mathrm{t}=10 \mathrm{x} \mathrm{n}
$$

$$
=10 \times 1.5=15 \mathrm{~cm}
$$

> Ans (c)

Sol. 10

For multiple media;
Apparent depth=
$\frac{t_{1}}{n_{1}}+\frac{t_{2}}{n_{2}}=\frac{9}{1.5}+\frac{12}{\frac{4}{5}}=6+9=15 \mathrm{~cm}$
Ans (b)

Sol. 11

Lens equation
$1 / u+1 / v=1 / \mathrm{f}=$ cont.
is the equation of
hyperbola
Ans = (d)

Sol. 12

$$
\text { In air } \quad \frac{1}{f}=\left(n_{g}-1\right)\left[\frac{1}{r 1}+\frac{1}{r_{2}}\right]
$$

$$
\text { In water } \frac{1}{f^{\prime}}=\left(\frac{n_{g}}{n_{w}}-1\right)\left[\frac{1}{r_{1}}+\frac{1}{r_{2}}\right]
$$

$$
\begin{aligned}
& \frac{f^{\prime}}{f}=\frac{\left(n_{g}-1\right)}{\left(n_{g}-n_{w}\right)} \times n_{\mathrm{w}} \\
& \mathbf{f}^{\prime}=\frac{0.5}{0.17} \times 1.33 \times f=4 f \\
& \text { Ans }=(\mathrm{c})
\end{aligned}
$$

Sol. 13
Due refraction at $I^{\text {st }}$ face, ray bends towards the normal i.e. $\mathrm{n}_{2}>\mathrm{n}_{1}$
At II $^{\text {nd }}$ face No TIR takes place $\rightarrow \mathrm{n}_{2}<\mathrm{n}_{3}$

$$
\begin{aligned}
& \rightarrow \mathrm{n}_{1}<\mathrm{n}_{2}<\mathrm{n}_{3} \\
& \text { Ans }=(\mathrm{a})
\end{aligned}
$$

Sol. 14
From figure, when $u=v=40 \mathrm{~cm}=2 f$
$\rightarrow \mathrm{f}=40 / 2=20 \mathrm{~cm}$

$$
\text { Ans }=(b)
$$

Sol. 15

In equation $n=A+B / \lambda^{2}$,
Dimensions of B are same as that of $[\lambda]^{2}=[\mathrm{L}]^{2}$
i e the dimensions of B are same as that of area
Ans = (d)

Sol. 16
Since the rays are normal to the first surface, no deviation takes place.
At the II $^{\text {nd }}$ surface,

$$
\begin{aligned}
& \frac{n_{1}}{u}+\frac{n_{2}}{v}=\frac{n_{1}-n_{2}}{R} \\
& \frac{1.5}{\infty}+\frac{1}{v}=\frac{0.5}{5} \\
& v=\frac{5}{0.5}=10 \mathrm{~cm}
\end{aligned}
$$

Ans = (d)

Alternative: Since radius is 5 cm , the rays converges to focal length $=2 r=10 \mathrm{~cm}$

Sol. 17

Addition of two identical prisms as in figure is same as addition of parallel sided slab.

$$
\text { Ans }=(\mathbf{a})
$$

Sol. 18
For refraction at the curved surface

$$
\frac{n_{1}}{u}+\frac{n_{2}}{v}=\frac{n_{1}-n_{2}}{R}
$$

$$
\begin{gathered}
\frac{1}{24}+\frac{7}{4 x v}=\frac{\frac{7}{4}-1}{6}=\frac{3}{4} \times \frac{1}{6}=\frac{1}{8} \\
\frac{7}{4 x v}=\frac{1}{8}-\frac{1}{24}=\frac{1}{12} \\
v=\frac{7}{4} \times 12=21 \mathrm{~cm}
\end{gathered}
$$

For the refraction through oil - water interface

$$
\text { a.d }=\frac{r . d}{w n_{o}}=\frac{21}{\frac{7}{4} \times \frac{3}{4}}=16 \mathrm{~cm}
$$

Therefore

$$
\begin{aligned}
\mathrm{x}=18-16 & =2 \mathrm{~cm} \\
\text { Ans } & =(\mathbf{a})
\end{aligned}
$$

Sol. 19

For refraction at glass-wat

$$
\begin{aligned}
& \mathbf{g} \mathbf{n}_{\mathrm{w}}=\frac{\mathbf{n}_{w}}{\mathbf{n}_{g}}=\frac{\sin i}{\sin r} \\
& \mathbf{n}_{\mathbf{g}}=\frac{\sin r}{\sin i} \times \mathbf{n}_{\mathbf{w}}
\end{aligned}
$$

For water -air interface,
$\mathbf{n}_{\mathrm{w}}=\frac{1}{\sin r}$
$n_{w} \times \sin r=1$
Equation (1) becomes

$$
\mathbf{n}_{\mathbf{g}}=\frac{1}{\sin i}
$$

Ans = (b)

Sol. 20

$$
\mathrm{n}_{\mathrm{g}}=\frac{1}{\sin \theta} \rightarrow \sin \theta=\frac{1}{n_{g}}
$$

Also $\mathrm{n}_{\mathrm{g}}=\frac{\sin \theta}{\sin x}$

$$
\begin{aligned}
\rightarrow & \sin r
\end{aligned}=\frac{\sin \theta}{n_{g}}=\frac{1}{n^{2}}
$$

$$
\text { Ans }=(\mathrm{c})
$$

Sol. 21

Refraction through the multiple parallel media,

Region I	Region II	Region III	Region IV
0	$\mathbf{n}_{0} / \mathbf{6}$		$\mathbf{n}_{0} / \mathbf{8}$
0	0.2 m	0.6 m	

$\mathrm{n}_{1} \operatorname{sini}_{1}=\mathrm{n}_{2} \operatorname{sini}_{2}=\mathrm{n}_{3} \operatorname{sini}_{3}=\mathrm{n}_{4} \operatorname{sini}_{4}=\ldots$.

$$
n_{0} \sin \theta_{1}=\frac{n_{o}}{2} \sin \theta_{2}=\frac{n_{0}}{6} \sin \theta_{3}=\frac{n_{0}}{8} \sin 90
$$

$n_{0} \sin \theta_{1}=n_{0} / 8$

$$
\rightarrow \theta_{1}=\sin ^{-1} \quad\left[\frac{1}{8}\right]
$$

Ans = (b)

Sol. 22
Time $=\frac{\text { thickness }}{\text { vel. }}=\frac{t}{v}$
But

$$
\mathrm{n}=\frac{c}{v} \rightarrow \mathrm{v}=\frac{c}{n}
$$

\rightarrow time $\left.=\frac{n t}{c}=\frac{3 t}{2 c} \quad \right\rvert\, \mathrm{n}=1.5=3 / 2$

Ans $=(b)$

Sol. 23
RI of glass with respect to water is

$$
\begin{aligned}
& \rightarrow n_{g}=\frac{5}{4} x n_{w}=\frac{5}{4} x \frac{4}{3}=\frac{5}{3} \\
&{ }_{w} n_{g}=\frac{n_{g}}{n_{w}}=\frac{v_{w}}{v_{g}}=\frac{\lambda_{w}}{\lambda_{g}}=\frac{5 / m}{4 / m}=\frac{5}{4}
\end{aligned}
$$

| same number of waves occupied in 5 cm of water and 4 cm of glass
Ans = (a)

Sol. 24
Here $\mathbf{u}=0.1 \mathrm{~cm}$ and $\mathrm{v}=0.1+0.2=0.3 \mathrm{~cm}$

Therefore,

$$
\begin{aligned}
\frac{1}{f} & =\frac{1}{u}+\frac{1}{v} \\
& =\frac{1}{0.1}+\frac{1}{0.3} \\
& =\frac{3+1}{0.3}=\frac{4}{0.3} \\
\rightarrow f & =\frac{0.3}{4}=0.075 m
\end{aligned}
$$

Ans = (C)

Sol. 25
From figure, for TIR

$$
\begin{aligned}
\sin \theta & \geq \frac{1}{w^{n} n_{g}}=\frac{n_{w}}{n_{g}}=\frac{4}{3} \times \frac{2}{3}=\frac{8}{9} \\
\rightarrow \sin \theta & \geq \frac{8}{9}
\end{aligned}
$$

Ans $=(a)$

Sol. 26
Only lateral shift take place and hence incident and emergent rays are parallel
\rightarrow divergent angle of emergent rays $=\alpha$
Ans = (b)

Sol. 27

Sol. 28
The radius of the circular area through which the light is passed is
$\begin{aligned} \rightarrow \quad R & =\frac{h}{\sqrt{\left(n^{2}-1\right)}} \\ \rightarrow \text { diameter } & =2 R=\frac{2 h}{\sqrt{\left(n^{2}-1\right)}}\end{aligned}$

Ans = (c)

Sol. 29

$$
\mathrm{Ad}=\frac{r d}{n}=\frac{0.4}{4} \times 3=0.3 \mathrm{~cm}
$$

Apparent distance of the fish from lens,
$\mathrm{u}=0.3+0.2=0.5 \mathrm{~cm}$
$\mathrm{f}=3 \mathrm{~m}$

$$
\begin{aligned}
\frac{1}{v} & =\frac{1}{f}-\frac{1}{u} \\
= & =\frac{1}{3}-\frac{1}{0.5}=\frac{1-6}{3}=\frac{-5}{3} \\
\rightarrow v & =\frac{-3}{5}=-0.6 \mathrm{~m}
\end{aligned}
$$

$$
\rightarrow \text { Ans }=(\mathbf{a})
$$

Sol. 30
Since lens acts as diverging lens, RI of material in the lens must be greater than that of the surrounding

$$
\text { Ans }=(d)
$$

Sol. 31
Magnification,

$$
\begin{aligned}
& m=\frac{I}{O}=\frac{v}{u} \\
& \text { or } I=\frac{v}{u} \times O \\
&=\frac{2 \times 1.4 \times 10^{9}}{10^{11}} \\
&=2.8 \mathrm{~cm} \\
& \text { Ans (c) }
\end{aligned}
$$

Sol. 32
$\mathrm{ad}=0.3 \mathrm{~m}$
$\mathrm{n}_{\mathrm{w}}=4 / 3$

$$
{ }_{w} n_{a}=\frac{r d}{a d}
$$

$$
\rightarrow r d={ }_{w} n_{a} \times \text { ad }
$$

$$
=\frac{1}{\mathrm{n}_{\mathrm{w}}} \times \mathrm{ad}
$$

$$
=\frac{3}{4} \times 0.3
$$

$$
=\frac{0.9}{4}=0.225 \mathrm{~m}
$$

$$
\text { Ans }=(\mathbf{a})
$$

Sol. 33
we known that

$$
n=A+\frac{B}{\lambda^{2}}
$$

Ans = (a)

Sol. 34
In medium of RI n_{2} lens acts as diverging lens
In medium of $\mathrm{RI}_{3} \mathrm{n}_{3}$ lens acts as converging lens
Ans = (d)

Sol. 35

For convex lens $\mathrm{n}>\mathrm{n}_{1}$
For diverging lens $\mathrm{n}<\mathrm{n}_{2}$
i.e. $\mathrm{n}_{2}>\mathrm{n}>\mathrm{n}_{1}$
Ans = (c)

Sol. 36

For the dispersion of light, light must incident on one refracting surface from the base side and emerges from other side.
Ans = (a)
a)

b)

c)

d)

Sol. 37

From the symmetry of the figure,
Angle of incidence $\mathrm{i}=60^{\circ}$
Angle of refraction $r=30^{\circ}$

$$
\begin{gathered}
n=\frac{\sin i}{\sin r}=\frac{\sin 60}{\sin 30}=\frac{\sqrt{3}}{2} \times \frac{2}{1}=\sqrt{3} \\
\text { Ans }=(\mathbf{b})
\end{gathered}
$$

Sol. 38
Fig(C) not acts as a lens. It is because radius of curvature of both surfaces are same but with opposite sign. From lens equation $\quad f=\infty$

$$
\text { Ans }=(\mathrm{c})
$$

Sol. 39
For water lens in air, $r_{1}=-0.2 m, r_{2}=\infty$ and $n=4 / 3$

$$
\begin{gathered}
\frac{1}{f}=\left(\frac{4}{3}-1\right)\left(\frac{-1}{0.2}\right) \\
=\frac{-1}{3 \times 0.2} \\
f=-0.6 m
\end{gathered}
$$

Ans $=(C)$

Sol. 40
$\mathrm{n}=\sqrt{2}$.
$\mathrm{i}_{1}=\mathrm{r}_{1}=0$
But $\quad r_{1}+r_{2}=A=30$
$\rightarrow \mathrm{r}_{2}=30$
But

$$
\begin{gathered}
n=\frac{\operatorname{sini}_{2}}{\operatorname{sinr}_{2}}=\frac{\operatorname{sini}_{2}}{\sin 30} \\
\rightarrow \operatorname{sini}_{2}=n x \sin 30 \\
=\sqrt{2} \times \frac{1}{2}=\frac{1}{\sqrt{2}} \\
\rightarrow i_{2}=45 \\
\therefore \mathrm{~d}=0+45-30=15 \\
\text { Ans }=(\mathrm{c})
\end{gathered}
$$

Sol. 41

For TIR, $\quad \mathrm{i}>\mathrm{C}$

$$
\begin{aligned}
& \rightarrow \operatorname{sini}>\operatorname{sinC} \\
& \rightarrow \operatorname{sini}>1 / \mathrm{n}
\end{aligned}
$$

Or $\quad n>1 /$ sini

$$
\text { Ans }=(\mathrm{c})
$$

Sol. 42
For TIR, $\quad \mathrm{i}>\mathrm{C}$

$$
\begin{aligned}
& \rightarrow \operatorname{sini}>\operatorname{sinC} \\
& \rightarrow \operatorname{sini}>1 / n
\end{aligned}
$$

Or $n>1 /$ sini

$$
\begin{aligned}
& n>1 / \sin 45 \\
& n>\sqrt{ } 2=1.41
\end{aligned}
$$

$$
\text { Ans }=(\mathbf{d})
$$

Sol. 43

Since the rays A and C bends towards normal and angle of incidence for the second face is less than C .
Ans = (b)

Sol. 44
The glass and the liquid have the same refractive index so that refraction through both glass and liquid is same
Ans = (b)

Sol. 45

$d=i_{1}+i_{2}-A$ is maximum if i_{1} or i_{2} is maximum.
i.e. ray incident grazing the surface or ray emerges grazing the surface suffers maximum deviation

$$
\mathrm{Ans}=(\mathrm{c})
$$

Sol. 46

$$
\begin{aligned}
& n= \cot \frac{A}{2} \\
& n= \frac{\sin \frac{A+D}{2}}{\sin \frac{A}{2}} \\
& \rightarrow \sin \frac{A+D}{2}=n x \sin \frac{A}{2} \\
&=\cot \frac{A}{2} x \sin \frac{A}{2} \\
&=\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} x \sin \frac{A}{2}=\sin \left[\frac{\Pi}{2}-\frac{A}{2}\right] \\
& A+D=\Pi-A \\
& D=\Pi-2 A \\
& \text { Ans }=(a)
\end{aligned}
$$

Sol. 47

same length ' t ' occupied x no. of waves in medium-1 and y no. of waves in medium-2

$$
{ }_{1} n_{2}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{t / x}{t / y}=\frac{y}{x}
$$

$$
\rightarrow \text { Ans }=(d)
$$

$$
\begin{aligned}
& \quad m=\frac{v}{u} \\
& \rightarrow v=m u \\
& \text { Also } \quad \frac{1}{u}+\frac{1}{v}=\frac{1}{f} \\
& \rightarrow \frac{1}{u}+\frac{1}{m u}=\frac{1}{f} \\
& \rightarrow \frac{1}{u}\left(1+\frac{1}{m}\right)=\frac{1}{f} \\
& \rightarrow u=\left(1+\frac{1}{m}\right) f=f \frac{(m+1)}{m} \\
& \quad \text { Ans = (a) }
\end{aligned}
$$

Sol. 49

For the combination of the lenses

$$
\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{f}
$$

Since the combination acts as convex lens f is positive

$$
\frac{1}{f_{1}}>\frac{1}{f_{2}}
$$

Therefore from above equation

$$
\text { Ans }=(c)
$$

Sol. 50
Rays are not deviated at the first face
Therefore $\mathrm{n}_{1}=\mathrm{n}$
At the second face converging rays show that $\mathrm{n}<\mathrm{n}_{2}$
i.e. $\mathrm{n}_{1}=\mathrm{n}<\mathrm{n}_{2}$

Ans = (a)

In minimum deviation position for equilateral prism,
$\mathrm{r}_{1}+\mathrm{r}_{2}=60^{\circ}$
$2 \mathrm{r}=60^{\circ}$ or $\mathrm{r}=30^{\circ}$
for any colour.

Ans (a)

Sol. 52
The emergent ray is parallel to the incident ray and only displacement occurs. Also displacement is very small as thickness of glass is very small

Ans (c)

Sol. 53

$$
\begin{aligned}
\frac{1}{f}= & \frac{1}{u}+\frac{1}{v} \\
& =\frac{1}{2}+\frac{1}{0.1} \\
= & \frac{1+20}{2}=\frac{21}{2} \\
\rightarrow f= & \frac{2}{21}=0.095 \mathrm{~m}=9.5 \mathrm{cmz} \\
& \text { Ans }=(b)
\end{aligned}
$$

Sol. 54

$$
\begin{aligned}
& \frac{\mathbf{1}}{\boldsymbol{f}}=\frac{\mathbf{1}}{\boldsymbol{f}_{1}}+\frac{\mathbf{1}}{\boldsymbol{f}_{2}}=\frac{\mathbf{2}}{\mathbf{0} \cdot \mathbf{2}} \\
& \boldsymbol{f}=\frac{\mathbf{o} .4}{\mathbf{2}}=\mathbf{o . 2 m} \quad \text { Magnification }=\mathrm{m}=\frac{v}{u}=1
\end{aligned}
$$

i.e. $v=u=2 f=2 \times 0.2=0.4 \mathrm{~m}$
Ans = (b)
$\mathrm{t} / \mathrm{v}=$ time taken by light to cover distance t in a medium
Distance traveled by light in air $=\mathrm{n} x$ distance travelled by it in a medium

$$
=\mathrm{nxt}=\mathrm{nt}
$$

$$
\text { Ans }=(\mathbf{a})
$$

Sol. 56

$\mathrm{F}=20 \mathrm{~cm}, \mathrm{n}=1.5$,

$$
\begin{array}{r}
\text { In air, } \quad \frac{1}{f}=(n-1)\left[\frac{1}{r \cdot 1}+\frac{1}{r_{2}}\right] \\
\text { In iquid, } \frac{1}{f^{\prime}}=\left(\frac{n}{n_{i}}-1\right)\left[\frac{1}{r^{\prime} 1}+\frac{1}{r_{2}}\right] \\
f^{\prime}=\frac{(n-1)}{(n-n,)} \times n, \\
f^{\prime}=\frac{0.5}{-0.1} \times 1.66 \times 20=-160 \mathrm{~cm}
\end{array}
$$

Ans = (d)

Sol. 57

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{w}}=\frac{c}{v}=\frac{\lambda a}{\lambda w} \\
& \lambda \mathrm{~W}=\frac{\lambda a}{\mathrm{n}_{\mathrm{w}}}=\frac{500}{4 / 3}=125 \times 3=375 \mathrm{~nm}
\end{aligned}
$$

Colour of the light not changes when it pass from one medium to another
Ans = (c)

Sol. 58

The equivalent focal length of the combination is

$$
\frac{\mathbf{1}}{f}=\frac{\mathbf{1}}{f_{1}}+\frac{\mathbf{1}}{f_{\mathbf{2}}}
$$

Which is same for all combinations of lens.

$$
\text { Ans }=(\mathbf{b})
$$

Sol. 59

It is like a combination of two Plano - convex lenses.
Therefore only one image is formed.
Ans = (a)

Sol. 60
focal length of pieces of lens not changed as radii of curvature of lens not changed

Ans (b)

Sol. 61

Focal length not changes as radius of curvature of faces not changed
Area of lens exposed to the light $=3 \mathrm{~A} / 4$
$\left[\mathrm{A}=\pi \mathrm{d}^{2} / 4\right.$ new area $\left.\mathrm{A}^{1}=\left(\mathrm{A}-\pi(\mathrm{d} / 2)^{2} / 4\right)=\mathrm{A}-\mathrm{A} / 4=3 \mathrm{~A} / 4\right]$
Intensity of light $=3 \mathrm{I} / 4$
Ans (d)

Sol. 62
For refraction through the multiple parallel media, $\mathrm{n}_{1} \operatorname{sini} \mathrm{i}_{1}=\mathrm{n}_{2} \operatorname{sini}_{2}=\mathrm{n}_{3} \operatorname{sini} \mathrm{i}_{3}=\mathrm{n}_{4} \operatorname{sini} \mathrm{i}_{1}$
$\rightarrow \mathrm{n}_{1}=\mathrm{n}_{4}$
Ans = (d)

Sol. 63
Dispersive power is defined for a medium, and it is independent of the shape of the medium.
Ans= (d)

Sol. 64

In figure

$$
\cos \mathrm{r}=\frac{t}{A B}
$$

$$
\rightarrow \mathrm{AB}=\frac{\ell}{\cos r}
$$

Ans $=(c)$

