$\mathbf{K}_{\mathbf{A}}^{\mathbf{A}}$

1. A force $\vec{F}=6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$ acts on a particle and displaces it through $\vec{s}=2 \hat{\imath}-3 \hat{\jmath}+x \hat{k}$ The value of x for zero work is
1) 0.5
2) -2
3) +2
4) 6

Vikasana - CET 2012
2. Two bodies with K.E. in the ratio $4: 1$ are moving with same linear momenta. The ratio of their masses is

1) $1: 4$
2) $1: 1$
3) $1: 2$
4) $4: 1$

Vikasana - CET 2012
3. When a 1 kg mass hung from a spring 50 cm long, it stretches by 2 cm . The mass is then pulled down until the length of the spring becomes 60 cm . The amount of elastic energy stored in the spring in this condition when g is $10 \mathrm{~ms}^{-1}$ can be given as

1) 3 J
2) 2 J
3) 2.5 J
4) 1.5J Vikasana - CET 2012
4. Feeling of weightlessness in a satellite or space ship is due to
1) absence of inertia
2) absence of gravity
3) absence of acceleration due to gravity
4) free fall of space ship

Vikasana - CET 2012

$\mathbf{K}^{E_{A}}$

5. A wheel rotating at 900 rpm about its axis. It comes to rest in 60 s . The angular retardation in rad s ${ }^{-1}$ is

$$
\begin{array}{ll}
\text { 1) } \frac{\pi}{8} & \text { 2) } \frac{\pi}{4} \\
\text { 3) } \frac{\pi}{6} & \text { 4) } \frac{\pi}{2}
\end{array}
$$

Vikasana - CET 2012

$\mathbf{K}^{E_{A}}$

6. A ring is rolling on a surface without slipping. What is the ratio of its translational to rotational kinetic energies?
1) $5: 7$
2) $2: 5$
3) $2: 7$
4) $1: 1$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

7. A ring, a solid sphere and disc have the same mass and radius, which of them have the largest moment of inertia?
1) Ring
2) Solid sphere
3) Disc
4) All have the same moment of inertia

Vikasana - CET 2012

$K^{E_{A}}$

8. A fly wheel of mass 50 kg and radius of gyration about its axis of rotation of 0.5 m is acted upon by a constant torque of 12.5 N.m, Its angular velocity at $\mathrm{t}=5 \mathrm{sec}$ is:
1) $2.5 \mathrm{rad} \mathrm{s}^{-1}$
2) $5 \mathrm{rad} \mathrm{s}^{-1}$
3) $7.5 \mathrm{rad} \mathrm{s}^{-1}$
4) $10 \mathrm{rad} \mathrm{s}^{-1}$

Vikasana - CET 2012
9. An electric fan has blades of length 30 cm as measured from the axis of rotation. If the fan is rotating at 1200 rpm , the acceleration of point on the tip of the blade is about

1) $4740 \mathrm{~ms}^{-2}$
2) $5055 \mathrm{~ms}^{-2}$
3) $1600 \mathrm{~ms}^{-2}$
4) $2370 \mathrm{~ms}^{-2}$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

10. A homogeneous disc with a radius 0.2 m and mass 5 kg rotates around an axis passing through its centre. The angular velocity of the rotation of the disc as a function of time is given by the formula $\omega=2+6 \mathrm{t}$. The tangential force applied to the rim of the disc is
1) 1 N 2) 2 N
2) 3 N 4) 4 N

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

11. When a body starts rolling on an inclined plane, the potential energy had by it is converted into
1) Translational K. E.
2) Translational and rotational K. E.
3) Rotational energy
4) None of these

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

12. Height at which the value of g becomes $1 / 4^{\text {th }}$ to that on earth is
1) R
2) $4 R$
3) $2 R$
4) $\frac{3}{2} R$

Vikasana - CET 2012

$\mathbf{K}^{\mathbf{E}} \mathbf{A}$

13. A satellite in circular orbit of radius R has a period of 4 hr , A satellite with orbital radius of 4 R around the same planet will have a period
1) 8 hr
2) 16 hr
3) 32 hr
4) 64 hr

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

14. Escape velocity from earth is about 11 kms^{-1}. The escape velocity from a planet having twice the radius and the same mean density is
1) $22 \mathrm{kms}^{-1}$
2) $11 \mathrm{kms}^{-1}$
3) $0.55 \mathrm{kms}^{-1}$
4) $15.5 \mathrm{kms}^{-1}$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

15．The gravitational potential energy of a body in the gravitational field of earth is minimum
1）On the surface of the earth
2）Below the surface of the earth
3）At infinity
4）between infinity and surface of the earth

Vikasana－CET 2012

16. A force of $10^{+6} \mathrm{Nm}^{-2}$ is required for breaking a material. If the density of the material is $3 \times 10^{3} \mathrm{kgm}^{-3}$, then the length of wire made of this material that breaks by its own weight is
1) 43 m
2) 34 m
3) 127 m
4) data incomplete Vikasana - CET 2012

$\mathbf{K E}_{\mathbf{A}}$

17. How does the Young's modulus vary with the increase of temperature?
1) Decreases
2) Increases
3) Remains constant
4) First increases and then decreases

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

18. If both the length and radius of the wire are doubled, how does the modulus of elasticity change?
1) Becomes one fourth
2) Halved
3) Doubled
4) Remains unchanged

Vikasana - CET 2012

$\mathbf{K}^{\mathbf{E}} \mathbf{A}$

19. According to the Hooke's law, the force required to change the length of a wire by ' l ' is proportional to
1) l^{-2}
2) l^{-1}
3) l
4) l^{2}

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

20. Young's modulus of the material of a wire is ' y ' If it is under a stress S, the energy stored per unit volume is given by

$$
\begin{array}{ll}
\text { 1) } \frac{1}{2} \frac{S}{y} & \text { 2) } \frac{1}{2} \frac{S^{2}}{y} \\
\text { 3) } \frac{1}{2} \frac{S}{y^{2}} & \text { 4) } \frac{1}{2} \frac{S^{2}}{y^{2}}
\end{array}
$$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

21. A force of one newton doubles the length of a cord having cross-sectional area $1 \mathrm{~mm}^{2}$. The young's modulus of the material of cord is
1) Nm^{-2}
2) $0.5 \times 10^{6} \mathrm{Nm}^{-2}$
3) $10^{6} \mathrm{Nm}^{-2}$
4) $2 \times 10^{6} \mathrm{Nm}^{-2}$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

22. In which case potential energy decrease on

1) compressing the spring
2) stretching the spring
3) moving a body against gravitational pull
4) raising of an air bubble in water

Vikasana - CET 2012

$\mathbf{K}^{\mathbf{E}_{\mathbf{A}}}$

23．A 0.5 kg ball is thrown vertically up with 14 ms^{-1} ．It attains a height of 8 m ．The energy dissipated by air drag acting on the ball during ascent is
1） 9.8 J
2） 4.9 J
3） 10 J
4） 19.6 J
Vikasana－CET 2012

$\mathbf{K}_{\mathbf{A}}$

24. If momentum of a body increases by 50% the kinetic energy will increase by
1) 50%
2) 150%
3) 125%
4) 100%

Vikasana - CET 2012
25. A bullet is fired from a rifle. If rifle recoils freely, then K.E. of bullet is

1) less than that of rifle
2) more than that of rifle
3) same as that of rifle
4) equal or less
than that of rifle

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

26. An object of mass 40 kg and having velocity $4 \mathrm{~ms}^{-1}$ collides with another object of mass 60 kg having velocity $2 \mathrm{~ms}^{-1}$. The loss of energy when the collision is perfectly inelastic
1) 392 J
2) 440 J
3) 110 J
4) 48 J

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

27. Graph between stretching force and extension of spring is shown in the figure. Change in the line PQ when same force is applied to a spring of half the length is given by
1) Same graph

2) line of double the length
3) shifting towards x - axis
4) shifting towards y - axis

Vikasana - CET 2012
28. Which of the following statement is true?

1) g is less at the earth's surface than at a height above it or a depth below it
2) g is the same at all places on the surface of the earth
3) g has its maximum value at the equator
4) g is greater at the places than at the equator.

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}^{\mathbf{A}}$

29. Two particles of equal mass go round a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

$$
\begin{array}{ll}
\text { 1) } v=\frac{1}{2 R} \sqrt{\frac{1}{G m}} & \text { 2) } v=\sqrt{\frac{G m}{2 R}} \\
\text { 3) } v=\frac{1}{2} \sqrt{\frac{G m}{R}} & \text { 4) } v=\frac{1}{2} \sqrt{\frac{4 G m}{R}}
\end{array}
$$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}^{\mathbf{A}}$

30. The force of gravitation is

1) repulsive
2) electrostatic
3) conservative
4) non-conservative

31．If the spinning speed of the earth is increased then weight of the body at the equator
1）increases
2）decreases
3）doubles
4）does not change

Vikasana－CET 2012

$K^{E_{A}}$

32. If radius of earth is ' R ' then the height ' h ' at which the value of g becomes one fourth is

$$
\begin{array}{ll}
\text { 1) } \frac{R}{4} & \text { 2) } \frac{3 R}{4} \\
\text { 3) } \mathrm{R} & \text { 4) } \frac{R}{8}
\end{array}
$$

Vikasana - CET 2012
33. Distance of a geostationary satellite from the surface of earth is

1) $6 R$
2) $7 R$
3) $5 R$
4) $3 R$
34. The angular momentum of a moving body remains constant if
1) net external force is applied
2) net pressure is applied
3) net external torque is applied
4) net external torque is not applied

Vikasana - CET 2012
35. A hard boiled egg will spin faster than a raw egg because of

1) high moment of inertia
2) low moment of inertia
3) high angular velocity
4) Both high moment of inertia and high angular velocity

Vikasana - CET 2012
36. Rotational analogue of mass in linear motion is

1) weight
2) moment of inertia
3) torque
4) Angular momentum

Vikasana - CET 2012

$\mathbf{K}^{\mathbf{E}} \mathbf{A}$

37. Which of the following affects the elasticity of a substance?
1) hammering and annealing
2) change in temperature
3) impurity in substance
4) all of these

Vikasana - CET 2012
38. The following four wires of length 'L' and radius ' r ' are made of the same material which of these will have the largest extension when the same tension is applied?

1) $\mathrm{L}=50 \mathrm{~cm}, \mathrm{r}=0.25 \mathrm{~mm}$
2) $\mathrm{L}=100 \mathrm{~cm}, \mathrm{r}=0.5 \mathrm{~mm}$
3) $\mathrm{L}=200 \mathrm{~cm}, \mathrm{r}=1 \mathrm{~mm}$
4) $\mathrm{L}=300 \mathrm{~cm}, \mathrm{r}=1.5 \mathrm{~mm}$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

39. A rope made of steel has a diameter of 5 cm . The breaking strength of the rope is $2 \times 10^{8} \mathrm{~N}$. The breaking strength of a similar rope of double diameter is
1) $2 \times 10^{8} \mathrm{~N}$
2) $4 \times 10^{8} \mathrm{~N}$
3) $1 \times 10^{8} \mathrm{~N}$
4) $8 \times 10^{8} \mathrm{~N}$

Vikasana - CET 2012
40. It is easier to draw up a wooden block along an inclined plane then have it up vertically, because

1) the mass becomes smaller
2) g becomes smaller
3) the friction is reduced
4) only a part of weight
has to be overcome
Vikasana - CET 2012

$K^{E_{A}}$

41. A fixed volume of iron is drawn into a wire of length ' l '. The extension produced in this wire by a constant force F is proportional to

$$
\begin{array}{ll}
\text { 1) } \frac{1}{l^{2}} & \text { 2) } \frac{1}{l} \\
\text { 3) } l^{2} & \text { 4) } l .
\end{array}
$$

Vikasana - CET 2012
42. The K. E. of a body becomes four times its initial value. The new momentum will be 1) same as initial value
2) twice as initial value
3) thrice as initial value
4) four times the initial value

Vikasana - CET 2012

$K_{\mathbf{E}}^{\mathbf{A}}$

43. A gymnast is sitting on a rotating stool with her arms outstretched. Suddenly folds her arms near her body which of the following is correct?
1) angular speed decreases
2) moment of inertia decreases
3) angular momentum decreases
4) angular speed remains constant

Vikasana - CET 2012

$K_{\mathbf{E}}^{\mathbf{A}}$

44. What is the velocity of the bob of a simple pendulum at its mean position, if it is able to rise to vertical height of 10 cm (take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$)
1) $0.6 \mathrm{~ms}^{-1}$
2) $1.4 \mathrm{~ms}^{-1}$
3) $1.9 \mathrm{~ms}^{-1}$
4) $2.2 \mathrm{~ms}^{-1}$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

45. If central force is inversely proportional to distance R , then time period will be proportional to

$$
\begin{array}{ll}
\text { 1) } \mathrm{R} & \text { 2) } \frac{1}{R} \\
\text { 3) } \frac{1}{R^{2}} & \text { 4) } \mathrm{R}^{2}
\end{array}
$$

Vikasana - CET 2012

