

Oscillations - Waves \& Sound

Vikasana - CET 2012

$K^{E_{A}}$

> Oscillations
$>$ Waves
$>$ Sound
$>$ Stationary waves
> Acoustics of Buildings
Vikasana - CET 2012

1. The maximum velocity of a body in S.H.M.is $0.25 \mathrm{~m} / \mathrm{s}$ and maximum acceleration is $0.75 \mathrm{~m} / \mathrm{s}^{2}$, the period of S.H.M. is
(1)($\pi / 3)$ sec
(2) (ח/2) sec
(3) $(2 \Pi / 3) \mathrm{sec}$
(4) Π sec

Vikasana - CET 2012

$K_{\mathbf{A}}$

1. Solution:-

$$
\begin{gathered}
V_{\max }=0.25=\omega A \\
a_{\max }=0.75=\omega^{2} \mathrm{~A} \\
a_{\max .} / V_{\max }=\omega^{2} \mathrm{~A} / \omega \mathrm{A}=0.75 / 0.25=3 \\
\omega=2 \Pi / T=3 \\
\therefore \quad \mathrm{~T}=2 \Pi / 3 \mathrm{sec}
\end{gathered}
$$

Ans: (3)
Vikasana - CET 2012
02. The kinetic energy of a particle executing S.H.M is 16 J when it is at its mean position. If the mass of the particle is 0.32 kg , then what is the maximum velocity of the particle?
(1) $10 \mathrm{~m} / \mathrm{s}$
(2) $15 \mathrm{~m} / \mathrm{s}$
(3) $5 \mathrm{~m} / \mathrm{s}$
(4) $20 \mathrm{~m} / \mathrm{s}$

Vikasana - CET 2012

$K_{\mathbf{A}}$

02.Solution:-

For a body executing SHM, K. $E=1 / 2 m \omega^{2}\left(A^{2}-y^{2}\right)$
K.E.=(K.E) max $_{\text {max }}$ whe0 (mean position)
$\therefore(\mathrm{K} . \mathrm{E})_{\max }=1 / 2 m \omega^{2} A^{2}=1 / 2 \mathrm{~m}(\mathrm{v})^{2}{ }_{\text {max }}$ $16=1 / 2 \times 0.32 \times(v)^{2}{ }_{\text {max }}$
$(\mathrm{v})^{2}{ }_{\text {max }}=100$
$\therefore \quad(\mathrm{v})_{\max }=10 \mathrm{~m} / \mathrm{s}$.
Ans: (1).
Vikasana - CET 2012
03. The equation of a simple harmonic wave is given by $y=6 \operatorname{Sin} 2 \pi(2 t-0.1 x)$, where x and y are in $m m$ and t is in seconds. The phase difference between two particles 2 mm apart at any instant is
(1) 18^{0}
(2)54 ${ }^{0}$
(3) 72^{0}
(4) 36^{0}

Vikasana - CET 2012

03.Solution:-

Phase difference $=(2 \Pi / \lambda) \times$ path diff

$$
y=6 \operatorname{Sin} 2 \pi(2 t-0.1 x) \mathrm{mm}
$$

$$
y=A \sin 2 \pi(t / T-x / \lambda)
$$ comparing, $\lambda=1 / 0.1=10 \mathrm{~mm}$

Phase diff=(2 $\pi / 10) \times 2=2 \times 180 \% 5=72^{\circ}$
Answer: (3)
Vikasana - CET 2012
04. When the amplitude of a wave is increased by 50%, its intensity will be increased by
(1) 50%
(2) 100%
(3) 125%
(4) 150%

Vikasana - CET 2012
04.Solution:- Intensity of any wave is directly proportional to the square of the amplitude. Therefore, when the amplitude becomes 1.5 times (increment by 50%) the original value, the intensity becomes 2.25 times (1.52 times) the original intensity. The increment in intensity is 125\%

Ans: (3) Vikasana - CET 2012

${ }^{K} \mathrm{E}_{\mathrm{A}}$

05 . The equation of a progressive wave is $\mathrm{y}=8 \sin [\mathrm{\Pi}(\mathrm{t} / 10-\mathrm{x} / 4 \mathrm{)}+\boldsymbol{\Pi} / 3] \mathrm{m}$
The wavelength of the wave is
(1) 10 m
(2) 2 m
(3) 8 m
(4) $4 m$

Vikasana - CET 2012

$K_{\mathbf{A}}$

5. Solution:$\mathrm{y}=8 \sin [\Pi(\mathrm{t} / 10-\mathrm{x} / 4)+\Pi / 3]$ Rearranging
$\mathrm{y}=8 \sin [2 \Pi(\mathrm{t} / 20-\mathrm{x} / 8)+\Pi / 3]$ Standard equation $\mathrm{y}=8 \sin [2 \Pi(\mathrm{t} / \mathrm{T}-\mathrm{x} / \lambda)+\varphi]$ Comparing
$\lambda=8 \mathrm{~m}$
Ans: (3)
Vikasana - CET 2012
6. The speed of sound in hydrogen at STP is v. The speed of sound in a mixture containing 3 parts of hydrogen and 2 parts of oxygen at STP will be
(1) $\mathrm{v} / 2$
(2) $\mathrm{v} / \sqrt{ } 5$
(3) $\sqrt{ } 7 \mathrm{v}$
(4) $v / \sqrt{ } 7$

Vikasana - CET 2012

06.Solution

Let the density of $\mathrm{H}_{2}, \rho_{\mathrm{H}}=2 \rho$, then the density of O_{2} will be $\rho_{\mathrm{O} 2}=32 \rho$

The density of mixture

$$
\begin{aligned}
\rho_{\mathrm{m}} & =3 / 5 \times \rho_{\mathrm{H}}+2 / 5 \times \rho_{\mathrm{O} 2} \\
& =3 / 5 \times 2 \rho+2 / 5 \times 32 \rho \\
& =14 \rho
\end{aligned}
$$

But $v_{m} / v_{H 2}=\sqrt{ } \rho_{\mathrm{H}} / \sqrt{ } \rho_{\mathrm{m}}$
$=\sqrt{ } 2 \rho / \sqrt{ } 14 \rho$

$$
=1 / \sqrt{ } 7
$$

$$
v_{m}=v / \sqrt{ } 7 \quad \text { Ans; (4) }
$$

Vikasana - CET 2012

${ }^{\mathrm{K}} \mathrm{E}_{\mathrm{A}}$

07.Two sounds produce an intensity of $10^{-5} \mu \mathrm{~W} / \mathrm{m}^{2}$ and $10^{-3} \mu \mathrm{~W} / \mathrm{m}^{2}$. In terms of decibels the ratio of intensity is

$$
\begin{array}{ll}
(1) 3: 1 & \text { (2) } 1: 3 \\
\text { (3) } 1: 100 & \text { (4) } 1000: 1
\end{array}
$$

Vikasana - CET 2012

$K_{\mathbf{A}}$

07.Solution:-

$\mathrm{I}_{1}=10^{-5} \mu \mathrm{w} / \mathrm{m}^{2} \quad \& \mathrm{I}_{2}=10^{-3} \mu \mathrm{w} / \mathrm{m}^{2}$
$\mathrm{N}=10 \log \mathrm{I} / \mathrm{I}_{0}$
$N_{1}=10 \log I_{1} / I_{0}=10 \log 10^{-5} \times 10^{-6 / 10} 0^{-12}$
$=10 \log 10=10 \mathrm{~dB}$
$N_{2}=10 \log I_{2} / I_{0}=10 \log 10^{-5} \times 10^{-3 / 10} 0^{-12}$
$=10 \log 30=30 \mathrm{~dB}$
Therefore $\mathrm{N}_{1}: \mathrm{N}_{2}:: 10: 30=1: 3$ Ans (2)

Vikasana - CET 2012
08. When two tuning forks are sounded together 4 beats are heard per second. One tuning fork is of frequency 346 Hz . When its prong is loaded with a little wax, the number of beats is increased to 6 per second. The frequency of the other fork is

$$
\begin{array}{ll}
\text { (1) } 352 \mathrm{~Hz} & \text { (2) } 342 \mathrm{~Hz} \\
\text { (3) } 346 \mathrm{~Hz} & \text { (4) } 350 \mathrm{~Hz}
\end{array}
$$

Vikasana - CET 2012

$K_{\mathbf{A}}$

8. Solution:-

Before loading, $\mathrm{n}=4$ beats per second $\mathrm{f}_{1}=346 \mathrm{~Hz}$
$\therefore \mathrm{f}_{2}=(346-4) \mathrm{Hz}$ or $(346+4) \mathrm{Hz}$
i.e. $\quad 342 \mathrm{~Hz}$ or 350 Hz

After loading, f_{1} frequency is reduced $n^{1}=6>n$
$\therefore \mathrm{f}_{2}=350 \mathrm{~Hz}$
Answer: (4)
Vikasana - CET 2012

$K^{E_{A}}$

9. Twenty tuning forks are arranged in increasing order of frequency in such a way that any two nearest tuning forks produce 5 beats per second. The highest frequency is twice that of the lowest. Possible highest and lowest frequencies are

$$
\begin{array}{ll}
\text { (1) } 170 \& 85 & \text { (2) } 110 \& 55 \\
\text { (3) } 210 \& 105 & \text { (4) } 190 \& 95
\end{array}
$$

Vikasana - CET 2012

09.Solution

If n is the frequency of the $1^{\text {st }}$ tuning fork then

$$
n, n+5, n+10, \ldots \ldots \ldots . .2 n
$$

This is in A.P
$a_{n}=a+(n-1) d$
$2 n=n+(20-1) 5$
$\therefore \mathrm{n}=95 \mathrm{~Hz}$ \& 2n=190 Hz

Answer: (4)
Vikasana - CET 2012
10. An observer moves towards a stationary source of sound, with a velocity one fifth of the velocity of sound. What is the percentage increase in the apparent frequency?

$$
\begin{array}{ll}
(1) 0.2 \% & \text { (2) } 0.5 \% \\
\text { (3) } 5 \% & \text { (4) } 20 \%
\end{array}
$$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

10.Solution

Apparent frequency,

$$
\begin{aligned}
f^{1} & =\left(v+v_{0} / v\right) f \quad\left[f^{1}=\left(v-v_{0} / v-v_{s}\right) f\right] \\
& =(v+v / 5 / v) f \\
& =(6 v / 5 v) f] \\
& =1.2 f
\end{aligned}
$$

\therefore \% increase in frequency
$=\left(\mathrm{f}^{1}-\mathrm{f} / \mathrm{f}\right) 100$
$=(1.2 f-f / f) 100$
$=(0.2 f / f) 100$
= 20\% Answer(4)
Vikasana - CET 2012
11. In a stationary wave every particle performs
(1) a S.H.M. at all points of the medium
(2) a S.H.M. at all points except nodal points
(3) a S.H.M. at all points except the antinodes points
(4) a S.H.M. of constant amplitude

Vikasana - CET 2012

$K^{E_{A}}$

11.Solution:-

At nodes in a stationary wave particles are permanently at rest and at all other points particles perform SHM of varying amplitude.(0-max)

Answer: (2)
Vikasana - CET 2012
12.An open pipe is suddenly closed with the result that, the second overtone on the closed pipe is found to be higher in frequency by 100 Hz , than the first overtone of the original pipe. The fundamental frequency of open pipe will be
$\begin{array}{ll}\text { (1) } 100 \mathrm{~Hz} & \text { (2) } 300 \mathrm{~Hz}\end{array}$
$\begin{array}{ll}\text { (3) } 150 \mathrm{~Hz} & \text { (4) } 200 \mathrm{~Hz}\end{array}$
Vikasana - CET 2012

KEAA $_{\text {A }}$ 12.SOlution:-

$\mathrm{F}_{3}=5 \mathrm{v} / 4 \mathrm{I}$ for closed pipe(second overtone)
\& $F_{2}=2 \mathrm{~V} / 21$ for open pipe (first overtone) By data $F_{3}=F_{2}+100, F_{3}-F_{2}=100$

$$
5 v / 41-2 v / 2 \mid=100
$$

v/4I =100
v/2l =200
$\mathrm{F}_{\mathbf{0}}=\mathbf{2 0 0 ~ H z}$ Vikasana - CET 2012 Answer: (4)

$\mathbf{K}_{\mathbf{A}}$

13. A cylindrical tube, open at both ends, has fundamental frequency f in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of the air column is now
(1) $f / 2$
(2) $3 f / 2$
(3) f
(4) $3 f$

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{E}}^{\mathbf{A}}$

13.Solution:-
$f_{0}=v / 2 I_{0}=f$, for open pipe
$\mathrm{f}_{\mathrm{c}}=\mathrm{v} / 4 \mathrm{I}_{\mathrm{c}}=\left(\mathrm{v} / 4 \mathrm{xI}_{0} / 2\right)=\mathrm{v} / 2 \mathrm{I}_{0}=\mathrm{f}$, for closed pipe

Answer: (3)
Vikasana - CET 2012

${ }_{K} \mathbf{E}_{\mathbf{A}}$

14. A sonometer wire of density d and radius a is held between two bridges at a distance' l' apart. The wire has a tension T. the fundamental frequency of the wire will be
(1) $f=1 / 2 \mid \sqrt{ }\left(\Pi a^{2} / \mathrm{Td}\right)$
(2) $f=1 / 2 \mid \sqrt{ }\left(T / \Pi a^{2} d\right)$
(3) $f=1 / 2 \downarrow \sqrt{ }\left(T d / \Pi a^{2}\right)$
(4) $f=1 / 2 \mathrm{~V}\left(\mathrm{~T} \Pi a^{2} d\right)$

Vikasana - CET 2012
14.Solution:- fundamental frequency

$$
\begin{aligned}
f & =1 / 2 \downarrow \sqrt{ }(T / m) \\
m & =M / L \text { mass/ unit length } \\
& =d \Pi a^{2} L / L=\Pi a^{2} d \\
f & =1 / 2 \downarrow \sqrt{ }\left(T / \Pi a^{2} d\right)
\end{aligned}
$$

Answer: (2)
Vikasana - CET 2012

$K_{\mathbf{A}}$

15.Sabine's formula for reverberation time is written as
(1) $\mathrm{T}=0.156 \mathrm{~V} / \mathrm{Las} \quad$ (2) $\mathrm{T}=0.165 \mathrm{~V} / \mathrm{Las}$
$\begin{array}{ll}\text { (3 T= } & \text { as } / 0.156 \mathrm{~V} \\ \text { (4) } \mathrm{T}=0.165 \mathrm{~s} / \Sigma \mathrm{aV}\end{array}$

Vikasana - CET 2012

$K^{E_{A}}$

15.Solution:-

Sabine's formula for the reverberation
time is given by

$$
\mathrm{T}=0.165 \mathrm{~V} / \mathrm{Las} .
$$

Ans: (2)

Vikasana - CET 2012
16. If the end correction of an open organ pipe is 0.8 cm , then the inner radius of the pipe will be
(1) $1 / 2 \mathrm{~cm}$
(2) $1 / 3 \mathrm{~cm}$
(3) $2 / 3 \mathrm{~cm}$
(4) $3 / 2 \mathrm{~cm}$

Vikasana - CET 2012
16.Solution:- End correction $\mathbf{e}=0.6 \mathrm{R}$ In case of open pipe, correction for both ends

$$
\begin{gathered}
2 \mathrm{e}=0.8 \mathrm{~cm} \\
\mathrm{e}=0.4 \mathrm{~cm} \\
\mathrm{R}=0.4 / 0.6=2 / 3 \mathrm{~cm}
\end{gathered}
$$

Answer: (3) Vikasana-CET 2012

$K_{\mathbf{A}}$

17. In Melde's experiment, 6 loops were formed, when the string was stretched by a weight 6 gram. What weight should be used to produce 3 loops, without changing the experiment set up?
$\begin{array}{ll}\text { (1) } 12 \text { gram wt. } & \text { (2) } 18 \text { gram wt. }\end{array}$
(3) 24 gram wt.
(4) 16 gram wt.

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

17.Solution:- In Melde's experiment,

$$
\text { T/ } \mathrm{I}^{2}=\text { constant , I = loop length }
$$

Hence, $6 / I^{2}=$ constant and $T /(2 I)^{2}=$ constant

$$
\therefore 6 / \mathrm{I}^{2}=\mathrm{T} /(21)^{2}=\mathrm{T} /\left.4\right|^{2}
$$

$\therefore \mathrm{T}=24 \mathrm{gm} \mathrm{wt}$.
Answer: (3)
Vikasana - CET 2012
18. A tuning fork X produces 4 beats/sec with a tuning fork Y of frequency 384 Hz . When the prongs of X are slightly filed, 3 beats/sec are heard. What is the original frequency of X ?
(1) 388 Hz
(2) 380 Hz
(3) 381 Hz
(4) 387 Hz

Vikasana - CET 2012
18.Solution:-Since 4 beats per second are produced with tuning fork Y of frequency 384 Hz , the frequency of tuning fork X must be (384+4)or (384-4) i.e. 388 Hz or 380 Hz when the prongs of X is slightly flied, its frequency increases.
Now the no. of beats heard is 3 beats/sec (reduced)
\therefore frequency of X is originally lower than Y i.e. 380 Hz . Answer: (2)

Vikasana - CET 2012

$K_{\mathbf{A}}$

19.A source is moving towards observer with a speed of $20 \mathrm{~m} / \mathrm{s}$ and having frequency 240 Hz and observer is moving towards source with a velocity $20 \mathrm{~m} / \mathrm{s}$. what is the apparent frequency heard by observer if velocity of sound $340 \mathrm{~m} / \mathrm{s}$?

$$
\begin{array}{ll}
\text { (1) } 270 \mathrm{~Hz} & \text { (2) } 240 \mathrm{~Hz} \\
& \text { (3) } 268 \mathrm{~Hz} \\
\text { Vikasana - CET } & \text { (4) } 2012
\end{array} 60 \mathrm{~Hz}
$$

$\mathbf{K E}_{\mathbf{A}}$ 19. Solution:-

Apparent frequency $\mathbf{f}^{1}=\left(\mathbf{v}+\mathbf{v}_{\mathbf{o}} / \mathbf{v}-\mathbf{v}_{\mathbf{s}}\right) \mathbf{f}$

$$
\begin{aligned}
& =(340+20 / 340-20) 240 \\
& =(360 / 320) 240 \\
& =270 \mathrm{~Hz}
\end{aligned}
$$

Answer: (1) Vikasana - CET 2012

${ }^{K} \mathrm{E}_{\mathrm{A}}$

20. What is the approximate range of audible frequencies for a human ear?
(1)20 kHz - 200 kHz
(2) $20 \mathrm{~Hz}-20 \mathrm{kHz}$
(3) 200 kHz - 2000 kHz
(4) 2000 kHz - 20000 kHz

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{E}}^{\mathbf{A}}$

20.Solution:-

The audible frequency range is

20 Hz --- 20,000Hz or 20 Hz --- 20 kHz

Answer: (2)
Vikasana - CET 2012
21. A body executes S.H.M with amplitude A. At what displacement, from the mean position, the kinetic energy of the body is one fourth of its total energy.

$$
\begin{array}{ll}
\text { (1) A/4 } & \text { (2) A/2 } \\
\text { (3) } \sqrt{ } 3 A & \text { (4) } \sqrt{ } 3 / 2 A
\end{array}
$$

$\mathbf{K}_{\mathbf{A}}$

21.Solution:- For a body executing SHM,

$$
\begin{aligned}
& \text { K.E= } 1 / 2 m \omega^{2}\left(A^{2}-y^{2}\right) \\
& T . E=1 / 2 m \omega^{2} A^{2}
\end{aligned}
$$

$1 / 2 m \omega^{2}\left(A^{2}-y^{2}\right)=1 / 4 \times 1 / 2 m \omega^{2} A^{2}$

$$
\begin{aligned}
A^{2}-y^{2} & =1 / 4 x A^{2} \\
y^{2} & =A^{2}-A^{2} / 4 \\
y^{2} & =3 A^{2} / 4 \\
y & =(\sqrt{3} / 2) \times A
\end{aligned}
$$

Ans: (4) Vikasana - CET 2012
22. If a simple pendulum oscillates with amplitude of 50 mm and time period of 2 s , then its maximum velocity is
$\begin{array}{ll}\text { (1) } 0.10 \mathrm{~m} / \mathrm{s} & \text { (2) } 0.16 \mathrm{~m} / \mathrm{s}\end{array}$
$\begin{array}{ll}\text { (3) } 0.25 \mathrm{~m} / \mathrm{s} & \text { (4) } 0.5 \mathrm{~m} / \mathrm{s}\end{array}$

Vikasana - CET 2012

$K^{E_{A}}$

22.Solution:-

For a simple pendulum

$$
\begin{aligned}
\mathrm{v} & =\omega \sqrt{ }\left(\mathrm{A}^{2}-\mathrm{y}^{2}\right) \\
\mathrm{V}=\mathrm{V}_{\max } & =\omega \mathrm{A}(\text { when } \mathrm{y}=0) \\
& =(2 \Pi / \mathrm{T}) \times \mathrm{A} \\
& =2 \times 3.142 \times 0.05 / 2 \\
& =0.15710=0.16 \mathrm{~m} / \mathrm{s} \\
& \text { Ans: }(2)
\end{aligned}
$$

Vikasana - CET 2012
23. A wave travels in a medium according to the equation of displacement given by
$Y(x, t)=0.03 \sin \pi(2 t-0.01 x)$, where y and x are in meters and ' t ' is seconds. The wavelength of the wave is
$\begin{array}{ll}\text { (1) } 100 \mathrm{~m} & \text { (2) } 200 \mathrm{~m}\end{array}$
(3) 20 m
(4) 10 m

Vikasana - CET 2012

$K_{\mathbf{A}}$

23.Solution:-

$$
\begin{aligned}
& y(x, t)=0.03 A \sin \pi(2 t-0.01 x) \\
& y(x, t)=0.03 A \sin 2 \pi(t-0.01 x / 2)
\end{aligned}
$$

standard equation is

$$
y(x, t)=A \sin 2 \pi(t / T-x / \lambda)
$$

comparing

$$
\lambda=2 / 0.01=200 \mathrm{~m}
$$

Answer: (2)
Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

24. The ratio of speed of sound in nitrogen gas to that in helium gas at 300 K is

$$
\begin{array}{ll}
\text { (1) } \sqrt{ }(2 / 7) & \text { (2) } \sqrt{ }(1 / 7) \\
\text { (3) } \sqrt{ } 3 / 5 & \text { (4) } \sqrt{ } 6 / 5
\end{array}
$$

Vikasana - CET 2012
24.Solution:-For a gas
$\mathbf{V}=\sqrt{ }(\mathrm{yp} / \rho)=\sqrt{ }(\mathrm{yRT} / \mathrm{M})$ (since $\mathrm{PV}=\mathrm{RT}$)
Where \mathbf{M} is the molecular mass \& R is the gas constant

$$
\begin{aligned}
\therefore v_{\mathrm{N} 2} / \mathrm{v}_{\mathrm{He}}=\sqrt{ } \mathrm{M}_{\mathrm{He}} / \sqrt{ } \mathrm{M}_{\mathrm{N} 2} & =\sqrt{ } 4 / \sqrt{ } 28 \\
& =\sqrt{ } 1 / \sqrt{ } 7=1 / \sqrt{ } 7
\end{aligned}
$$

Ans : (2)

Vikasana - CET 2012
25. Beats are produced by two waves $y_{1}=a \sin 2000 \pi t$ and $y_{2}=a \sin 2008 \pi t$ the number of beats heard per second is
(1) Two (2) One
(3) Four
(4) Eight

Vikasana - CET 2012
25. Beats are produced by two waves $y_{1}=a \sin 2000 \pi t$ and $y_{2}=a \sin 2008 \pi t$ the number of beats heard per second is
(1) Two (2) One
(3) Four
(4) Eight

Vikasana - CET 2012
25.Solution:-The SHM wave equation is
$\mathrm{Y}=\mathrm{A} \sin \omega \mathrm{t}$
Comparing with the given equation $\omega_{1}=2000 \Pi$, $2 \pi f_{1}=2000 \Pi, f_{1}=1000 \mathrm{~Hz}$ $\omega_{2}=2008 \Pi$, $2 \pi f_{2}=2008 \Pi, f_{2}=1004 \mathrm{~Hz}$
number of beats heard per second=n=f $f_{2-} f_{1}=4$ Answer: (3)

Vikasana - CET 2012
26. A Sonar system fixed in a submarine operates at a frequency 40.0 kHz .An enemy submarine moves towards the sonar with a speed of $360 \mathrm{~km} / \mathrm{hr}$. the frequency of sound reflected by the submarine will be (Speed of sound in water $=1450 \mathrm{~m} / \mathrm{sec}$).

$$
\begin{array}{ll}
\text { (1) } 46 \mathrm{kHz} & \text { (2) } 34 \mathrm{kHz} \\
\text { (3) } 40 \mathrm{kHz} & \text { (4) } 80 \mathrm{kHz}
\end{array}
$$

Vikasana - CET 2012

K_{A}
 26.Solution:-

Apparent frequency for enemy submarine

$$
\begin{aligned}
f^{1}=\left(v+v_{0} / v\right) f & =(1450+100 / 1450) 40 \\
& =42.8 \mathrm{kHz}
\end{aligned}
$$

Apparent frequency for SONAR(frequency of sound reflected by submarine)

$$
\begin{aligned}
& F^{11}=\left(\mathrm{v} / \mathrm{v}-\mathrm{v}_{\mathrm{s}}\right) \mathrm{f} \\
&=(1450 / 1450-100) 42.8 \\
&=46 \mathrm{kHz} \\
& \text { vikasana - CET } 2012
\end{aligned}
$$

Answer : (1)

27．A standing wave having 3 nodes and 2 antinodes is found between two atoms having a distance of $1.21 \mathrm{~A}^{0}$ ．The wavelength of standing wave will be

$$
\begin{array}{ll}
\text { (1) } 3.63 \mathrm{~A}^{0} & \text { (2) } 6.05 \mathrm{~A}^{0} \\
\text { (3) } 1.21 \mathrm{~A}^{0} & \text { (4) } 2.42 \mathrm{~A}^{0}
\end{array}
$$

Vikasana－CET 2012

$\mathbf{K}_{\mathbf{A}}$

27.Solution:-

1.21 A

Answer: (3)
Vikasana - CET 2012

$K_{\mathbf{A}}$

28. A string of length L metre has mass $M \mathrm{~kg}$. It is kept stretched under a tension T newton. If a transverse jerk is given at one end of this string how long does it take for the disturbance to reach the other end?
(1) $\sqrt{ }(\mathrm{LM} / \mathrm{T}) \quad$ (2) $\mathrm{L} \sqrt{ }(\mathrm{M} / \mathrm{T})$
(3) $\sqrt{ }(\mathrm{LT} / \mathrm{M})$
(4) $L \sqrt{ }(T / M)$

Vikasana - CET 2012

K_{A}

28.Solution:-

The time taken (t) is given by $t=L / v$ where v is the velocity of the disturbance.
But $v=\sqrt{ }(T / m)$ where T is the tension and m is the linear density (mass per unit length) of the string. Since $m=M / L$

$$
v=\sqrt{ }(T L / M)
$$

$\therefore t=L / \sqrt{ }(T L / M)=\sqrt{ }(L M / T) \quad$ Answer: (1)
Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}$

29. Reverberation time T and volume V of an auditorium are related as
(1) $\mathrm{T} \alpha 1 / \mathrm{V}$ (2) $\mathrm{T} \propto 1 / \sqrt{ } \mathrm{V}^{2}$
(3) $\mathrm{T} \alpha 1 / \sqrt{ } \mathrm{V}$
(4) $\mathrm{T} \alpha \mathrm{V}$

Vikasana - CET 2012

$K_{\mathbf{A}}$

29.Solution:-

According to Sabine's formula

T=0.165 V / Las

Therefore TaV

Answer: (4)
Vikasana - CET 2012
30. Reverberation time is
(1) The time taken for the intensity of sound to decrease to zero
(2) The time taken for the intensity of sound to decrease to one millionth of its initial value from the moment source of sound has ceased to produce sound

Vikasana - CET 2012
(3) The time taken for the intensity of sound to increase from one millionth of its initial value to maximum
(4) The time taken for the intensity of sound to increase to one millionth of its initial value from the moment source of sound has ceased to produce sound.

$$
\text { Vikasana - CET } 2012
$$

30.Solution:-

By definition, the reverberation time is
The time taken for the intensity of sound to decrease to one millionth of its initial value from the moment source of sound has ceased to produce sound. Answer: (2)

Vikasana - CET 2012
31. The frequency of the note produced by plucking a given string increases as
(1) The length in the string increases
(2) The tension in the string increases
(3) The tension in the string decreases
(4) The mass per unit length of the string increases

Vikasana - CET 2012
31.Solution:-

$$
f \alpha \sqrt{T}
$$

therefore frequency of note increases with increase of tension

Answer: (2)
Vikasana - CET 2012
32. Air is blown at the mouth of a tube
(Length 25 cm and diameter 3 cm) closed at one end. Velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, the sound which is produced will correspond to the frequencies

Vikasana - CET 2012
(1) 330 Hz
(2) Combination of frequencies 330,990 , $1650,2310 \mathrm{~Hz}$
(3) Combination of frequencies 330, 660, $990,1320,1650 \mathrm{~Hz}$
(4) Combination of frequencies 300,900 , 1500, 2100, Hz

Vikasana - CET 2012

${ }_{K} \mathbf{E}_{\mathbf{A}}$

32.Solution: -

In case of closed pipe, frequencies of overtones are odd harmonics of the fundamental.
i.e. $f_{1}: f_{2}: f_{3}: \ldots \ldots=1: 3: 5$:
and $f_{1}=v / 4 I=330 / 4 \times 0.25=330 \mathrm{~Hz}$

$$
f_{2}=3 f_{1}=990 \mathrm{~Hz}
$$

$$
f_{3}=5 f_{1}=1650 \mathrm{~Hz} \ldots \ldots \ldots
$$

Answer: (2) Vikasana - CET 2012
33. An organ pipe P_{1} closed at one end vibrating in its first harmonic and another pipe P_{2} open at both ends vibrating in its third harmonic are in resonance with a given tuning fork. Ratio of the length of P_{1} that of P_{2} is

$$
\begin{array}{ll}
\text { (1) } 8 / 3 & \text { (2) } 3 / 8 \\
\text { (3) } 1 / 2 & \text { (4) } 1 / 6
\end{array}
$$

Vikasana - CET 2012
33. Solution:-

For a closed pipe (p_{1})
First harmonic, $\mathrm{f}_{\mathrm{c}}=\mathrm{v} / 4 \mathrm{I}_{\mathrm{c}}$
For open pipe (p_{2})

$$
\mathrm{f}_{0}=3 \mathrm{v} / 2 \mathrm{I}_{0}
$$

But $\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{0}$
$\therefore \mathrm{v} / 4 \mathrm{I}_{\mathrm{c}}=3 \mathrm{v} / 2 \mathrm{I}_{\mathrm{o}}$

$$
I_{c} / I_{o}=2 / 12=1 / 6
$$

Answer: (4) Vikasana - CET 2012
34. A tuning fork of frequency 480 Hz produces 10 beats per second when sounded with a vibrating sonometer wire. What must have been the frequency of string if a slight increase in tension produces fewer beats per second than before?
(1) 460 Hz
(2) 470 Hz
(3) 480 Hz
(4) 490 Hz
Vikasana - CET 2012
34.Solution:-

Since 10 beats are produced with a tuning fork of frequency 480 Hz , The frequency of string must be 480+ 10 or 480-10
i.e. $f_{1}=490 \mathrm{~Hz}$ or 470 Hz

Vikasana - CET 2012

When tension of string is increased, its

 frequency increases ($\mathrm{f} \alpha \sqrt{ } \mathrm{T}$)Now the number of beats is reduced. Therefore frequency of string is lower than that of tuning fork.
Therefore f_{1} must be 470 Hz Answer: (2)

Vikasana - CET 2012
35. When a source is going away from a stationary observer, with a velocity equal to that of sound in air, then the frequency heard by the observer will be
(1) Same (2) One third
(3) Double (4) Half

Vikasana - CET 2012

$\mathbf{K}_{\mathbf{A}}^{\mathbf{A}}$

35.Solution:-

Apparent frequency $\mathrm{f}^{1}=\left(\mathrm{v} / \mathrm{v}+\mathrm{v}_{\mathrm{s}}\right) \mathrm{f}$
But $\mathbf{v}_{\mathrm{s}}=\mathbf{v}$

$$
\begin{aligned}
& \therefore \quad f^{1}=\left(v_{s} / 2 v_{s}\right) f \\
& \mathbf{f}^{1}=\mathrm{f} / 2
\end{aligned}
$$

Answer: (4)
Vikasana - CET 2012

ALL THE BEST

Vikasana－CET 2012

Vikasana - CET 2012

