- 1) The unit of the coefficient of viscosity in SI system is:
- a) m/kg-s
- b) $m-s/kg^2$ c) $kg/m-s^2$
- d) kg/m-s
- 2) Joule x see is unit of
- a) energy
- b) momentum
- c) angular momentum
- d) Power
- 3) The unit of surface tension may be expressed as:
- a) joule metre
- b) Newton metre
- c) Joule metre⁻²
- d) Newton metre⁻²

4) The unit of Stefan-Boltzman's constant σ is :

a)
$$\frac{watt^4}{m x k^4}$$

b) $\frac{calorie}{m^2 x k^4}$

c)
$$\frac{watt}{m^2 x k^4}$$

d) $\frac{joule}{2\pi k^4}$

1)
$$\frac{1}{m^2 x k^4}$$

- 5) Unit of angular acceleration in SI system is
- a) N Kg⁻¹ b) m sec⁻²
- c) rad sec⁻²
- d) km kg⁻¹

6) The equation $\left[p + \frac{a}{v^2} \right]$ (V-b) = constant. The units of a are: a) dyne x cm^5 b) dyne x cm^4

- c) dyne/cm³
- d) $dyne/cm^2$
- 7) SI unit of radioactivity is :
- a) Rutherford
- b) Roentgen
- c) Becquerel
- d) Curie

- 8) The SI unit of moment of inertia si:
- a) kg/m^2
- b) $kg-m^2$
- c) N/m^2
- d) N x m^2

9) The unit of Planck's constant h is same as that of:

- a) Energy
- b) work
- c) linear momentum
- d) angular momentum

10) Gauss is a unit of which of the following quantities?

- a) H
- b) B
- c) *\phi*
- d) I

11) The dimensional representation of Planck's constant is identical to that of

- a) torque
- b) work
- c) stress
- d) angular momentum

12) The dimensions of force constant are:

- a) $M^{1}L^{1}T^{-2}$
- b) $M^{1}L^{1}T^{-1}$
- c) ML^2T^{-2}
- d) $ML^{-1}T^{-2}$
- 13) The van der Waals' equation of state for some gases can be expressed as $\left[p + \frac{a}{V^2}\right](V-b) = RT \text{ where P is the pressure. V the molar volume and T is the}$

absolute temperature of the given sample of gas, a, b and R are constants. The dimensions of 'a' are:

- a) $ML^5 T^{-2}$
- b) $ML^{-1}T^{-2}$
- c) L^3
- d) L⁶
- 14) The dimensions of torque are:
- a) ML^2T^{-2}
- b) MLT^2
- c) MLT⁻¹
- d) MT⁻²

15) The dimension of coefficient of viscosity is:

- a) $ML^{-1}T^{-1}$
- b) MLT^{-2}
- c) $ML^{0}L^{-2}$
- d) MLT^{-1}

16) The dimensional formula for impulse is :

- a) MLT⁻¹
- b) MLT^2
- c) ML^2T^{-2}
- d) $ML^{0}T^{-2}$

17) $[ML^2T^{-3}]$ represents the dimensions of:

- a) Pressure
- b) Energy
- c) Power
- d) Force

18) The frequency of vibration of a string is given by: $\gamma = \frac{p}{21} \left[\frac{F}{m} \right]^{-1/2}$ Here p is the number of segments in which the string is divided. F is the tension in the string

and L is its length. The dimensional formula for m is :

- a) $M^0 L^0 T^0$
- b) $ML^{-1}T^{0}$
- c) $ML^{0}T^{-1}$
- d) M^0LT^{-1}

19) Which of the following have same dimensions?

- a) Pressure and density
- b) Gravitational potential and energy
- c) Impulse and momentum
- d) Stress and strain

20) The dimensions of Planck's constant are:

- a) ML^2T^{-1}
- b) $ML^{3}T^{-1}$
- c) $ML^{-2}T^{-1}$ d) $M^{0}L^{-1}T^{-3}$

21) When C, R and L represent general identity, then dimensions. Of C²RL are:

- a) $M^0 L^0 T^3 A^0$
- b) $ML^2T^{-3}A^2$
- c) MLTA
- d) None of these

22) If V =
$$\sqrt{\frac{\gamma p}{p}}$$
 then dimensions of γ are
a) M⁰L⁰T⁰
b) M⁰L⁰T⁻¹
c) M¹L⁰T⁰
d) M⁰L¹T⁰

- 23) Which of the two have same dimensions?
- a) Force and strain
- b) Force and stress
- c) Angular velocity and frequency
- d) Energy and strain

24) Which of the following is a scalar quantity?

- a) Work
- b) Displacement
- c) Velocity
- d) Acceleration

25) If $\overrightarrow{A} x \overrightarrow{B} = \overrightarrow{B} x \overrightarrow{A}$, then the angle between \overrightarrow{A} and \overrightarrow{B} is: a) π b) $\pi/3$ c) $\pi/2$ d) $\pi/4$ 26) If $(\overrightarrow{A} x \overrightarrow{B}| = \sqrt{3} (\overrightarrow{A} \overrightarrow{B})$, then the value of $|\overrightarrow{A} + \overrightarrow{B}|$ is: a) $(A^2 + B^2 + AB)^{1/2}$ b) $\left[A^2 + B^2 + \frac{AB}{\sqrt{3}}\right]^{1/2}$

c) A +B

d)
$$(A^2 + B^2 + \sqrt{3} AB)^{1/2}$$

- 27) The two vectors have magnitudes 3 and 5. if angle between them is 60° . then the dot product of two vectors will be:
- a) 7.5
- b) 6.5
- c) 8.4
- d) 7.9
- 28) If vectors \vec{P}, \vec{Q} and \vec{R} have magnitude 5, 12 and 13 units and $\vec{P} + \vec{Q} = \vec{R}$ the angle between Q and R is:

a)
$$\cos^{-1} \frac{5}{12}$$

b) $\cos^{-1} \frac{5}{13}$
c) $\cos^{-1} \frac{12}{13}$
d) $\cos^{-1} \frac{2}{13}$

29) Two vectors \vec{A} and \vec{B} are perpendicular to each other then:

- a) $A \cdot B = 0$
- b) $\overrightarrow{A} x \overrightarrow{B} = 0$
- c) $\vec{A} + \vec{B} = 0$
- d) $\vec{A} \vec{B} = 0$
- 30) A force of $(3\hat{i} + 4\hat{j})$ newton acts on a body displaces it by $(3\hat{i} + 4\hat{j})$ metres. The work done by the force is:
 - a) 10 J
 - b) 12 J
 - c) 16 J
 - d) 25 J

31) Three vectors satisfy the relations $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \cdot \vec{C} = 0$ then \vec{A} is parallel to:

- a) \overrightarrow{B}
- b) \overrightarrow{C}
- c) $\overrightarrow{B}.\overrightarrow{C}$
- d) $\overrightarrow{B} x \overrightarrow{C}$

32) What is the SI unit of electric field intensity?

- a) Cm
- b) Vm⁻¹
- c) Am^{-1}
- d) NA
- 33) The physical quantity having the dimensions $[M^{-1}L^{-3}T^{3}A^{2}]$ is:
 - a) resistance
 - b) resistivity
 - c) electrical conductivity
 - d) electro motive force

34) The unit of Stefan's constant is:

- a) $Wm^{-2}K^{-1}$

- b) WmK^{-4} c) $Wm^{-2}K^{-4}$ d) $NM^{-4}K^{-4}$

35) If the two vectors $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{B} = \hat{i} + 2\hat{j} - n\hat{k}$ are perpendicular, then the value of n is:

- a) 1
- b) 2
- c) 3
- d) 4

- 36) If L and C denote inductance and capacitance dimensions of LC are
 - a) $[M^0 L^0 T^{-2}]$
 - b) $[M^2L^0T^2]$
 - c) $[M^0 L^2 T^2]$
 - d) $[ML^2T^2]$

37) Which of the following quantities has units but no dimensions?

- a) displacement
- b) speed
- c) angle
- d) couple

38) Which of the following is not a unit of distance?

- a) Fermi
- b) Angstrom
- c) Micron
- d) Steradian

39) Dimensional formula for surface tension is

- a) $[M^{2}L^{0}T^{-2}]$ b) $[ML^{0}T^{-2}]$
- c) $[M^0LT^{-1}]$
- d) $[M^2L^2T^{-1}]$

40) Dimensional formula for gravitational constant is

- a) $[M^{-2}L^{2}T^{-3}]$
- b) $[M^{-1}LT^{-2}]$
- c) $[M^{-1}L^{3}T^{-2}]$
- d) $[MLT^{-2}]$

41) Which of the following is not correct?

- a) Work done = Kgm²s⁻¹
 b) Pressure = Nm⁻²
- c) Surface tension = Nm^{-1}
- d) Momentum = Kg ms⁻¹

42) Which of the following equations is dimensionally correct?

- a) Pressure = force x area
- b) Volume x Pressure = energy
- c) Momentum x time = force
- d) Acceleration x force = time

43) Which of the following equations is dimensionally correct?

- a) $T = \sqrt{l/g}$
- b) $T = \sqrt{l/g^2}$
- c) $T = 2m \sqrt{l/g}$
- d) $T = 2\pi \sqrt{l/g} + constant$

- 44) The dimensional formula [ML²T⁻²] represents
 - a) moment of force
 - b) Force
 - c) Acceleration
 - d) Momentum

45)
$$\sqrt{\frac{2GM}{R}}$$
 has the dimensions of

- a) velocity
- b) Force
- c) acceleration
- d) displacement

46) Hertz is the Unit for

- a) frequency
- b) force
- c) electric charge
- d) magnetic flux

47) Which one of the following is not measured in units of energy ?

- a) Couple x angle turned through
- b) Moment of interia x (angular velocity)²
- c) Force x distance
- d) Impluse x time

48) SI units of gas constant are :

- a) watt K^{-1} mol⁻¹
- b) newton K^{-1} mol⁻¹
- c) jouleK⁻¹ mol⁻¹
- d) $ergK^{-1} mol^{-1}$
- 49) Out of the following the only pair does not have identical dimensions is :
 - a) angular momentum and Planck's constant
 - b) moment of interia and moment of a force
 - c) work and torque
 - d) impulse and momentum
- 50) The dimensional representation of latent heat is identical to that of :
 - a) internal energy
 - b) angular momentum
 - c) work
 - d) gravitational potential
- 51) Which of the following is not essential for the three vectors to produce the zero resultant ?
 - e) The resultant of any two vectors should be equal and opposite to the third vector.
 - f) They should lie in the same plane
 - g) They should act along the sides of a parallogram
 - h) It should be possible to represent them by the three sides of triangle taken in order.

- 52) Dimension of velocity gradient are same as that of :
 - a) time period
 - b) frequency
 - c) Angular Acceleration
 - d) Linear Acceleration
- 53) Which of the following physical quantities are represented by Axial vectors
 - a) displacement
 - b) force
 - c) velocity
 - d) torque
- 54) Which of the following physical quantities are represented by polar vectors
 - a) displacement
 - b) angular velocity
 - c) angular momentum
 - d) torque
- 55) What is the maximum number of rectangular components into which a vector can be spilt in its own plane
 - a) 2
 - b) 3
 - c) 4
 - d) Infinite
- 56) Which of the following sets of quantities have same dimensional formulae
 - a) Frequency, Angular frequency and Angular Momentum
 - b) Surface tension, Stress and Spring constant
 - c) Acceleration, Momentum and retardation
 - d) Thermal capacity, Specific hear and entropy

57) Out of the following which is not a scalar quantity

- a) Time
- b) Momentum
- c) Volume
- d) Density

58) If g is acceleration due to gravity and λ the wavelength $\sqrt{g\lambda}$ represents

- a) acceleration
- b) velocity
- c) distance
- d) energy

59) The numerical value of a given quantity is

- a) independent of unit
- b) directly proportional to unit
- c) inversely proportional to unit
- d) directly proportional to the square root of the unit

- 60) If f is the frequency and g acceleration due to gravity g/f represents

 - e) momentumf) velocityg) acceleration
 - h) energy