CURRENT ELECTRICITY

OHM'S LAW
KIRCHHOFF'S LAW

PHYGICC

1. A current of 16 mA flows through a conductor.

The number of electrons flowing per second is,
(1) 10^{14}
(2) 10^{15}
(3) 10^{-17}
(4) 10^{17}

PHYSICS

Solution (1):-

$$
\begin{aligned}
& \mathrm{I}=16 \mathrm{~m} \mathrm{~A}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \\
& \mathrm{n}=? \\
& \mathrm{I}=\mathrm{q} / \mathrm{t}=\mathrm{ne} / \mathrm{t} \text { or } \mathrm{n}=\mathrm{It} / \mathrm{e} \\
&=16 \times 10^{-3} \times 1 / 1.6 \times 10^{-19} \\
&=10 \times 10^{16} \\
&=10^{17} \text { electrons. }
\end{aligned}
$$

Ans: (4)

PHYYgicc

2. In a conductor drift velocity is v_{d}. If the same current is set up in a conductor of radius $3 r$, then drift velocity will be
(1) v_{d}
(2) $3 v_{d}$
(3) $v_{d} / 3$
(4) $v_{d} / 9$

PHYSICS

Solution (2):- Drift velocity ,

$$
\begin{aligned}
v_{d}= & 1 / n \text { n } A \text { or } v_{d} \alpha 1 / A \\
& \text { or } v_{d} \propto 1 / \Pi r^{2}
\end{aligned}
$$

------------ (1)

$$
\text { And } v^{1}{ }_{d} \propto 1 / \Pi(3 r)^{2}
$$

$$
v_{d}^{1} \propto 1 / 9 \Pi r^{2} \cdots \cdots-\cdots(2)
$$

$(2 / 1) \quad v^{1}{ }_{d} / v_{d}=1 / 9$ or $v^{1}{ }_{d}=v_{d} / 9$
Ans: (4).

PHYSICS

3. The variation of current against voltage for a conductor is as shown in the fig. The resistance of the conductor is
(1) 1Ω
(2) 2Ω
(3) 4Ω (4) 0.5Ω

Solution(3) :-

$$
\text { slope }=(10-5) /(20-10)=5 / 10=1 / 2 ;
$$

Reciprocal of slope is resistance

$$
=2 \Omega
$$

Answer: (2)

PHYSICS

4. A 6 V battery is connected to a 10Ω resistor. If the current flowing in the conductor is 0.5 A , the internal resistance is
(1) 1Ω
(2) 1.5Ω
(3) 2Ω
(4) 0.5Ω

Solution(4):-

$$
\begin{aligned}
& \qquad \begin{array}{l}
I=E / R+r \\
\text { or } 0.5=6 / 10+r \\
\text { or } 5+0.5 r=6 \\
0.5 r=1 \\
\text { or } r=1 / 0.5=2 \Omega .
\end{array} \\
& \text { on }
\end{aligned}
$$

Ans: (3)

PHYSICS

5. A color coded resistor has red-red-orange-silver on it.

Its resistance value is

$\begin{array}{ll}\text { (1) } 2200 \pm 5 \% \Omega & \text { (2) } 22000 \pm 10 \% \Omega\end{array}$

(3) $2200 \pm 20 \% \Omega$ (4) $22000 \pm 20 \% \Omega$

Solution(5) :-

Red-Red-Orange-Silver

$2 \quad 2 \quad 10^{3} \pm 10 \%$

Resistance value is $2200 \pm 10 \%$

Ans: (2)
06. The specific resistance of a conductor
(1) varies with its length
(2) varies with its mass
(3) varies with its cross-sectional area
(4) does not depend on its length,
area of cross section and mass

Solution(6)

Specific resistance of a conductor does not depend on its dimensions and mass.

Ans: (4)

PHYSIICS

7. A wire has a resistance of 5Ω. A second wire of the same material has twice the length and half the radius of cross-section to that of original wire. The resistance of the second wire is.
$\begin{array}{ll}\text { (1) } 80 \Omega \text { (2) } 40 \Omega & \text { (3) } 20 \Omega\end{array}$
(4) 10Ω

PHYSICS

Solution(7):-
Resistance $R=5=\rho \mid / A=\rho I / \Pi r^{2}--(1)$
Resistance $\mathrm{R}^{1}=\rho 2 \mathrm{I} / \Pi(\mathrm{r} / 2)^{2}$

$$
=8 \rho \mid / \Pi r^{2} \quad--(2)
$$

From (1) $R^{1}=8 R=8 X 5=40 \Omega$.

Ans (2)
08. A piece of copper and a piece of silicon are cooled from room temperature to $5^{\circ} \mathrm{c}$. then
(1) resistance of copper increases while that of silicon decreases
(2) resistance of copper decreases while that of silicon increases
(3) resistance of both copper and silicon decreases
(4) resistance of both copper and silicon increases

Solution(8):-
Copper is a conductor and silicon is a semiconductor. When both are cooled resistance of copper decreases and that of silicon increases.

Answer: (2)

RHYgicg

9. The effective resistance of two resistors in parallel is $12 / 7 \Omega$. If one of the resistors is disconnected, the resistance becomes 4Ω. The resistance of the other resistor is
(1) $7 / 12 \Omega$
(2) $12 / 7 \Omega$
(3) 3Ω (4) 4Ω

PHYSICS

Solution(9)

$$
\begin{gathered}
R_{1} R_{2} / R_{1}+R_{2}=12 / 7 ; \\
R_{1}=4 \Omega \quad R_{2}=? \\
4 R_{2} / 4+R_{2}=12 / 7 \\
\text { or } 28 R_{2}=48+12 R_{2} \\
16 R_{2}=480 r R_{2}=48 / 16=3 \Omega
\end{gathered}
$$

Answer: (3)

PHYSICS hutico

10. Three resistors of 5Ω each are connected to form a triangle. The effective resistance between any two corners is
(1) 15Ω
(2) 10Ω
(3) $5 / 3 \Omega$
(4) $10 / 3 \Omega$

Solution(10)

effective resistance of $5 \Omega \& 5 \Omega$ between

$$
A B=5+5=10 \Omega
$$

effective resistance of $10 \Omega \& 5 \Omega$ between

$$
A \& B=(10 \times 5) /(10+5)=50 / 15=10 / 3 \Omega
$$

Answer(4)

PHYSICS

11. The internal resistance of a cell of emf 2 V is 0.2Ω.

It is connected to a resistance of 3.8Ω. The terminal
p.d. is
(1) 1.95 V
(2) 2.0 V
(3) $1.9 \mathrm{~V} \Omega$
(4) 0.1 V

PHYSICS hundiro

Solution(11):-

Terminal p.d $V=E R / R+r$

$$
\begin{aligned}
& =(2 \times 3.8) /(3.8+0.2) \\
& =7.6 / 4=1.9 \mathrm{~V}
\end{aligned}
$$

Answer: (3)
12. A wire of resistance 12Ω is bent into a circle. The effective resistance between any two points
separated by a distance of $1 / 4$ th circumference on the circle is
(1) $3 / 8 \Omega$
(2) $8 / 3 \Omega$
(3) $9 / 4 \Omega$
(4) $4 / 9 \Omega$

PHYYgicc

Solution(12):-

effective resistance between A \& B

$$
=(9 \times 3) /(9+3)=27 / 12=9 / 4 \Omega
$$

Answer: (3)

$K_{\mathbf{A}}$

PHYSICS

13. In an experiment to determine internal resistance of a cell using a potentiometer, it is observed that the balance point is at 0.2 m when the cell is shunted by 5Ω and 0.3 m when the cell is shunted by 10Ω. The internal resistance of the cell is
(1) 1Ω
(2) 1.5Ω
(3) 10Ω (4) 15Ω

Solution(13):-

$$
\begin{array}{r}
r=R\left(I_{1} / I_{2}-1\right)=5\left(I_{1} / 0.2-1\right)=5 / 0.2\left(I_{1}-0.2\right) \\
r=25\left(I_{1}-0.2\right) \tag{1}
\end{array}
$$

Similarly $\quad r=100 / 3\left(I_{1}-0.3\right) \cdots-\cdots---(2)$
from (1) and (2),

$$
25\left(I_{1}-0.2\right)=100 / 3\left(I_{1}-0.3\right)
$$

Solving $\quad I_{1}=0.6 \mathrm{~m}$
Substituting for I_{1} in equation (1)

$$
r=10 \Omega
$$

Answer: (3)

PHYSICS
14. Three electric bulbs of $25 \mathrm{~W}, 60 \mathrm{~W}$ and 100 W are connected in series to ac mains. Which bulb glows brighter?
(1) 25 W bulb
(2) 60 W bulb
(3) 100 W bulb
(4) All bulbs glow equally bright

Solution(14):-
In series combination same current flows through all the bulbs so that bulb having greater resistance glows brighter ($I^{2} R$). Since lower wattage bulbs has greater resistance($\left.\mathrm{R}=\mathrm{V}^{2} / \mathrm{W}\right) .25 \mathrm{~W}$ bulb glows brighter

Answer: (1)

PHYSICS

15. In the figure shown, current I is
(1) 12.3 A
(2) 1.7 A
(3) 10.7 A
(4) 9.7 A

Solution(15):-

Applying KCL
at node $\quad A \quad 1+3.2+2.8-I_{1}=0$ or $I_{1}=7 \mathrm{~A}$
Similarly
at node $B \quad 7+4-1 \cdot 3-I=0$
or $\mathrm{I}=9.7 \mathrm{~A}$
Ans: (4)
16. We have three resistances of values $2 \Omega, 3 \Omega$ and 6Ω. Which of the following combination will give an effective resistance of 4Ω ?
(1) All the three resistances in parallel
(2) 2Ω resistance in series with parallel combination of 3Ω and 6Ω resistance
(3) 3Ω resistance in series with parallel combination of 2Ω and 6Ω resistance
(4) 6Ω resistance in series with parallel combination of 2Ω and 3Ω resistance

Solution(16):-

$$
\begin{aligned}
R & =2+(6 \times 3) /(6+3) \\
& =2+18 / 9 \\
& =2+2=4 \Omega
\end{aligned}
$$

Answer: (2)

PHYSICS
17. Current I in the figure is

$$
1.5 \mathrm{~A}
$$

A	B	
2.5 A		12

I=? $\quad 1 \mathrm{~A}$
(1) 6 A
(2) $3 A$
(3) 4 A
(4) 2 A

PHYSICS

Solution(17):-
Applying KCL at node A

$$
1.5+2.5-I_{1}=0 \text { or } I_{1}=4 \mathrm{~A}
$$

At node $B, 4+1-I_{2}=0$

$$
\therefore I_{2}=5 \mathrm{~A}
$$

At node $c, \quad 5-1-1=0$
$\therefore \mathrm{I}=4 \mathrm{~A}$
Answer: (3)

RHYgicg

18. Four identical resistors are first connected in parallel and then in series. The ratio of resultant resistance of the first combination to the second will be
(1) $1 / 16$ times (2) $1 / 4$ times
(3) 4 times (4) 16 times.

PHYSICS

Solution(18):-

Let R be the resistance

i) in parallel $R p=R / n=R / 4$
ii) in series $R s=n R=4 R \quad \cdots-\cdots(2)$
equation (1/2)

$$
R p / R s=R / 4 X 1 / 4 R==1 / 16
$$

Answer: (1)
19. Certain substances lose their electrical resistance
completely at finite low temperatures. Such
substances are called
(1) Dielectrics
(2) Super-conductors
(3) Semi conductors
(4) Perfect conductors

Solution(19):-

Answer: (2)

PHYSICS

20. The equivalent resistance between A and B in the following fig is

(1) 6Ω
(2) 15Ω
(3) $20 / 3 \Omega$
(4) $10 / 3 \Omega$

Solution(20):-

$$
P / Q=2 / 3 \quad \& R / S=4 / 6=2 / 3
$$

Thus, network is like a balanced network i.e. pd's at C and D are equal and 8Ω resistor does not take part in conduction
Therefore effective resistance between
$A \& B$ is $R=50 / 15=10 / 3 \Omega$
Answer: (4)
21. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio of $4 / 3$ and $2 / 3$, then the ratio of currents passing through the wires will be
(1) 3
(2) $1 / 3$
(3) $8 / 9$
(4) 2

$K_{\mathbf{A}}^{\mathbf{A}}$

PHYSICS

Solution(21):-

$$
\begin{aligned}
& \mathrm{R}_{1} \propto \mathrm{I}_{1} / \mathrm{A}_{1} ; \\
& \mathrm{R}_{2} \propto \mathrm{I}_{2} / \mathrm{A}_{2}
\end{aligned}
$$

$$
\begin{aligned}
R_{1} / R_{2}= & \left(I_{1} / A_{1}\right) /\left(I_{2} / A_{2}\right) \\
= & (4 / 3) \times r_{2}^{2} / r_{1}^{2}=(4 / 3) \times(9 / 4)=3 / 1 \\
& R_{1} / R_{2}=I_{2} / I_{1}=3 / 1
\end{aligned}
$$

$$
I_{1} / I_{2}=1 / 3
$$

Ans: (2)
22. In a meter bridge experiment null point is obtained at 20 cm from one end of the wire, when resistance X is balanced against another resistance Y . If $\mathrm{X}<\mathrm{Y}$, then where will the new position of null point from the same end, if one decides to balance a resistance of 4 X against Y ?
(1) 50 cm
(2) 80 cm
(3) 40 cm
(4) 70 cm

Solution(22):-

Case 1

$$
\begin{aligned}
& I / 1-I=X / Y \\
& 0.2 / 0.8=X / Y \\
& I^{1} / 1-I^{1}=4 X / Y-\ldots(1)
\end{aligned}
$$

from $\left.1 \& 2 \quad\right|^{1} / 4\left(1-I^{1}\right)=0.2 / 0.8$

$$
\begin{aligned}
& I^{1}=1-I^{1} \\
& \left.2\right|^{1}=1 \\
& I^{1}=1 / 2 \mathrm{~m}=50 \mathrm{~cm}
\end{aligned}
$$

PHYSICS

23. A 2 Volt battery with negligible internal resistance is connected in a circuit as shown in fig. The current I_{2} in the circuit will be

(1) $1 / 10 \mathrm{~A}$
(2) $1 / 30 \mathrm{~A}$
$\begin{array}{ll}\text { (3) } 1 / 45 \mathrm{~A} & \text { (4) } 1 / 15 \mathrm{~A}\end{array}$

PHYSICS

Solution(23):-

$$
\begin{aligned}
& R p=R_{1} R_{2} / R_{1}+R_{2} \\
& R p=(60 \times 30) /(60+30)=20 \Omega \\
& \therefore I=E / R p=2 / 20=1 / 10 A \\
& \therefore I_{2}=(1 / 10) 30 / 90=1 / 30 A
\end{aligned}
$$

Answer: (2)

$K_{\mathbf{A}}$

PHYSICS

24. A current of I flows in a wire of circular cross section with the free electrons travelling with a drift velocity v . What is the drift velocity of electrons When a current 21 flows in another wire of twice the radius and of the same material?
(1) $2 v$
(2) v
(3) $\mathrm{v} / 2$
(4) $\mathrm{v} / 4$

Solution(24):-

$$
\begin{aligned}
I & =n e A v_{d} \\
I & =n e A v=n e \Pi r^{2} v \\
2 I & =n e \Pi 4 r^{2} v^{1} \\
\therefore v^{1} & =v / 2
\end{aligned}
$$

Ans: (3)

$K_{\mathbf{A}}$

PHYSICS

25. A piece of copper wire is cut in to ten equal parts. These parts are connected in parallel. The joint resistance of the parallel combination will be equal to the original resistance of the uncut wire, multiplied by a factor of

$$
\begin{array}{ll}
\text { (1) } 0.01 & \text { (2) } 0.1 \\
\text { (3) } 1 & \text { (4) } 10
\end{array}
$$

Solution(25):-
Let R be the resistance of the uncut wire,
Then resistance of each part $=R / 10$
When they are connected in parallel
$R p=(R / 10) \times 1 / 10=R / 100=0.01 R$
n $R=0.01 R$
$\therefore \quad \mathrm{n}=0.01$
Answer: (1)

PHYSICS hund

26. Using the resistors R_{1} and R_{2} singly , in series
and in parallel, we can get $4,5,20$ and 25Ω then R_{1} and R_{2} are
(1) 4,5
(2) 20,25
$\begin{array}{ll}\text { (3) } 5,20 & \text { (4) } 4,25\end{array}$

Solution(26):-
By data, If $R_{1}=4$ and $R_{2}=5$
Then $\mathrm{Rs}=9$ and $\mathrm{Rp}=20 / 9$

$$
\begin{aligned}
\text { If } R_{1} & =5 \text { and } R_{2}=20 \\
R s & =25 \text { and } R p=4
\end{aligned}
$$

Therefore R_{1} and $R_{2}=5$ and 20Ω
Answer : (3)

PHYSICS

27. The resistance of 20 cm long wire is 5Ω. If it is stretched to 40 cm length, the new resistance in
ohm is
(1) 5
(2) 10
(3) 20
(4) 40

Solution(27):-
When a wire is stretched to n times its initial length, the resistance becomes n^{2} times its initial value.

$$
n=40 / 20=2
$$

Therefore new resistance

$$
R_{1}=2^{2} R=4 R=4 \times 5=20 \Omega
$$

Answer: (3)

RHEISG

28. Resistivity of iron is $10^{-7} \Omega-\mathrm{m}$. The resistance of an iron wire is 1Ω. If its diameter is halved and length doubled , the resistivity in Ω - m will be equal to

$$
\begin{array}{ll}
\text { 1) } 10^{-7} & \text { 2) } 2 \times 10^{-7} \\
\text { 3) } 3 \times 10^{-7} & \text { 4) } 4 \times 10^{-7}
\end{array}
$$

PHYSICS
hundiro

Solution(28):-

$$
\rho=\Pi d^{2} R / 4 L ;
$$

resistivity is independent of dimensions

$$
\therefore \rho=10^{-7} \Omega \mathrm{~m}
$$

Answer: (1)

PHYSICS

29. If an electron makes $25 \mathrm{x} 10^{15} \mathrm{rev} / \mathrm{s}$ around the nucleus of an atom in a orbit of radius $1 \AA$ unit the equivalent current is nearly

$$
\begin{array}{ll}
\text { 1) } 2 \times 10^{-2} \mathrm{~A} & \text { 2) } 4 \times 10^{-3} \mathrm{~A} \\
\text { 3) } 1.6 \times 10^{-4} \mathrm{~A} & \text { 4) } 10^{-3} \mathrm{~A}
\end{array}
$$

PHYSICS

Solution(29):-

Since an electron makes $25 \times 10^{15} \mathrm{rev} / \mathrm{s}$, It is equivalent to the no. of electrons flowing in $1 \mathrm{sec}=25 \times 10^{15}$

$$
\begin{aligned}
\therefore 1=q / t & =25 \times 10^{15} \times 1.6 \times 10^{-19} / 1 \\
& =40 \times 10^{-4}=4 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

Answer: (2)

PHYSICS

30. Three resistors each equal to 6 ohm are connected as shown in the fig. The equivalent resistance between $x_{1} \& x_{2}$ is
(1) 6
(2) 18
(3) 2
(4) 4

Solution(30):-

$$
\begin{aligned}
& 1 / R p=1 / 6+1 / 6+1 / 6=3 / 6 \\
& \therefore R p=2 \Omega
\end{aligned}
$$

Answer: (3)

PHYSICS

31. In the circuit shown below, the current I is

(1) $1 / 45 \mathrm{~A}$
(2) $1 / 15 \mathrm{~A}$
(3) $1 / 10 \mathrm{~A}$
(4) $1 / 5 \mathrm{~A}$.

PHYSICS

Solution(31):-

Resistance between
$A \& B=(60 \times 30) /(60+30)=20 \Omega$
Current $\mathrm{I}=2 / 20=0.1 \mathrm{~A}$

Answer: (3)
32. An electric kettle takes 4A current at 220 V . How much time will it take to boil 1 kg of water from temperature $20^{\circ} \mathrm{C}$? The temperature of boiling water is $100^{\circ} \mathrm{C}$.
$\begin{array}{ll}\text { (1) } 8.4 \mathrm{~min} & \text { (2) } 12.6 \mathrm{~min}\end{array}$
$\begin{array}{ll}\text { (3) } 4.2 \mathrm{~min} & \text { (4) } 6.3 \mathrm{~min}\end{array}$

Solution(32): -

$$
\begin{aligned}
Q & =m c \theta=V I t, \\
t & =m c \theta / V I \\
& =1 \times 4200 \times 80 / 220 \times 4=381 \\
s & =6.3 \mathrm{~min} .
\end{aligned}
$$

Answer: (4)

PHYSICS huritiry

33. In the network shown, each resistance is R ohm. The equivalent resistance between $A \& B$ is

$$
\begin{array}{llll}
\text { 1) } & R / 2 & \text { 2) } & R \\
\text { 3) } & 2 R & \text { 4) } & 3 R
\end{array}
$$

Solution(33):-

It is a balanced network
$\therefore R_{A B}=2 R \times 2 R / 4 R=R$

Answer: (2)

PHYSICS

34. . For the circuit shown below the current I flowing through the circuit will be

(1) $1 / 2 \mathrm{~A}$
(2) 1 A
(3) 2 A
(4) 4 A

PHYSICS

Solution(34):-

All the three resistors are in parallel

$$
\therefore R_{A B}=3 / 3=1 \Omega
$$

$$
\mathrm{I}=\mathrm{V} / \mathrm{R}=2 / 1=2 \mathrm{~A}
$$

Answer: 3

PHYSICS

35. The equivalent resistance at the points X_{1} and X_{2} in the circuit shown below

(1) 60 ohm
(2) 40 ohm
(3) 80 ohm
(4) 20 ohm

PHYSICS

Solution(35):-

$$
\begin{aligned}
\mathrm{R}_{1} & =(60 \times 40) /(60+40)=24 \\
\mathrm{R}_{\mathrm{AB}} & =(44 \times 40) /(84+20) \\
& =40 \Omega
\end{aligned}
$$

Answer: (2)

Rumg

36. Resistance between X_{1} and X_{2} is

(1) 10 ohm
(3) 0
(2) greater than 10 ohm
(4) less than 10 ohm.

Solution 36 .

Answer: (3)
37. Which of the following carbon coded resistor has value of 10 k ohm with 20% tolerance?
(1) Brown, black, orange and silver stripes
(2) black ,Brown, orange and silver stripes
(3) black, Brown, orange and gold stripes
(4) Brown, black, orange and no tolerance band.

PHYSICS
hutico

Solution 37 .

Answer: (4)
38.An electric kettle has two coils. when one coil is connected to the ac mains, the water in the kettle boils in 10 minutes. When the other coil is used, the same quantity of water takes 15 minutes to boil. How long will it take for the same quantity of water to boil if the two coils are connected in parallel?
(1) 24 min
(2) 18 min
(3) 12 min
(4) 6 min

Solution 38.

Let H be the quantity of heat energy needed to

boil the given quantity of water. If $R_{1} \& R_{2}$ are the
resistances of coils and V is the applied voltage, then

$$
\mathrm{H}=\mathrm{V}^{2} \mathrm{t}_{1} / \mathrm{R}_{1}=\mathrm{V}^{2} \mathrm{t}_{2} / \mathrm{R}_{2} \text { or } \mathrm{R}_{2} / \mathrm{R}_{1}=\mathrm{t}_{2} / \mathrm{t}_{1}=15 / 10=3 /
$$

2

Contd..

When the coils are connected in parallel, the combined resistance is

$$
R=R_{1} R_{2} / R_{1}+R_{2}
$$

If the water takes t minutes to boil, then
$V^{2} t / R=v^{2} t_{1} / R_{1}$ or $t=t_{1} R / R_{1}$
$=t_{1} \times\left(R_{1} R_{2} / R_{1}+R_{2}\right) X 1 / R_{1}$
$=10 X(2 X 3 / 2+3) X 1 / 10=6 \mathrm{~min}$
Answer: 4

PHYSICS

39. An electric bulb has a rating of $500 \mathrm{~W}, 100 \mathrm{~V}$. It is used in a circuit having a 200 V supply. What resistance must be connected in series with the bulb so that it delivers 500W?
1) 10Ω
2) 20Ω
3) 30Ω
4) 40Ω

Solution 39:-
The current flowing in the bulb of 500W
operating at 100 V is
$I=500 / 100=5 A$

Resistance of the bulb $=100 / 5=20 \Omega\left(\right.$ say $\left.R_{1}\right)$
To deliver 50 W , the current in the bulb must remain 5A when it is operated with 200 V supply. The resistance R to be connected in series for this purpose is

$$
200 / R_{1}+R_{2}=5 A
$$

Or $R_{1}+R_{2}=40$ or $R+20=40$ or $R=20 \Omega$

PHYSICS

40. A metal wire has a resistance of 2.00Ω at $50^{\circ} \mathrm{C}$ and 2.04Ω at $100^{\circ} \mathrm{c}$. What is the temperature coefficient of resistance of the metal?

$$
\begin{array}{ll}
\text { 1) } 10 / 49 \times 10^{-3} \mathrm{~K}^{-1} & \text { 2) } 20 / 49 \times 10^{-3} \mathrm{~K}^{-1} \\
\text { 3) } 30 / 49 \times 10^{-3} \mathrm{~K}^{-1} & \text { 4) } 40 / 49 \times 10^{-3} \mathrm{~K}^{-1}
\end{array}
$$

PHYSICS

Solution 40:-

The temperature coefficient of resistance of the conductor is

$$
\begin{aligned}
\alpha & =R_{2}-R_{1} / R_{1} t_{2}-R_{2} t_{1} \\
\therefore \alpha & =(2.04-2.00) /(2 \times 100-2.04 \times 50) \\
& =0.04 / 200-102 \\
& =0.04 / 98=40 / 98 \times 10^{-3} \\
& =20 / 49 \times 10^{-3} \mathrm{~K}^{-1}
\end{aligned}
$$

Answer: (2)

PHYSICS

41. Three equal resistors are connected in series with a battery, dissipate P watts of power. What will be the power dissipated if the same resistances are connected in parallel across the same battery?
1) P
2) $3 P$
3) $9 P$
4) $27 P$

Let R be the value of each resistance and V, the voltage of the battery. When the three resistances are connected in series, the power dissipated is $P=V^{2} / 3 R$

When they are connected in parallel, the
power dissipated is

$$
\begin{aligned}
P^{1} & =3 V^{2} / R \\
\therefore \quad P^{1} & =9 P
\end{aligned}
$$

Answer 3
42. A and B are two points on a uniform ring of resistance R. The $\angle A O B=\theta$, where θ is the centre of the ring. The equivalent resistance between A and B is

$$
\begin{array}{ll}
\text { 1) } R / 4 \pi^{2}(2 \pi-\theta) \theta & \text { 2) } R(1-\theta / 2 \pi) \\
\text { 3) } R \theta / 2 \pi & \text { 4) } R(2 \pi-\theta) / 4 \pi
\end{array}
$$

PHYSICS

Solution(42)

Resistance per unit length $\rho=R / 2 \pi r$
Lengths of sect \quad And $A Q B$ are $r \theta$ and $r(2 \pi-\theta)$

Resistances of sections APB and AQB are

$$
\begin{aligned}
& R_{1}=\rho r \theta=(R / 2 \pi r) r \theta=(R / 2 \pi) \theta \text { and } \\
& R_{2}=(R / 2 \pi r) r(2 \pi-\theta)=(R / 2 \pi)(2 \pi-\theta)
\end{aligned}
$$

As R_{1} and R_{2} are in parallel between A and B, $R_{p}=R_{1} R_{2} / R_{1}+R_{2}$
$=(R / 2 \pi) \theta X(R / 2 \pi)(2 \pi-\theta) /(R / 2 \pi) \theta+(R / 2 \pi)(2 \pi-\theta)$
$=R^{2}(\theta(2 \pi-\theta) / 2 \pi) / R 2 \pi$
$=R / 4 \pi^{2}(2 \pi-\theta) \theta$
Answer: (1)

PHYSICS

43. An electric lamp marked $60 \mathrm{~W}-220 \mathrm{~V}$ is used on an average 5 hours a day in month of 30 days. Cost of electric power consumed at the rate of Rs. 2 per unit is

$$
\begin{array}{ll}
\text { 1) } 30 /- & \text { 2) } 18 /- \\
\text { 3) } 9 /- & \text { 4) } 27 /-
\end{array}
$$

PHYSICS hund

Solution 43:-

Number of units consumed = power in watt X number of hours / 1000

$$
=60 \times 5 \times 30 / 1000=9
$$

$\therefore \quad$ cost $=9 \times 2=$ Rs. 18/-
Answer (2)

RHYICg

44. A wire of length 10 m and resistance 20Ω is connected in series with a battery of emf 3 V (negligible internal resistance) and a resistance of 10Ω. The potential drop across the wire in Vm^{-1}

$$
\begin{array}{ll}
\text { 1) } 1.0 & \text { 2) } 0.02 \\
\text { 3) } 0.2 & \text { 4) } 0.01
\end{array}
$$

RHYgig

Solution 44:-

current in the circuit $\mathrm{I}=\mathrm{V} / \mathrm{R}_{\mathrm{s}}$

$$
=3 / 20+10=3 / 30=0.1 \mathrm{~A}
$$

Potential drop across the wire $=V_{1}=1 \times 20$

$$
=0.1 \times 20=2 \mathrm{~V}
$$

Potential drop across the wire =

potential drop / length of wire

$$
=2 / 10=0.2 \mathrm{Vm}^{-1}
$$

Answer.(3)

RHYgicg

45. Four resistances $15,12,4$, and 10Ω are connected in cyclic order to form wheat stone network. The resistance to be connected in parallel with 10Ω to balance the network is
1) 5Ω
2) 10Ω
3) 8Ω
4) 20Ω

PHYSICS

Solution 45:-

X is the resistance connected in parallel with 10Ω

$$
\begin{aligned}
& P / Q=R_{p} / S ; 15 / 12=R_{p} / 4 ; R_{p}=5 \\
& 10 \times X / 10+X=5 ; 10 X=50+5 X \\
& X=10 \Omega
\end{aligned}
$$

Answer: (2)

PHYSICS

THANK YOU

