CET - I PUC: PHYSICS

Unit VI : WAVES and SOUND

 CHAPTERSOSCILLATIONS
WAVES
SOUND
STATIONARY WAVES
ACOUSTICS OF BUILDINGS

SYNOPSIS

Restoring force on the particle: $\mathrm{F}=-\mathrm{ky}$
k- force constant.
Displacement of the particle executing SHM

$$
y=A \sin \omega t
$$

\& Velocity: $\mathbf{v}=\mathbf{A} \omega \cos \omega t=\omega \cdot \sqrt{A^{2}-y^{2}}$

* Velocity amplitude or maximum velocity:

$$
v_{\max }=A \omega
$$

Particle acceleration: $\mathbf{a}=-\mathbf{A} \omega^{2} \sin \omega t=-\omega^{2} \mathbf{y}$
Maximum acceleration: $\mathrm{a}_{\max }=\mathrm{A} \omega^{2}$
The velocity is
zero at extreme positions and
maximum at mean position.
The acceleration SHM is
zero at mean position and maximum at extreme positions.

Energy of the particle executing SHM

Kinetic energy: $K=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right)$
Potential energy: $\mathbf{U}=\frac{1}{2} m \omega^{2} \mathbf{y}^{2}$
Total energy: $\mathrm{E}=\mathrm{K}+\mathrm{U}=\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{~A}^{2}$
Total energy is constant.

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}
$$

m - mass attached and k - spring constant.

Time period of oscillation of a simple pendulum:

$$
\begin{array}{r}
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}: \quad \mathrm{L} \text { - length of the pendulum } \\
\mathrm{g}-\text { acceleration due to gravity }
\end{array}
$$

WAVES

Phase difference $=\frac{2 \pi}{\lambda}$ (path difference)
Wave velocity: $\mathrm{v}=\frac{\lambda}{\mathrm{T}}=\mathrm{f} \boldsymbol{\lambda}=\frac{\omega}{\mathrm{k}}$
$\mathrm{k}=\frac{2 \pi}{\lambda}$ is called as propagation constant.
\& Unit of k is rad/m

* When a wave travels from one medium to another its frequency remains same but velocity and wavelength change.

K_{A} CET - PHY(SICS

Different forms of progressive wave equn.:

$y=A \sin \omega\left(t-\frac{x}{v}\right)=A \sin (\omega t-k x)$
Using $\omega=\frac{2 \pi}{T}, k=\frac{2 \pi}{\lambda}$ and $v=\frac{\omega}{k}$
$y=A \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$
$y=A \sin \frac{2 \pi}{\lambda}(v t-x)=A \sin k(v t-x)$

Newton's formula:

* Velocity of longitudinal waves $\mathbf{v}=\sqrt{\frac{\mathrm{E}}{\rho}}$

For solids E = Y, For fluids E = B,
For gas $B=P$, Hence $v=\sqrt{\frac{P}{\rho}}$
Newton-Laplace formula:

$$
\mathrm{B}=\gamma \mathrm{P}
$$

\& Velocity of sound in a gas: $\mathrm{V}=\sqrt{\frac{\gamma \mathrm{P}}{\rho}}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$

Effect of temperature on velocity of sound: $\mathrm{v} \propto \sqrt{\mathrm{T}}$

$$
\Rightarrow \quad \frac{\mathbf{v}_{2}}{\mathbf{v}_{1}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}}=\sqrt{\frac{\mathrm{t}_{2}+273}{\mathrm{t}_{1}+273}}
$$

T_{1} and T_{2} are in K , t_{1} and t_{2} are in ${ }^{\circ} \mathrm{C}$
\& Velocity of sound at $t^{\circ} \mathrm{C}$ is

$$
v_{t} \approx v_{0}+0.61 t
$$

${ }^{K} \mathrm{E}_{\mathrm{A}}$

Among the gases velocity of sound is highest in hydrogen.

Sound travels faster in moist air than in dry air, i.e., $v_{m}>\mathbf{v}_{\mathrm{d}}$

There is no effect of frequency on the speed of sound.
. Velocity of sound in different media:
$\mathbf{v}_{\text {solid }}>\mathbf{V}_{\text {liquid }}>\mathbf{V}_{\text {gas }}$

Intensity of a mechanical wave is $\mathrm{I}=2 \pi^{2} \mathbf{f}^{2} \mathbf{A}^{2} \rho \mathbf{v}$
Intensity level of sound: $\mathrm{I}_{\mathrm{L}}=\log \left[\frac{\mathrm{I}}{\mathrm{I}_{0}}\right]$ in bel (B)
$\mathrm{I}_{\mathrm{o}}=10^{-12} \mathrm{Wm}^{-2}$
Intensity level: $\mathrm{I}_{\mathrm{L}}=10 \log \left(\frac{\mathrm{I}}{\mathrm{I}_{0}}\right)$ in deci bel (dB)
\& Frequency range of audible sound: $\mathbf{2 0 H z}$ to $\mathbf{2 0 k H z}$.
\& Audible range of intensity: $10^{-12} \mathrm{Wm}^{-2}$ to $1 \mathrm{Wm}^{-2}$
\& Audible range of intensity level: $0<\mathrm{I}_{\mathrm{L}}<120 \mathrm{~dB}$ or $0<\mathrm{I}_{\mathrm{L}}<12$ bel at 1000 Hz

BEATS:

Beat frequency: $f_{B}=f_{1} \sim f_{2}$
Beat period: $\mathrm{T}_{\mathrm{B}}=1 / \mathrm{f}_{\mathrm{B}}$

DOPPLER EFFECT:

When the Source moving towards an observer and observer moving away from the source
Apparent frequency: $\mathbf{f}^{\prime}=\mathbf{f}\left(\frac{\mathbf{v}-\mathbf{v}_{\mathbf{0}}}{\mathbf{v}-\mathbf{v}_{\mathbf{S}}}\right)$
\& Doppler effect is asymmetric in sound and symmetric in light.

STATIONARY WAVES

If $y_{1}=A \sin (\omega t-k x)$ and $y_{2}=A \sin (\omega t+k x)$ then $y=y_{1}+y_{2}=(2 A \cos k x) \sin \omega t=R \sin \omega t$ Distance between any two consecutive nodes or two antinodes is $\boldsymbol{\lambda} / \mathbf{2}$.
\& Distance between a node and neighboring antinode is $\lambda / 4$.
\& Velocity of transverse wave along the stretched string: $v=\sqrt{\frac{T}{m}}$
T is tension and $m=\frac{\text { mass }}{\text { length }}$
> Fundamental frequency of stretched string
$f_{1}=\frac{1}{2 L} \sqrt{\frac{T}{m}}$
$\checkmark f_{1}: f_{2}: f_{3}: \ldots . .=1: 2: 3: \ldots . .$.
$>$ For closed pipe: Fundamental frequency: $f_{1}=\frac{\mathrm{v}}{4 \mathrm{~L}}$
$\checkmark f_{1}: f_{2}: f_{3}: \ldots . .=1: 3: 5:$.
$>$ For open pipe: Fundamental frequency: $f_{1}=\frac{\mathrm{v}}{2 \mathrm{~L}}$
$\checkmark f_{1}: f_{2}: f_{3}: \ldots . .=1: 2: 3: \ldots .$.
$f_{2} \& f_{3}$ are the frequencies of first $\&$ second overtones.

End correction: e = 0.3d, d is diameter of pipe.

For a closed pipe:
Fundamental frequency: $f_{1}=\frac{v}{4(\mathrm{~L}+\mathrm{e})}$
\& For an open pipe:
Fundamental frequency: $f_{1}=\frac{v}{2(L+2 e)}$

ACOUSTICS OF BUILDINGS:

Sabine's formula for reverberation time:

$$
\mathrm{t}=\frac{0.165 \mathrm{~V}}{\sum \mathrm{aS}}
$$

V is volume of hall and

$$
\sum a S=a_{1} S_{1}+a_{2} S_{2}+\ldots \ldots .
$$

\& Optimum reverberation time:
For speech 0.5 s to 1 s and for music 1 s to 2 s .
\& Absorption coefficient of open window is equal to one.

1. In simple harmonic motion, the
particle is
1) always accelerated
2) always retarted
3) alternatively accelerated and retarded
4) neither accelerated nor retarded.

${ }_{K} \mathbf{E}_{\mathbf{A}}$

A hollow ball is filled with water and then used as a bob of the simple pendulum. If the water drains out of a small hole at the bottom, then the time period

1) decreases
2) increases
3) remains same
4) first increases, then decreases and ultimately acquires the initial value.

$$
\begin{aligned}
& \text { Answer: } \\
& T=2 \pi \sqrt{\frac{L}{g}} \\
& \Rightarrow T \propto \sqrt{L}
\end{aligned}
$$

L increases and then decreases to initial value. Answer: (4)
The time period first increases, then decreases and ultimately acquires the initial value.

$\mathbf{K E}_{\mathbf{A}}$

3. A particle executing SHM has
potential energy (PE), kinetic energy (KE)
and total energy (TE) are measured as a
function of displacement ' x '.
Which of the following statements is TRUE?
1) PE is maximum when $x=0$
2) KE is maximum when $x=0$
3) TE is maximum when $x=0$
4) KE is maximum when x is maximum.

${ }_{K} \mathbf{E}_{\mathbf{A}}$

4. Two simple harmonic waves are
represented by $y_{1}=5 \sin \left(2 \pi t+\frac{\pi}{4}\right)$ and $y_{2}=5(\sin 2 \pi t+\sqrt{3} \cos 2 \pi t)$.

The ratio of their amplitudes is

$$
\begin{array}{ll}
\text { 1) } 1: 1 & \text { 2) } 2: 1 \\
\text { 3) } 3: 1 & \text { 4) } 1: 2
\end{array}
$$

Solution:

$y_{1}=5 \sin \left(2 \pi t+\frac{\pi}{4}\right)$
$y_{2}=5(\sin 2 \pi t+\sqrt{3} \cos 2 \pi t)$

$$
=5 \times 2\left(\frac{1}{2} \sin 2 \pi t+\frac{\sqrt{3}}{2} \cos 2 \pi t\right)
$$

$$
=10 \sin \left(2 \pi t+\frac{\pi}{3}\right)
$$

Required ratio: $\frac{A_{1}}{A_{2}}=\frac{5}{10}=\frac{1}{2} \quad$ Answer: (4)
5. Both light and sound waves

1) Travel in vacuum
2) Can be polarized
3) Carry energy and momentum
4) Are electromagnetic in nature.
6. Maximum particle velocity in a wave motion is half the wave velocity.

The amplitude of the wave is equal to

$$
\begin{array}{ll}
\text { 1) } \frac{\lambda}{2 \pi} & \text { 2) } \lambda \\
\text { 3) } \frac{\lambda}{4 \pi} & \text { 4) } \frac{2 \lambda}{\pi}
\end{array}
$$

Solution:

Max. particle velocity $=\frac{\text { Wave velocity }}{2}$

$$
\text { i.e., } \begin{aligned}
& A \omega=\frac{\omega / k}{2} \\
\Rightarrow \quad A & =\frac{1}{2 k}=\frac{1}{2} \frac{\lambda}{2 \pi}=\frac{\lambda}{4 \pi}
\end{aligned}
$$

Answer: (3)

7. The equation of a simple harmonic wave is given by $y=6 \sin \pi(2 t-0.1 x)$, where x and y are in $m m$ and t in seconds.

The phase difference between two particles 2 mm apart at any instant is
$\begin{array}{ll}\text { 1) } 18^{\circ} & \text { 2) } 36^{\circ}\end{array}$
3) $54^{\circ} \quad$ 4) 72°

Solution:

$$
\begin{aligned}
y & =6 \sin \pi(2 t-0.1 x) \\
& =6 \sin (2 \pi t-0.1 \pi x)
\end{aligned}
$$

Comparing with $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}-\mathrm{kx})$

$$
\mathrm{k}=0.1 \pi=\frac{2 \pi}{\lambda}
$$

Phase difference $=\frac{2 \pi}{\lambda}$ (path difference)

$$
\begin{gathered}
\phi=(0.1 \pi)(2)=0.2 \times 180^{\circ}=36^{\circ} \\
\text { Answer: (2) }
\end{gathered}
$$

${ }^{K} \mathrm{E}_{\mathrm{A}}$

8. Three progressive waves A, B and C are shown in the diagram. With respect to the wave B, the wave C

1) Lags behind in phase by $\pi / 2$ and A leads by $\pi / 2$.
2) Leads in phase by π and A lags behind π.
3) Leads in phase by $\pi / 2$ and A lags behind by $\pi / 2$.
4) Lags behind in phase by π and A leads by π.
9. Two sound waves represented by
$y_{1}=0.2 \sin (218 \pi t-k x)$ and
$y_{2}=0.2 \sin (210 \pi t-k x)$ superpose .
The time interval between two consecutive maxima is

$$
\begin{array}{ll}
\text { 1) } 0.125 \mathrm{~s} & \text { 2) } 1 / 3 \mathrm{~s} \\
\text { 3) } 0.25 \mathrm{~s} & \text { 4) } 0.2 \mathrm{~s}
\end{array}
$$

$$
\begin{gathered}
\text { Solution: } \\
y_{1}=0.2 \sin (218 \pi t-k x) \\
y_{2}=0.2 \sin (210 \pi t-k x) \\
\omega_{1}=218 \pi=2 \pi f_{1} \Rightarrow f_{1}=109 \mathrm{~Hz} \\
\text { And } f_{2}=105 \mathrm{~Hz}
\end{gathered}
$$

Beat frequency: $f_{B}=f_{1} \sim f_{2}=4 \mathrm{~Hz}$ Beat period: $T_{B}=1 / f_{B}=1 / 4 \mathrm{~s}=0.25 \mathrm{~s}$

Answer: (3)

${ }_{K} E_{A}$

10. A particle executing a simple
harmonic motion has a period of T second. The time taken by the particle to move from the mean position to half the amplitude, starting from the mean position is
$\begin{array}{llll}\text { 1) } \mathrm{T} / 2 \mathrm{~s} & \text { 2) } \mathrm{T} / 3 \mathrm{~S} & 3 & \mathrm{~T} / 4 \mathrm{~s}\end{array} \quad$ 4) $\mathrm{T} / 12 \mathrm{~s}$

Solution:

$$
\begin{gathered}
y=A \sin \omega t=A \sin \left(\frac{2 \pi}{T}\right) t \\
\frac{A}{2}=A \sin \left(\frac{2 \pi}{T}\right) t \\
\frac{1}{2}=\sin \left(\frac{2 \pi}{T}\right) t \\
\Rightarrow\left(\frac{2 \pi}{T}\right) t=\frac{\pi}{6} \Rightarrow t=\frac{T}{12} \quad \text { Answer: (4) }
\end{gathered}
$$

${ }_{K} \mathbf{E}_{\mathbf{A}}$

11. Two trains, one leaving and the other approaching a station with equal speeds of 36kmph, sound their whistles each of natural frequency 100 Hz.
The number of beats per second as heard by the person standing on the platform is (velocity of sound $=330 \mathrm{~ms}^{-1}$) 1) 0 2) 3
3) 6
4) 9

Solution:

$\mathrm{f}=100 \mathrm{~Hz}$ and $\mathrm{v}_{\mathrm{o}}=\mathbf{0}$
For the train approaching, apparent frequency
$f_{1}=f\left(\frac{v}{v-v_{S}}\right)=100\left(\frac{330}{330-10}\right)=100\left(\frac{33}{32}\right)$
For the train receding, apparent frequency
$f_{2}=f\left(\frac{v}{v+v_{S}}\right)=100\left(\frac{330}{330+10}\right)=100\left(\frac{33}{34}\right)$
Beat frequency: $f_{1}-f_{2}=100\left(\frac{33}{32}-\frac{33}{34}\right)$

$$
=100 \times 33\left(\frac{2}{32 \times 34}\right) \approx 6 \quad \text { Answer: (3) }
$$

${ }_{K} E_{A}$

12. An empty vessel is partially filled with water. The frequency of the air column in the vessel
1) Decreases
2) Increases
3) Remains the same 4) Depends on purity of water.
13. Reverberation time cannot be
altered by
1) The size of the window
2) The volume of the hall
3) changing carpet
4) temperature of the hall.

Answer:

$$
\begin{gathered}
\mathrm{t}=\frac{0.165 \mathrm{~V}}{\sum \mathrm{aS}} \\
\Rightarrow \text { Reverberation time is }
\end{gathered}
$$

independent of temperature.

Answer: (4)

$K_{\mathbf{A}}$

14. A wire under certain condition vibrates with a frequency of 250 Hz .

What is the fundamental frequency if the wire is taken half long, twice as thick and under one-fourth tension of the initial?

1) 250 Hz
2) 125 Hz
3) 100 Hz
4) 50 Hz

Solution:

$$
\begin{aligned}
& \begin{aligned}
& f= \frac{1}{2 L} \sqrt{\frac{T}{m}} \quad \mathrm{~m}=\frac{\text { mass }}{\text { length }}=\frac{\rho \mathrm{V}}{\text { length }}=\frac{\rho l \mathrm{~A}}{l}=\mathrm{A} \rho \\
&= \frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{A \rho}}=\frac{1}{2 \mathrm{Lr}} \sqrt{\frac{\mathrm{~T}}{\pi \rho}}=250 \mathrm{~Hz} \text { (given) } \\
& \mathrm{f}^{\prime}=\frac{1}{2\left(\frac{L}{2}\right)(2 \mathrm{r})} \sqrt{\frac{\left(\frac{T}{4}\right)}{\pi \rho}}=\left(\frac{1}{2}\right)\left(\frac{1}{2 \mathrm{Lr}} \sqrt{\frac{\mathrm{~T}}{\pi \rho}}\right) \\
& \quad=\left(\frac{1}{2}\right)(250)=125 \mathrm{~Hz} \quad \text { Answer: (2) }
\end{aligned}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& f \propto \frac{\sqrt{T}}{L r}=250 \mathrm{~Hz} \text { (given) } \\
& f^{\prime} \propto \frac{\sqrt{\frac{T}{4}}}{\left(\frac{L}{2}\right)(2 r)} \\
& =\left(\frac{1}{2}\right)\left(\frac{\sqrt{T}}{L r}\right)=\left(\frac{1}{2}\right)(250)=125 \mathrm{~Hz}
\end{aligned}
$$

Answer: (2)

${ }_{K} \mathbf{E}_{\mathbf{A}}$

15. The fundamental frequency of an open organ pipe is 300 Hz . The frequency of its first overtone is equal to the frequency of the first overtone of an organ pipe closed at one end. The length of the closed organ pipe is (velocity of sound in air $=332 \mathrm{~ms}^{-1}$)

\author{

1) 20 cm
 2) 41.5 cm
 3) 83 cm
 4) 166 cm
}

Answer:

For open pipe: $f_{1}=300 \mathrm{~Hz}$ and
frequency of first overtone $\mathbf{f}_{\mathbf{2}}=600 \mathrm{~Hz}$
For closed pipe,
Frequency of first overtone $=3\left(\frac{\mathrm{v}}{4 \mathrm{~L}_{\mathrm{c}}}\right)=600 \mathrm{~Hz}$

$$
\Rightarrow \quad L_{C}=\frac{332}{4(200)}=0.415 \mathrm{~m}=41.5 \mathrm{~cm}
$$

Answer: (2)

${ }_{K} \mathbf{E}_{\mathbf{A}}$

16. A source producing a sound of some frequency is moving along a circle, then 1) person standing inside the circle hears same frequency.
2) person standing outside the circle hears same frequency.
3) person standing at the centre of the circle hears same frequency.
4) Both 1) and 2)
17. The displacement time graph of a particle executing S.H.M. is as shown in the figure.
The corresponding force-time
 graph of the particle is

${ }_{K} \mathbf{E}_{\mathbf{A}}$

Answer:

$F=-k y$
$\Rightarrow \mathrm{F} \propto-\mathrm{y}$

1.

2.

${ }_{K} \mathbf{E}_{\mathbf{A}}$

18. For a stationary wave
$\mathrm{y}=4 \cos \left[\frac{\pi x}{15}\right] \sin 100 \pi \mathrm{t}$, where x and y are in cm and t is in seconds. The distance between the node and the next antinode is
1) 7.5 cm
2) 15 cm
3) 30 cm
4) 50 cm

Answer:

$y=4 \cos \left[\frac{\pi x}{15}\right] \sin 100 \pi t$
Comparing with $y=2 A \cos k x \sin \omega t$
$\Rightarrow \mathrm{k}=\frac{\pi}{15}=\frac{2 \pi}{\lambda} \Rightarrow \lambda=30 \mathrm{~cm}$
The distance between the node and the next antinode is $=\lambda / 4=7.5 \mathrm{~cm}$

Answer: (1)

$\mathbf{K E}_{\mathbf{A}}$

19. A tuning fork A when sounded with another tuning fork B of frequency 256 Hz produces 4 beats per second. When \mathbf{A} is filed, 4 per second are heard again when sounded with the same fork B. The frequency of fork A before filing is 1) 252 Hz
2) 260 Hz
3) 256 Hz
4) 264 Hz

Solution:

$f_{\mathrm{B}}=256 \mathrm{~Hz}$, beat frequency $=4 \mathrm{~Hz}$
\therefore Before filing, frequency of A can be either 260 Hz or 252 Hz
On filing frequency of A increases. Number of beats heard $=4$.
\therefore Frequency of A before filing must be 252 Hz and after filing 260 Hz . Answer: (1) 252 Hz

${ }_{K} E_{A}$

20. Velocity of sound in air at NTP is
$350 \mathrm{~ms}^{-1}$. If the pressure is increased
four times and temperature is tripled,
the velocity of sound will be nearly
1) $1050 \mathrm{~ms}^{-1}$
2) $605 \mathrm{~ms}^{-1}$
3) $4200 \mathrm{~ms}^{-1}$
4) $525 \mathrm{~ms}^{-1}$

Solution:

$\mathbf{v} \propto \sqrt{T}$ and $\mathbf{v}^{\prime} \propto \sqrt{3 T}$

$$
\mathbf{v}^{\prime}=\sqrt{3} \mathbf{v}
$$

$=1.73 \times 350$
$\approx 605 \mathrm{~ms}^{-1}$
Answer: (2)
21. If 80 dB sound is ' x ' times more intense than 50 dB sound, then $x=$

1) 3
2) 30
3) 300
4) 1000

Solution:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=\log _{10}\left(\frac{\mathrm{I}}{\mathrm{I}_{0}}\right) \Rightarrow \frac{\mathrm{I}}{\mathrm{I}_{0}}=10^{\mathrm{I}_{\mathrm{L}}}, \mathrm{I}_{\mathrm{L}} \text { in bel } \\
& \Rightarrow \mathrm{I}=\mathrm{I}_{0} 10^{\mathrm{I}_{\mathrm{L}}} \\
& \therefore x=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}=10^{\mathrm{I}_{\mathrm{L} 2}-\mathrm{I}_{\mathrm{L} 1}} \\
& \quad=10^{8-5}=10^{3}=1000
\end{aligned}
$$

Answer: (3)

${ }_{K} \mathrm{E}_{\mathrm{A}}$

22. Waves produced in an organ pipe are
1) Longitudinal stationary polarized
2) Transverse stationary polarized
3) Longitudinal stationary unpolarised
4) Transverse stationary unpolarised.

${ }^{K} \mathrm{E}_{\mathrm{A}}$

23. When the length of a vibrating segment of a sonometer is increased by 2%, the percentage change in its frequency is
1) 2% decrease
2) 2% increase
3) 4% increase
4) 6% increase.

Solution:

$$
\begin{aligned}
f & =\frac{1}{2 L} \sqrt{\frac{T}{m}} \\
\Rightarrow f & \propto \frac{1}{L} \\
f^{\prime} & \propto \frac{1}{1.02 L} \quad \frac{1}{1.02} \approx 0.98 \\
& =0.98 f=98 \% f
\end{aligned}
$$

Percentage change is $\mathbf{2 \%}$ decrease.

${ }_{K} \mathbf{E}_{\mathbf{A}}$

24. The ratio of velocity of sound in

hydrogen $\left(\gamma=\frac{7}{5}\right)$ to that in helium $\left(\gamma=\frac{5}{3}\right)$ at the same temperature is

$$
\begin{array}{ll}
\text { 1) } \sqrt{\frac{5}{21}} & \text { 2) } \sqrt{\frac{5}{42}} \\
\text { 3) } \frac{\sqrt{42}}{5} & \text { 4) } \frac{\sqrt{21}}{5}
\end{array}
$$

Solution:

$$
\begin{aligned}
\mathrm{v} & =\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}} \\
\frac{\mathrm{H}}{\mathrm{e}} & =\sqrt{\frac{\gamma_{\mathrm{H}}}{\gamma_{\mathrm{He}}} \frac{\mathrm{M}_{\mathrm{He}}}{\mathrm{M}_{\mathrm{H}}}} \\
& =\sqrt{\left(\frac{7 / 5}{5 / 3}\right) \frac{4}{2}}=\frac{\sqrt{42}}{5}
\end{aligned}
$$

Answer: (3)

${ }_{K} E_{A}$

25. A particle on the crest of a wave at any instant will come to mean position after a time $\begin{array}{ll}\text { 1) } \mathrm{T} / 4 \mathrm{~s} & \text { 2) } \mathrm{T} / 2 \mathrm{~s}\end{array}$ 3) T s
4) 2 T s

${ }_{\mathbf{K}} \mathbf{E}_{\mathbf{A}}$

Answer:

Answer: 1) T/4 s

${ }_{K} E_{A}$

26. A person standing between two cliffs produces a sound. Two echoes are heard after $2 s$ and $3 s$ respectively.

If the velocity of sound is $350 \mathrm{~m} / \mathrm{s}$, then the separation between the cliffs is

$$
\begin{array}{ll}
\text { 1) } 1750 \mathrm{~m} & \text { 2) } 175 \mathrm{~m} \\
\text { 3) } 875 \mathrm{~m} & \text { 4) } 3500 \mathrm{~m}
\end{array}
$$

Solution:

Distance travelled by the sound when it reflects from the first cliff is $2 \mathrm{~s}_{1}=\mathrm{v} \mathrm{t}_{1}$

Distance travelled by the sound when it reflects from the second cliff is $2 \mathrm{~s}_{2}=\mathrm{vt}_{2}$

Distance between the cliffs

$$
\begin{aligned}
& =s_{1}+s_{2}=1 / 2\left(v t_{1}+v t_{2}\right) \\
& =1 / 2(350)(2+3)=175 \times 5=875 \mathrm{~m} .
\end{aligned}
$$

Answer: 3)

${ }_{K} \mathbf{E}_{\mathbf{A}}$

27. The disk of siren has \mathbf{n} holes and frequency of its rotation is 300 rpm .

It produces a note of wavelength
2.4 m , when the velocity of sound in air is $360 \mathrm{~ms}^{-1}$. The value of \boldsymbol{n} is

$$
\begin{array}{llll}
\text { 1) } 5 & \text { 2) } 24 & \text { 3) } 30 & \text { 4) } 36
\end{array}
$$

Solution:

Frequency of rotation $f=300 \mathrm{rpm}$

$$
=\frac{300}{60}=5 \mathrm{~Hz}
$$

Frequency of sound produced

$$
\begin{aligned}
& f^{\prime}=n f=5 n \\
\Rightarrow & \frac{v}{\lambda}=\frac{360}{2.4}=5 n \\
\Rightarrow & n=\frac{150}{5}=30
\end{aligned}
$$

$\mathbf{K E}_{\mathbf{A}}$

$\mathbf{K E}_{\mathbf{A}}$

$\mathbf{K E}_{\mathbf{A}}$

