## $K_{\mathbf{E}}{ }_{\mathbf{A}}$

Statics,
Earth's Atmosphere and Astrophysics

Vikasana - CET 2012

## $K_{E_{A}}$



1 The necessary condition for the static equilibrium of a rigid body is that
a) the resultant external force acting on it must be zero
b) the resultant torque acting on it must be zero about any point
c) both (a) and (b)
d) neither (a) nor (b)

Vikasana - CET 2012

Solution: A rigid body in static equilibrium (i.e at rest) has no linear or angular velocity. Hence, both the conditions must be fulfilled.

Ans: [C] both (a) and (b)

Vikasana - CET 2012

## $K^{E_{A}}$

2.A number of forces acting on a body are in equilibrium. Then the body
a) must be at rest
b) must move with uniform velocity
c) may be either at rest or may move with uniform velocity
d) must move with constant acceleration

Solution: $\sum F=0 \quad$ this implies, $a=0$, this implies, $\mathrm{V}=\mathrm{constant}$

Thus, the body can be at rest or in uniform motion

Ans: (C) may be either at rest or may move with uniform velocity

Vikasana - CET 2012
Q. 3 The equilibrant of a 5 N force towards east is a
a) 5 N force towards west
b) 5 N force towards east
c) 10 N force towards north
d) $5 \sqrt{ } 2 \mathrm{~N}$ force along north - east

Vikasana - CET 2012

Solution: The equilibrant of a single force is equal in magnitude but opposite in direction to the given force. Hence, it is a 5 N force towards west.

Ans: (a) 5 N force towards west

Vikasana - CET 2012
4) The maximum and minimum values of the resultant of two forces P and Q are 13 N and 7 N respectively. Then, the values of $P$ and $Q$ are
a) 10 N and 3 N
b) 7 N and 6 N
c) 8 N and 5 N
d) 9 N and 4 N

Vikasana - CET 2012

Solution: The maximum value of resultant of two forces is $P+Q=13 \mathrm{~N}$ and minimum value is $P-Q=7 \mathrm{~N}$. On solving for $P$ and $Q$, we get $P=$ 10 N and $\mathrm{Q}=3 \mathrm{~N}$

Ans: (a) 10 N and 3 N

Vikasana - CET 2012

5 )Two identical forces are acting on a body. The magnitude of each force is equal to the magnitude of their resultant. The angle between the two forces is
a) $60^{\circ}$
b) $120^{\circ}$
c) $90^{\circ}$
d) $0^{0}$

Vikasana - CET 2012

Solution: We know that,

$$
\begin{gathered}
R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta \\
\text { But, } \quad P=Q=R
\end{gathered}
$$

$$
\therefore \quad P^{2}=2 P^{2}+2 P^{2} \cos \theta
$$

This implies, $\cos \theta=-1 / 2$

$$
\therefore \theta=120^{\circ}
$$

Ans: (b) $\quad \theta=120^{\circ}$
Vikasana - CET 2012

## $K_{\mathbf{A}}$


6) $P, Q$ and $R$ are three coplanar forces acting at a point and are in equilibrium. Given $\mathrm{P}=$ $1.9318 \mathrm{Kg}-\mathrm{Wt}, \mathrm{Sin}_{1}=0.9659$, the value of $R$ is (in $\mathrm{Kg}-\mathrm{Wt}$ )
$\begin{array}{llll}\text { a) } 1 / 2 & \text { b) } 1 & \text { c) } 2 & \text { d) } 0.9659\end{array}$

Vikasana - CET 2012


Solution: According to Lami's theorem, $P / \operatorname{Sin} \theta_{1}=R / \operatorname{Sin} 150$ $R=\left(P / \operatorname{Sin} \theta_{1}\right) \operatorname{Sin} 150$
$R=\left(P / \operatorname{Sin} \theta_{1}\right) \operatorname{Sin}[90+60]$
$R=(P \cos 60) / \sin \theta_{1}$
$R=(1.9318 \times 0.5000) / 0.9659$
R $=1$
Ans: (b) 1
Vikasana - CET 2012

7 ) If three concurrent forces acting at a point are in equilibrium, then
a) each force is proportional to the angle between the other two
b) each force is proportional to sine of the angle between the other two
c) each force is inversely proportional to the sine of the angle between the other two
b) each force is inversely proportional to the angle between the other two

# Solution: According to Lami's theorem, 

 when three concurrent forces are in equilibrium, each force is proportional to the sine of the angle between the other two.Ans: (b) each force is proportional to sine of the angle between the other two

Vikasana - CET 2012
8) Two concurrent equal forces of magnitude 5 N each act at an angle of $120^{\circ}$. The magnitude of their resultant is
a) 15 N b) $5 \sqrt{ } 3 \mathrm{~N}$
c) 5 N
d) 10 N

Vikasana - CET 2012

Solution: Two forces of equal magnitude having angle of $120^{\circ}$ with each other have resultant of magnitude equal to either of the forces.

Ans: (C) 5N

Vikasana - CET 2012

9) Moment of a force is also known as a) momentum b) linear momentum
c) angular momentum d) torque

Vikasana - CET 2012

Solution: Moment of a force is also known as torque

Ans: (d) torque

Vikasana - CET 2012

10) The SI unit of Moment of a force is a) $N / m$
b) $\mathrm{Nm}^{2}$
d) $\mathrm{N}-\mathrm{m}$

Vikasana - CET 2012


Solution: We know that, Moment of a force $=\mathrm{F} \mathrm{x} \mathrm{d}$ $=\mathrm{N}-\mathrm{m}$
Ans: (d) N-m

Vikasana - CET 2012

## $\mathbf{K}_{\mathbf{A}}$


11) The dimensional formula of Moment of force is
a) $\left[\mathrm{MLT}^{-2}\right]$
c) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$
b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{2}\right]$

Vikasana - CET 2012


Solution: Moment of a force $=\mathrm{F} \times \mathrm{d}$ $=\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]$
$=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Ans:( b) [ ML ${ }^{\left.2 T^{-2}\right]}$

Vikasana - CET 2012
12) If the line of action of force passing through the axis of rotation, what is the moment of force?
a) 1
b) zero
c) no effect

Vikasana - CET 2012

Solution: We know that, Moment of a force $=\mathrm{F} \times \mathrm{d}$ Here d = 0
$\therefore \quad$ Moment of a force $=\mathrm{F} \times 0$ Moment of a force $=0$

Ans: (b) Zero

Vikasana - CET 2012
13) If a body rotates clockwise direction, the moment of force is
a) Positive
b) Negative
c) may positive or negative
d) Neither positive nor negative

Vikasana - CET 2012


Solution: If a body rotates clockwise direction, the moment of force is negative.

Ans: (b) negative

Vikasana - CET 2012
14) Moment of a force does not depends on a) Magnitude of the force b) direction of the force c) Point of application of the force d) axis of rotation

Vikasana - CET 2012

Solution: Moment of a force depends on magnitude of a force, direction of force and point of application of the force but not on the axis of rotation.

Ans: (d ) axis of rotation

Vikasana - CET 2012
15) A gate of 2 m wide requires a force of

2 Kg - Wt to be applied at one end to open it. The force that must be applied at a point 0.5 m distant from the hinges for opening the gate is

$$
\begin{array}{ll}
\text { a) } 0.5 \mathrm{Kg}-\mathrm{Wt} & \text { b) } 2 \mathrm{Kg}-\mathrm{Wt} \\
\text { c) } 4.5 \mathrm{Kg}-\mathrm{Wt} & \text { d) } 8 \mathrm{Kg}-\mathrm{Wt}
\end{array}
$$

Vikasana - CET 2012

Solution: According to law of moments, The moments must be equal,

$$
\begin{aligned}
& F_{1} \times X_{1}=F_{2} \times X_{2} \\
& F_{2}=\left(F_{1} \times X_{1}\right) / X_{2} \\
& =(2 \times 2) / 0.5 \\
& =88 \mathrm{~kg}-\mathrm{wt}
\end{aligned}
$$

Ans: (d) $8 \mathrm{~kg}-\mathrm{wt}$
Vikasana - CET 2012

16 ) Two unlike parallel forces 6 N and 10 N act on a rigid body at points $A$ and $B$. If their resultant acts at a distance of 0.5 m from the greater force, the separation between $A$ and $B$ is
a) 1 m
b) $1 / 4 \mathrm{~m}$
c) $2 / 3 \mathrm{~m}$
d) $1 / 3 \mathrm{~m}$

Vikasana - CET 2012

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

Solution: Resultant of two unlike parallel forces is outside the forces as shown in the figure. It acts at C

$$
\begin{aligned}
& P(A C)=Q(B C) \\
& 6(x+0.5)=10(0.4 \\
& 6 x+3=5 \\
& X=1 / 3 \text { i.e } A B=1 / 3 \mathrm{~m}
\end{aligned}
$$

Such that, taking moments about C Ans: (d) 1/3 m

Vikasana - CET 2012
17) A man and a boy carry a light pole of length 5 m at either end. A load of 100 kg is hung from the pole in such a way that the boy bears $1 / 4$ th of the total load. The position of the load from the end of the pole being carried by the boy is

$$
\begin{array}{ll}
\text { a) } 1.25 \mathrm{~m} & \text { b) } 3.75 \mathrm{~m} \\
\text { c) } 4.5 \mathrm{~m} & \text { d) } 2.5 \mathrm{~m}
\end{array}
$$

Vikasana - CET 2012

Solution: Load carried by the boy

$$
\begin{aligned}
F_{B} & =1 / 4 \times \text { total load } \\
& =1 / 4 \times 100=25 \mathrm{~kg}
\end{aligned}
$$

taking moments about C,
we get

$$
25 x=75(5-x
$$

$$
x=3.75 \mathrm{~m}
$$

Ans: (b) 3.75 m


Vikasana - CET 2012

## $K_{\mathbf{A}}$


18) The force of 10 N acting on a body at a distance 2 m from the axis of rotation, the torque produced is

$$
\begin{array}{ll}
\text { a) } 10 \mathrm{~N}-\mathrm{m} & \text { b) } 2 \mathrm{~N}-\mathrm{m} \\
\text { c) } 20 \mathrm{~N}-\mathrm{m} & \text { d) } 0.2 \mathrm{~N}-\mathrm{m}
\end{array}
$$

Vikasana - CET 2012


Solution: We know that, Moment of a force $=\mathrm{Fx} \mathrm{d}$

$$
=10 \times 2
$$

$=20 \mathrm{~N}-\mathrm{m}$
Ans: (c) $20 \mathrm{~N}-\mathrm{m}$

Vikasana - CET 2012

## $K_{\mathbf{A}}$

19) A torque applied to the rigid body always tends to produce
a) linear acceleration
b) rotational inertia c) rotational equilibrium
d) angular acceleration

Vikasana - CET 2012

Solution: A net torque applied to a rigid body causes rotation of the body. Therefore the angular acceleration is produced in the body.

Ans: (d) angular acceleration

Vikasana - CET 2012
20) The rotatory effect produced by a force acting on a rigid body which is free to rotate about an axis is called
a) pure rotation
b) momentum of force
c) moment of momentum
d) moment of force

Vikasana - CET 2012


Solution: It is called the moment of the applied force about the axis of rotation. Ans: (d) moment of force

Vikasana - CET 2012
21)A gate of 6 m wide requires a force of $5.2 \mathrm{Kg}-$ Wt to be applied at one end to open it. The force to be applied at a 1.5 m distance from the hinges to open it is

$$
\begin{array}{ll}
\text { a) } 20.8 \mathrm{Kg}-\mathrm{Wt} & \text { b) } 10.4 \mathrm{Kg}-\mathrm{Wt} \\
\text { c) } 15.3 \mathrm{Kg}-\mathrm{Wt} & \text { d) } 6 \mathrm{Kg}-\mathrm{Wt}
\end{array}
$$

Vikasana - CET 2012

Solution: Moment of the force about an axis must be equal

$$
\begin{aligned}
& 6 \times 5.2=1.5 \times F \\
\therefore \quad & F=20.8 \mathrm{~kg}-\mathrm{wt} .
\end{aligned}
$$

Ans: (a) $20.8 \mathrm{~kg}-\mathrm{wt}$

Vikasana - CET 2012
22) The resultant of two forces is a) always a constant b) always unique c) a non zero force d) none of these

Vikasana - CET 2012

Solution: The resultant of two given forces is always unique. i.e, it has a fixed magnitude and direction.

Ans: (b) always unique

Vikasana - CET 2012
23) Two equal forces act at a point. The square of their resultant is equal to three times the product of the forces. The angle between the forces is

$$
\begin{array}{ll}
\text { a) } 30^{\circ} & \text { b) } 45^{\circ} \\
\text { c) } 60^{\circ} & \text { d) } 90^{\circ}
\end{array}
$$

Vikasana - CET 2012

## $K_{\mathbf{A}}$

Solution: We know that,

$$
\begin{aligned}
R^{2} & =P^{2}+Q^{2}+2 P Q \cos \theta \\
R^{2} & =P^{2}+P^{2}+2 P^{2} \cos \theta
\end{aligned}
$$

since $P=Q \quad$ Given, $\mathrm{R}^{2}=3 \mathrm{P}^{2}$

$$
\begin{aligned}
\therefore \quad 3 P^{2} & =2 P^{2}+2 P^{2} \cos \theta \\
P^{2} & =2 P^{2} \cos \theta \\
1 / 2 & =\cos \theta \quad \text { or } \cos \theta=1 / 2 \\
\therefore \theta & =60^{\circ}
\end{aligned}
$$

Ans: (c) $60^{\circ}$
Vikasana - CET 2012
24) The resultant of two forces 3P and 2P is $R$. If the first force is doubled then, the resultant is also doubled. The angle between the two forces is
a) $120^{\circ}$
b) $60^{\circ}$
c) $180^{\circ}$
d) $90^{\circ}$

Vikasana - CET 2012

Solution: We know that,

$$
R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta
$$

$$
R^{2}=9 P^{2}+4 P^{2}+2 \times 6 P^{2} \cos \theta
$$

$$
R^{2}=9 P^{2}+4 P^{2}+12 P^{2} \cos \theta
$$

$$
R^{2}=13 P^{2}+12 P^{2} \cos \theta
$$

First force is doubled means,
$P=2(3 P)=6 P, \quad R=2 R$
$R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta$
$R^{2}=36 P^{2}+4 P^{2}+24 P^{2} \cos \theta$
Vikasana - CET 2012
(2) / (1) gives
$4=(40+24 \cos \theta) /(13+12 \cos \theta)$ $52+48 \cos \theta=40+24 \cos \theta$ $12=-24 \cos \theta$
$\therefore \quad \cos \theta=-1 / 2$
$\therefore \theta=120^{\circ}$
Ans: (a) $120^{\circ}$

Vikasana - CET 2012
25)The resultant of two forces, one doubled the other in magnitude, is perpendicular to the smaller of the two forces.
The angle between the two forces is

$$
\begin{array}{ll}
\text { a) } 90^{\circ} & \text { b) } 150^{\circ} \\
\text { c) } 120^{\circ} & \text { d) } 60^{\circ}
\end{array}
$$

Vikasana - CET 2012

Solution: We know that, $\tan \alpha=(Q \sin \theta) /(P+Q \cos \theta)$

Given, $Q=2 P, \quad \alpha=90^{\circ}$
$\tan 90^{\circ}=(2 P \sin \theta) /(P+2 P \cos \theta)$
$P+2 P \cos \theta=(2 P \sin \theta) / \tan 90^{\circ}$
$\mathrm{P}+2 \mathrm{P} \cos \theta=0$
$\cos \theta=-1 / 2$
$\therefore \theta=120^{\circ}$
Ans: (c) $120^{0}$
Vikasana - CET 2012
26)The resultant of a set of concurrent forces acting on a rigid body can be found out using a) parallelogram law of forces b) triangle law of forces
c) Lami's theorem
d) All these

Vikasana - CET 2012


## Solution

Ans: (d) All these

Vikasana - CET 2012

27 ) A couple acting on a body causes a) rotational motion only
b) translational motion only c) both translational and rotational motion d) vibrational motion

Vikasana - CET 2012

## $\mathbf{K}_{\mathbf{E}}^{\mathbf{A}}$



Solution: A couple acting on a body causes only rotational motion of the body.

Ans: (a) rotational motion

Vikasana - CET 2012

28 ) Two unequal forces $F_{1}$ and $F_{2}$ acting at an angle of $120^{\circ}$ have their resultant perpendicular to the smaller of the two forces. If the greater force has the magnitude 10 N , the magnitude of their resultant is

$$
\begin{array}{ll}
\text { a) } 10 \sqrt{ } 2 \mathrm{~N} & \text { b) } 5 \sqrt{ } 3 \mathrm{~N} \\
\text { c) } 10 \sqrt{ } 5 \mathrm{~N} & \text { d) } 5 \mathrm{~N}
\end{array}
$$

Vikasana - CET 2012

## $K_{\mathbf{A}}$



Solution: Let $\mathrm{F}_{1} \rightarrow$ be the smaller of the two forces.

From the figure, $\theta=30^{\circ}$
From the right angled triangle OBC, $\cos \theta=O B / O C$
$\cos \theta=R / F_{2}$
$\therefore \quad R=F_{2} \cos \theta$
$=(10 \times \sqrt{ } 3) / 2=5 \sqrt{ } 3 \mathrm{~N}$
Ans: (b) $5 \sqrt{ } 3 \mathrm{~N}$
Vikasana - CET 2012

29 ) A block of mass 20 kg is suspended using an inextensible rope from a rigid support. The block is pulled aside by a horizontal force H such that the rope makes an angle $60^{\circ}$ with the vertical. The horizontal force acting on the block is

$$
\begin{array}{ll}
\text { a) } 10 \mathrm{Kg}-\mathrm{Wt} & \text { b) } 20 \sqrt{ } 3 \mathrm{Kg}-\mathrm{Wt} \\
\text { c) } 20 / \sqrt{ } 3 \mathrm{Kg}-\mathrm{Wt} & \text { d) } 10 / \sqrt{ } 3 \mathrm{Kg}-\mathrm{Wt}
\end{array}
$$

Vikasana - CET 2012


At equilibrium,
Tcos 60 = W ----(1)
Tsin $60=\mathrm{H}$----(2)
(2) /( 1) gives, tan $60 \mathrm{H} / \mathrm{W}$
$\mathrm{H}=\mathrm{W} \tan 60$
$\mathrm{H}=20 \sqrt{ } 3 \mathrm{~kg}-\mathrm{wt}$
Ans: (b) $\begin{gathered}20 \sqrt{3} \mathrm{~kg}-\text { wt } \\ \text { Vikasana -CET } 2012\end{gathered}$

## ${ }^{K} \mathrm{E}_{\mathrm{A}}$

30) Of the following sets of concurrent forces, the one which may be in equilibrium is a) $F_{1}=3 \mathrm{~N}, \mathrm{~F}_{2}=5 \mathrm{~N}, \mathrm{~F}_{3}=1 \mathrm{~N}$ b) $F_{1}=3 \mathrm{~N}, \mathrm{~F}_{2}=5 \mathrm{~N}, \mathrm{~F}_{3}=9 \mathrm{~N}$
c) $F_{1}=3 \mathrm{~N}, \mathrm{~F}_{2}=5 \mathrm{~N}, \mathrm{~F}_{3}=6 \mathrm{~N}$
d) $F_{1}=3 \mathrm{~N}, \mathrm{~F}_{2}=5 \mathrm{~N}, \mathrm{~F}_{3}=15 \mathrm{~N}$

Vikasana - CET 2012

Solution: If three concurrent forces are to be in equilibrium, the sum of the two smallest magnitudes must be greater than the magnitude of third force.

$$
\text { Ans: }(C) F_{1}=3 N, F_{2}=5 N, F_{3}=6 N
$$

Vikasana - CET 2012

## $K^{E_{A}}$


31) Earth's atmosphere extends to about ----------from the surface of the earth.
a) 56 km
b) 560 km
c) 5600 km
d) 56000 km

Vikasana - CET 2012

## Solution:

Ans: b

Vikasana - CET 2012
32) Atmospheric pressure
a) decreases with elevate
b) increases with elevation
c) first increases and then decreases with elevation
d) does not depend on elevation

Vikasana - CET 2012

## $\mathbf{K}_{\mathbf{A}}$



- Solution:
- Ans: a

Vikasana - CET 2012

