$K_{\mathbf{A}}$

HEAT

AND
THERMODYNAMICS

SYNOPSIS

GAS LAWS:

Charle's law:

$$
\begin{aligned}
& \mathrm{V} \alpha \mathrm{~T} \text { at constant pressure } \\
& \mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}
\end{aligned}
$$

Boyle's Law:

$$
\begin{aligned}
& \text { V } \alpha 1 / p \text { at constant temperature } \\
& V_{1} P_{1}=V_{2} P_{2}
\end{aligned}
$$

Gay Lussac's law:

$$
\begin{aligned}
& P \propto T \text { at constant volume } \\
& P_{1} / T_{1}=P_{2} / T_{2}
\end{aligned}
$$

Volume coefficient of a gas :

$\alpha=\mathrm{V}-\mathrm{V}_{0} / \mathrm{V}_{0} \mathrm{t}$ the ratio between rate of change in volume of a gas to volume at $0^{\circ} \mathrm{C}$

Pressure coefficient of a gas :

$\beta=P-P_{0} / P_{0} t$ The ratio between rate of change in pressure of a gas to pressure at $0^{\circ} \mathrm{C}$

Perfect gas equation: $\quad \mathrm{PV}=\mathrm{nRT}$ where n is the

 number of moles and R is universal gas constantConversion formula for one scale of temperature to another.

$$
\mathrm{C}-0 / 100=\mathrm{F}-32 / 180=\mathrm{K}-273 / 100
$$

Isothermal change: The process in which the temperature of the system is remains constant $\mathrm{du}=0$ increase in the internal energy is zero
Adiabatic change: The process in which neither heat is added to or removed from the system $\mathrm{dQ}=0$ under adiabatic change PV ${ }^{\mathrm{v}}=$ constant where $\mathrm{v}=\mathrm{Cp} / \mathrm{Cv}$ and $\mathrm{TV}^{\mathrm{v}-1}=$ constant

Isochoric change: The process in which the volume of a gas is remains constant.
$d w=0$ work done on the or by the gas is zero
Isobaric change: The process in which the pressure of the gas is remains constant
Here

$$
d Q=d u+d w
$$

Sign conventions :

Heat supplied to the system dQ=+ve Heat removed from the system dQ=-ve Work done by the system dW =+ve Work done on the system dW =-ve

Van der Waal's equation: for real gas
$\left(P+a / V^{2}\right)(V-b)=R T$ where a and b are constants
Specific heat capacity of substance:
If $d Q$ is the heat supplied to or removed from the system to increase its temperature or decrease by $d \theta$ then $d Q=\mathbf{m c}(\mathbf{d} \theta)$ where m is the mass of a substance and c is the specific heat of a substance

For molar specific heats of gases we can write $\mathbf{C = 1 / n}(d Q / d \theta)$ where n is the number of moles
And $\mathbf{n = m} / \mathbf{M}$ where M is the molecular mass and m is the mass of a gas
therefore $\quad C=M / m(d Q / d \theta) \mathrm{J} / \mathrm{mole}-\mathrm{K}$
Mayer's equation: $C_{P}-C_{V}=R$ where R is the universal gas constant its value equals to $8.31 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
The ratio of specific heat capacities in terms of degrees of freedom.
$\mathbf{V}=\mathbf{1 + 2} / \mathrm{n}$ where n is the number of degrees of freedom $n=3$ for mono atomic gas $n=5$ for diatomic and $\mathrm{n}=6$ for tri and polyatomic molecules

Law of equipartition of energy:

Energy associated with for n degrees of freedom per molecule is given by $\mathbf{n} / \mathbf{2 k T}$ where k is the Boltzmann's constant and T is the temperature For one mole of a gas, Energy = n/2 kT N = n/2 RT where $\mathbf{R}=\mathbf{k N}$ Here N is the Avagadro's number Principle of calorimetry:
Heat lost by the hot body =sum of heat gained by cold bodies

Thermal conductivity:

At steady state, the rate of heat transfers from one face of the slab to another face is given by
$\mathbf{d Q} / \mathbf{d t}=\mathbf{H}=K A \quad \mathbf{d T} / L$ where A is the area $L L$ is the length of the slab and K is the thermal conductivity $d Q / d t=K A d T / L$ implies $d Q / d t=d T /(L / K A)$
$=d T / R$ where $(R=L / K A)$ called thermal
resistance
Newton's law of cooling: If the body temperature is decreases from θ_{1} to θ_{2} and surrounding temperature is θ_{0} then according to Newton's law of cooling

$$
\theta_{1}-\theta_{2} / t=K\left\{\left(\theta_{1}+\theta_{2} / 2\right)-\theta_{0}\right\}
$$

Kirchhoff's Law: for given temperature and for given wavelength for any surface the ratio between emissive power to absorptive power is always constant and is equal to emissive power of perfectly black body
$e_{\lambda} / a_{\lambda}=E_{\lambda}$ emissive power of perfectly black body
Wien's displacement law: $\lambda_{\text {max }} \mathrm{T}=$ constant where $\lambda_{\text {max }}$ is the wavelength at maximum intensity and T is the temperature

I law of thermodynamics

$$
d Q=d U+d W
$$

Equivalent molar mass :when n_{1} moles of a gas with molar mass M_{1} are mixed with n_{2} moles of a gas with molar mass M_{2}, then equivalent molar mass of a mixture is
$M_{\text {mix }}=n_{1} M_{1}+n_{2} M_{2} / n_{1}+n_{2}$
$\left(C_{V}\right) \operatorname{mix}=n_{1}\left(C_{V 1}\right)+n_{2}\left(C_{V 2}\right) / n_{1}+n_{2}$
$\left(C_{p}\right)$ mix $=n_{1}\left(C_{p 1}\right)+n_{2}\left(C_{p 2}\right) / n_{1}+n_{2}$
$(v)_{\text {mix }}=n_{1}+n_{2} / v-1=n_{1} / v_{1}-1+n_{2} / v_{2}-1$
Where v is the specific heat capacity of mixture Efficiency of Carnot's heat engine :
$\eta=1-T_{2} / T_{1}$ where T_{2} is the sink temperature and T_{1} is source temperature

As $Q_{2} / Q_{1}=T_{2} / T_{1}$

$$
\eta=1-Q_{2} / Q_{1}
$$

Performance of refrigerator $\beta=Q_{2} /$ work

$$
=Q_{2} / Q_{1}-Q_{2}
$$

MCQ

1) S.I Unit of Thermal conductivity is
2) $\mathrm{J} / \mathrm{m}-\mathrm{K}$
3) $\mathrm{J} / \mathrm{s}-\mathrm{m}^{2} \mathrm{~K}$
4) J / mK
5) $\mathrm{J} / \mathrm{s}-\mathrm{mK}$

PHYSICS

Ans :-4

$$
\begin{aligned}
& \text { WKT } \mathrm{Q}=\frac{K A\left(Q_{1}-Q_{2}\right) t}{l} \\
& \mathrm{~K}=\frac{Q l}{A\left(Q_{1}-Q_{2}\right) t} \quad \frac{J m^{1}}{m^{2} K s}=\frac{J}{m s K} \\
& =\frac{J}{s-m K}
\end{aligned}
$$

2. On heating one end of the rod, the temperature of whole rod will be uniform, when
1) $K=1$
2) $K=0$
3) $K=100$
4) $K=\infty$
$K_{\mathbf{A}}$
Ans :-4

$$
\begin{aligned}
& \mathrm{wkt} \frac{d Q}{d t}=\mathrm{KA} \frac{d \theta}{d x} \\
& \qquad \frac{d \theta}{d x}=\text { temp.gradiant } \\
& \mathrm{K}=\frac{\frac{d Q}{d t}}{\frac{A d \theta}{d x}} / \text { here given } \frac{d \theta}{d x}=0 \\
& \text { hence } \mathrm{K}=\infty
\end{aligned}
$$

3) A cycle tyre bursts suddenly. This represents an
4) Isothermal process
5) Isobaric process
6) Isochoric process
7) Adiabatic process

Ans: 4

The process is very fast so that the gas fails to gain or lose heat, hence it is an adiabatic process
4) The number of molecules per unit volume of a gas is given by

1) P / KT
2) $K T / P$
3) $P / R T$
4) $R T / P$

Ans :-1

WKT PV = nRT V=1 unit $P=n R T$ but $R=k_{B} N_{A}$
$P=\left(K N_{A}\right) n T \quad n N_{A}=$ No of molecules per unit volume
therefore $\left(N_{A} n\right)=P / K T$
5) A perfect gas at $27^{\circ} \mathrm{C}$ is heated at constant pressure so as to double its volume, the increase in temp. of the gas will be

1) $600^{\circ} \mathrm{C}$
2) $327^{\circ} \mathrm{C}$
3) $54^{\circ} \mathrm{C}$
4) $300^{\circ} \mathrm{C}$

Ans :- 4
$\frac{V}{T}=$ cont. at constant pressure
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad V_{2}=2 \mathrm{~V}_{1}$,
$\frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}} \quad \frac{V_{1}}{2 V_{1}}=\frac{T_{1}}{T_{2}} \rightarrow \frac{T_{1}}{T_{2}}=\frac{1}{2} \rightarrow \mathrm{~T}_{2}=2 \mathrm{~T}_{1}$
where $T_{1}=27+273=300 \mathrm{~K}$
$\mathrm{T}_{2}=2 \times 300=600 \mathrm{~K}=327^{\circ} \mathrm{C}$
Increase in temperature $=327-27=300^{\circ} \mathrm{C}$
6) The mean kinetic energy of one mole of gas per degree of freedom is

1) $1 / 2 \mathrm{kT}$
2) $3 / 2 \mathrm{kT}$
3) $3 / 2 \mathrm{RT}$
4) $1 / 2 R T$
$K_{\mathbf{A}}$
Ans :- 4
WKT Energy / mole = $\mathrm{n} / \mathbf{2}$ (RT)
$\mathrm{n}=\mathrm{no}$ of degree of freedom
Here $\mathbf{n = 1}$ (per degree of freedom)

Therefore Energy / mole $=1 / 2$ RT
7) If the density of gas at NTP is $1.3 \mathrm{~kg} / \mathrm{m}^{3}$ \& velocity of sound in it $330 \mathrm{~m} / \mathrm{s}$. The number of degrees of freedom of gas molecule is

1) 2
2) 3
3) 6
4) 5

Ans :- 4

We know that

$$
\begin{aligned}
& V=\sqrt{\frac{v p}{\rho}} \\
& V=\frac{V^{2} \rho}{p}=\frac{1.3 X(330)^{2}}{1.01 X 10^{5}}=1.4 \\
& \& v=1+\frac{2}{n} \quad 1.4-1=2 / n \\
& \qquad \quad 0.4=2 / n \quad n=2 / 0.4=20 / 4=5
\end{aligned}
$$

$$
n=5
$$

8) A beaker is completely filled with water at $4^{\circ} \mathrm{C}$ It will Overflow if
9) Heated above $4^{\circ} \mathrm{C}$
10) Cooled below $4^{\circ} \mathrm{C}$
3)Both heated $\&$ cooled above and below $4^{\circ} \mathrm{C}$ resp.
11) None of above
$\mathrm{H}_{2} \mathrm{O}$ has maximum density at $4^{\circ} \mathrm{C}$ so if the
$\mathrm{H}_{2} \mathrm{O}$ is heated above $4^{\circ} \mathrm{C}$ or cooled below
$4^{\circ} \mathrm{C}$ density is decreases i.e volume increases.
In other words it expands, so it overflows in
both cases
12) Ideal gas \& real gas have major difference of
13) Phase transition
14) Temperature
15) Pressure
16) None of the above

Ans .
 3

10) 10 mole of an ideal monoatomic gas at $10^{\circ} \mathrm{C}$ is mixed with 20 moles of another monoatomic gas at $20^{\circ} \mathrm{C}$, then the temperature of the mixture is
11) $15.5^{\circ} \mathrm{C}$
12) $15^{\circ} \mathrm{C}$
13) $16^{\circ} \mathrm{C}$
14) $16.6^{\circ} \mathrm{C}$
K_{A}
Ans :- 4
Temp. of mixture is

$$
\begin{aligned}
& T=\frac{n_{1} t_{1}+n_{2} t 2}{n_{1}+n_{2}} \\
& T=\frac{10 \times 10+20 \times 20}{10+20}=16.6^{\circ} \mathrm{C}
\end{aligned}
$$

11) If at the same temperature and pressure the
densities of two diatomic gases are $d_{1} \& d_{2}$
respectively. the ratio of mean Kinetic energy per molecule of gases will be.
12) $1: 1$
13) $d_{1}: d_{2}$
14) $V d_{1}: V d_{2}$
15) $\mathrm{Vd}_{2}: \mathrm{Vd}_{1}$
K_{A}
ANS: 1

The kinetic energy per molecule per degree of
freedom is $1 / 2 k T$.If temperature is same then the energy is remains same

$K_{\mathbf{A}}$

12) The molar heat capacity in a process of a diatomic gas " if does work of $Q / 4$ when a heat Q is supplied to it is
13) $(2 / 5) R$
14) $(5 / 2) R$
15) $(10 / 3) R$
16) $(6 / 7) \mathrm{R}$

Ans. 3 WKT the molar heat capacity
$C=\frac{d Q}{Q T}$ here $n=1$ for one mole
because (dQ =C(dT)n)

But $d Q=d u+d w$.

$$
d u=d Q-d w=Q-\frac{Q}{4}=\frac{3 Q}{4}
$$

but $\quad d u=C_{v} d T \quad=(5 / 2) R d T$ for diatomic $n=5$

$$
\mathrm{dT}=\frac{d u}{\left(\frac{5}{2}\right) R} \text { AND }
$$

$C=\frac{d Q}{d T}=\frac{Q}{d u /\left(\frac{5}{2}\right) R}=\frac{Q}{\frac{\left(\frac{3 Q}{4}\right)}{\left(\frac{5}{2}\right)^{R}}}=\frac{\frac{5}{2} R Q}{\frac{3 Q}{4}}$
$=10 R / 3$
13) A certain amount of an ideal gas is taken from State A to state B one time by process I\& and another time by the process II if the amount of heat absorbed by the gas are $\mathrm{Q}_{1} \& \mathrm{Q}_{\mathbf{2}}$ respectively then,

1) $Q_{1}=Q_{2}$
2) $Q_{1}<Q_{2}$
3) $Q_{1}>Q_{2}$

4) Data insufficient

Work in one case is more that the second case because the area under the I curve is more than the second curve
but du is same in both the cases

$$
\begin{aligned}
d u= & d Q-d w \\
& Q_{1}-d w \quad \text { and } \\
d u= & Q_{2}-d w \quad / \quad Q_{1}>Q_{2}
\end{aligned}
$$

14) An ideal gas mixture is filled inside a balloon expands according to the relation $\mathrm{pv}^{2 / 3}=$ constant .The temperature inside the balloon is
15) Increasing
16) Decreases
17) Constant
18) Cannot be defined
$K_{\mathbf{A}}$
Ans :-1
$\mathrm{PV}^{2 / 3}=$ constant $(\mathrm{PV}=\mathrm{RT}, \mathrm{P}=\mathrm{RT} / \mathrm{V})$
(RT/ V) V ${ }^{2 / 3}=$ constant or
RTV $^{-1 / 3}=$ constant or
$T \propto V^{1 / 3}$
with increase in the volume the temperature is also increases
19) The temperature gradient in a rod of 0.5 m long is $80^{\circ} \mathrm{C} / \mathrm{m}$. If the temperature of hotter end of the rod is $30^{\circ} \mathrm{C}$. then the temperature of the cooler end is
20) $40^{\circ} \mathrm{C}$
21) $-10^{\circ} \mathrm{C}$
22) $10^{\circ} \mathrm{C}$
23) $0^{\circ} \mathrm{C}$

Ans :- 2

$$
\begin{aligned}
& \frac{d \theta}{d x}=80^{\circ} \mathrm{C} / \mathrm{m} \quad I=0.5 \mathrm{~m} \\
& \text { i.e } \frac{\theta 1-\theta 2}{l}=80 \rightarrow \frac{30-\theta_{2}}{0.5}=80 \\
& 30-\theta_{2}=0.5 \times 80 \\
& \quad=40 \\
& \theta_{2}=-10^{\circ} \mathrm{C}
\end{aligned}
$$

16) By keeping the door of an refrigerator open in a room, then the room is
17) Get heated
18) Get cooled
19) Unchanged
20) None of these

Ans :-1

we know that the working of the refrigerator is to extract heat from the chamber and transfer it to surrounding by doing work on it.

Therefore when door of refrigerator is kept open room is get warmed.
17) In thermodynamic process the presence of a fixed mass of gas is changed in such a manner that the gas release 20 J of heat and 8 J of work done on the gas. If the initial internal energy of the gas was 30 J . The final internal energy will be

1) 2 J
2) 42 J
3) 18 J
4) 58 J

Ans: 3
Energy gained = 8 J energy released $=20 \mathrm{~J}$

Net loss of energy = 20-8 =12 J
Therefore final internal energy $=30-12=18 \mathrm{~J}$
18) The one mole of a monatomic gas is mixed with one mole of diatomic ideal gas. The molar specific heat of the mixture at constant volume is

1) R
2) $2 R$
3) $4 R$
4) None of these
$K_{\mathbf{E}}^{\mathbf{A}}$
Ans:- 2
$(C v) m i x=\frac{n_{1}\left(C_{v_{1}}\right)+n_{2}\left(C_{v_{2}}\right)}{n_{1}+n_{2}}$
For monoatomic $\left(C_{V_{1}}\right)=\frac{3}{2} R . n_{1}=1$
For diatomic $\left(C_{V 2}\right)=\frac{5}{2} R . n_{2}=1$
$\left(\mathrm{C}_{\mathrm{v}}\right)_{\text {mix }}=\frac{1 \mathrm{X} \frac{3}{2} \mathrm{R}+1 \frac{5}{2} \mathrm{R}}{1+1}=2 R$
5) A body takes 4 min to cool from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ if the room temperature is $15^{\circ} \mathrm{C}$. The time taken to cool from $70^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ will be
6) 7 min
7) 6 min
8) 5 min
9) 2 min

Ans :-1

$$
\begin{aligned}
& \frac{100-70}{4}=K\left(\frac{100+70}{2}-15\right) \\
& \frac{30}{4}=K(85-15) \\
& \frac{15}{2}=K(70) \quad \text { and } \\
& \frac{70-40}{t}=K\left(\frac{70+40}{2}-15\right) \\
& \frac{30}{t}=\frac{15}{140}(55-15) \\
& \frac{30}{t}=\frac{15}{140}(40)=\frac{15 X 4}{14} \\
& t=\frac{14 X 30}{15 X 4}=\frac{28}{4} \min \\
& =7 \min
\end{aligned}
$$

20) A slab consists of two parallel layer of two different materials of same thickness having thermal conductivities K_{1} \& K_{2}. the equivalent conductivity of the combination is
21) $K_{1}+K_{2}$
22) $\frac{K_{1}+K_{2}}{2}$
23) $\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$
24) $\frac{K_{1}+K_{2}}{2 K_{1} K_{2}}$

ANS. 2 R = thermal resistance

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

$$
\frac{2 K A}{L}=\frac{K 1 A}{L}+\frac{K 2 A}{L} \quad \text { implies } K=K_{1}+K_{2} / 2
$$

$\left\{B U T \quad \frac{d Q}{d t}=K A \frac{d \theta}{L}\right.$ or $\frac{d Q}{d t}=\frac{d \theta}{L / K A}=\frac{d \theta}{R}$
where $\quad R=\frac{L}{K A}$ Thermal resistance \}

21) The layers of atmosphere are heated through

1) convection

2) conduction
3) Radiation
4) None of these

Ans. 1
 convection

$K_{\mathbf{A}}$
22) Mud houses are cooled in summer and warmer in winter because

1) Mud is superconductor of heat
2) Mud is good conductor of heat
3) mud is bad conductor of heat
4) None of the above

Mud is bad conductor of heat, So it prevents
the flow of heat between surrounding and inside.
23) Two spherical black bodies of radii r_{1} and r_{2} and with surface temperatures T_{1} and T_{2} resp. radiate the same power, then r_{1} / r_{2} must be equal to

1) $\left(\frac{T_{1}}{T_{2}}\right)^{2}$
2) $\left(\frac{T_{2}}{T_{1}}\right)^{2}$
3) $\left(\frac{T_{1}}{T_{2}}\right)^{4}$

4) $\left(\frac{T_{2}}{T_{1}}\right)^{4}$

Ans :- 2
WKT according to Stefan's law the rate of emission of radiation by perfectly black body per unit area is directly proportional to fourth power of its absolute temperature .

Power radiated $\mathbf{P} \propto \mathrm{AT}^{4}$

$$
P \propto 4 \pi r^{2} T^{4}
$$

given power emitted is same $P_{1}=P_{2}$

$$
4 \pi r_{1}^{2} T_{2}^{4}=4 \pi r_{2}^{2} T_{2}^{4} \rightarrow \frac{r_{1}}{r_{2}}=\frac{T_{2}^{2}}{T_{1}^{2}}
$$

24) "Good Emitter are good absorber" is a statement concluded from
25) Newton's law of cooling
26) Stefan's law of radiation
27) Prevost's theory
28) Kirchhoff's law

29) The temperature of a radiating body is increases by 30%,then the increase in the amount of radiation emitted will be approximately
30) $\mathbf{1 8 5 \%}$
31) 285%
32) 325%
33) 245%

Ans:-1 WKT E α T $^{4} \quad$-1)

$$
\left.E_{1} \alpha(1.3 T)^{4}--2\right)
$$

(30\%.increase)

$$
\mathrm{E}_{1}-\mathrm{E}=(1.3)^{4} \mathrm{~T}^{4}-\mathrm{T}^{4}=(2.85-1) \mathrm{T}^{4}=1.85 \mathrm{~T}^{4}
$$

ie increase in radiation is 185 \%
26) If a body cools down from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 10 min when the temperature of surrounding is $30^{\circ} \mathrm{C}$ then the temperature of the body after next 10 min will be

1) $50^{\circ} \mathrm{C}$
2) $48^{\circ} \mathrm{C}$
3) $30^{\circ} \mathrm{C}$
4) none of these

Ans :-2 WKT $\frac{\theta 1-\theta_{2}}{t}=K\left(\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right)$

$$
\begin{aligned}
& \quad \text { implies } \quad \frac{80-60}{10}=K(70-30) \\
& 2=K 40 \\
& 1=K(20) \\
& \frac{60-\theta}{10}=K\left(\frac{60+\theta}{2}-30\right)-(1) \\
& \frac{60-\theta}{10}=\frac{1}{20}\left(\frac{60+\theta}{2}-30\right) \text { from }(1) \\
& 120-2 \theta=\frac{60+\theta-60}{2} \\
& 240-4 \theta=\theta \\
& 240=5 \theta \quad / \theta=\frac{240}{5}=48 \text { degree }
\end{aligned}
$$

27) If v is the ratio of specific heats and R is the universal gas constant then the molar specific heats at constant volume C_{v} is given by

$$
\begin{aligned}
& \text { 1) }\left(\frac{v-1}{v}\right) R \\
& \text { 2) } v R \\
& \text { 3) } \frac{\sqrt{R}}{v-1} \\
& \text { 4) } \frac{R}{v-1}
\end{aligned}
$$

Ans :- 4

WKT $\quad C_{P}-C_{V}=R$
divide by C_{v} we get

$$
\begin{array}{ll}
C_{p}-1=\frac{R}{c v} & \text { but } \frac{c p}{c v}=v \\
\vee-1=\frac{R}{c_{v}}, & C_{v}=\frac{R}{v-1}
\end{array}
$$

28) A gas mixture consists of 2 moles of O_{2} and 4 moles of Ar. At temperature T . Neglecting all vibrational modes, the total internal energy of the system is
29) 4 RT
30) $15 R T$
31) $9 R T$
32) $11 R T$

Ans :- 4
per mole energy associated is $\frac{n}{2} R T$

where

$n=5$ no. of degrees of freedom for diatomic
$n=3$ for mono atomic
therefore

$$
U=2(5 / 2 R T)+4(3 / 2 R T)=11 R T
$$

29) On which of the following scales of temperature . The temperature is never negative
30) Celsius
31) Fahrenheit
32) Reaumur
33) Kelvin

34) Two mono atomic gases at absolute temperatures $300 \mathrm{~K} \& 350 \mathrm{~K}$ respectively, the ratio of average KE of their molecules is
35) $7: 6$
36) $6: 7$
37) $36: 49$
38) $49: 36$

Ans :- 2
wkt $\left\{1 / 2 \mathrm{mv}^{2}=\frac{3}{2} \mathrm{KT}\right\}$ For mono atomic LeK.E $\propto T$
$\frac{K E_{1}}{K E_{2}}=\frac{T_{1}}{T_{2}}=\frac{300}{350}=\frac{6}{7}$
31) A thermodynamic system is changed from state $\left(P_{1}, V_{1}\right)$ to $\left(P_{2} V_{2}\right)$ by two different process. The quantity which will remain same will be

1) ΔQ
2) ΔW
3) $\Delta Q+\Delta W$
4) $\Delta Q-\Delta W$
K_{A}
ANS. 4
we know that $\Delta Q=\Delta U+\Delta W$ $\Delta U=\Delta Q-\Delta W$ which is constant

Because T is constant
32) An Ideal gas is taken around $A B C D$ as shown in the fig. P-V diagram, the work done during the cycle is
1)2pv

2) Pv
3)pv/2
4)zero

Ans. 1
we know that , the work done during the any thermodynamic process can be calculated by the area under the $p-v$ diagram

Therefore work done = Area of the triangle $A B C$

$$
\begin{aligned}
& =1 / 2(A C)(B C) \\
& =1 / 2(3 V-V)(3 p-p) \\
& =1 / 2(2 v)(2 p) \\
& =2 p v
\end{aligned}
$$

33) The work done in which of the following process is zero?
34) Isothermal process
35) Adiabatic process
36) Isobaric process
37) Isochoric process

Volume is constant in case of isochoric process

Hence piston in the cylinder is not moving,
therefore work done is equal to zero
34) A Carnot's engine is made to work between $200^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ first and then between 0° and $-200^{\circ} \mathrm{C}$. The ratio of efficiencies η_{2} / η_{1} of the engine in the two cases is
1)1:1.5
2)1:1
3)1:2
4) $1.73: 1$

ANS: 4
In first case $T_{2}=0+273=273, T_{1}=200+273$
In the second case $T_{2}=-200+273=73, T_{1}=0+273=273$
WKT efficiency of the engine $\eta_{1}=1-T_{2} / T_{1}$

$$
\begin{aligned}
& =1-273 / 473 \\
& =200 / 473
\end{aligned}
$$

efficiency of the engine

$$
\begin{aligned}
\eta_{2} & =1-T_{2} / T_{1} \\
& =1-73 / 273 \\
& =200 / 273
\end{aligned}
$$

therefore we get $\eta_{2} / \eta_{1}=1.73: 1$
35) In an Isochoric process If $t_{1}=27^{\circ} \mathrm{C}$ and $t_{2}=127^{\circ} \mathrm{C}$ then $\mathrm{p}_{1} / \mathrm{p}_{2}$ will be equal to

1) $9 / 59$
2) $2 / 3$
3) $3 / 4$
4) None of these

ANS. 3

In Isochoric process volume is constant i.e p α T means $p_{1} / p_{2}=T_{1} / T_{2}=300 / 400$

$$
=3 / 4
$$

$$
\left(T_{1}=27+273=300 K \quad T_{2}=127+273=400\right)
$$

36) When an ideal gas is compressed isothermally then its pressure increases because
1)Its potential energy increases
2)Its K.E increases and molecules move apart
3)Its number of collisions per unit area with walls of containers increases
37) Molecules energy increases
we know that, in the container the pressure of the gas is due to collisions of molecules with walls of the container.

37) The coefficient of thermal conductivity of

 copper is 9 times that of steel in the composite cylindrical bar shown in the fig. What will be the temperature at the junction of copper and steel?1) $67^{\circ} \mathrm{C}$
2) $75^{\circ} \mathrm{C}$
3) $33^{\circ} \mathrm{C}$
4) $25^{\circ} \mathrm{C}$

Ans. 2

We know that at steady state the rate of flow of heat in both the cases is same

Therefore $Q_{1}=Q_{2}$ If θ is the temperature of the interface(between copper and steel)
then $K_{c}\left(\theta_{1}-\theta\right) A / d_{1}=K_{s}\left(\theta-\theta_{2}\right) A / d_{2} \quad$ given $K c=9 K s$ $9 \mathrm{Ks}(100-\theta) / 18=K_{s}(\theta-0) A / 6$ on simplification we get $\theta=75^{\circ} \mathrm{C}$
38) An ideal monoatomic gas is compressed (No heat being added or removed in the process) so that its volume is halved. The ratio of the new pressure to the original pressure is

1) $(2)^{3 / 5}$
2) $2^{4 / 3}$
3) $2^{3 / 4}$
4) $2^{5 / 3}$
K_{A}
Ans. 4
Under adiabatic change $\Delta Q=0$
And $\quad \mathrm{pv}^{\mathrm{v}}=\mathrm{constant}$

$$
p_{1} v_{1}^{v}=p_{2} v_{2}^{v} \text { for monoatomic gas } v=5 / 3
$$

$$
p_{2} / p_{1}=\left(v_{1} / v_{2}\right)^{v} \text { but } v_{2}=v_{1} / 2 \text { we get }
$$

$$
p_{2} / p_{1}=2^{5 / 3}
$$

39) For which combinations of temperatures the efficiency of Carnot's engine is highest?
40) $80 \mathrm{~K}, 60 \mathrm{~K}$
41) $100 \mathrm{~K}, 80 \mathrm{~K}$
42) $60 \mathrm{~K}, 40 \mathrm{~K}$
43) 40 K,20 K

Ans. 4

Efficiency of Carnot's engine is

$$
\eta=1-T_{2} / T_{1}
$$

The efficiency is more if the ratio T_{2} / T_{1} is less hence by inspection for the combination of temperatures 40 K and 20 K , the ratio T_{2} / T_{1} is less and efficiency is high.
40)The temperature of the sink of Carnot's engine is $27^{\circ} \mathrm{C}$ and its efficiency is 25%. The temperature of source is

1) $227^{\circ} \mathrm{C}$
2) $27^{\circ} \mathrm{C}$
3) $327^{\circ} \mathrm{C}$
4) $127^{\circ} \mathrm{C}$

Ans. 4

Efficiency of Carnot's engine is $\eta=1-T_{2} / T_{1}$

$$
\begin{aligned}
& T_{2} / T_{1}=1-\eta=1-0.25=0.75 \\
& T_{1}=T_{2} / 0.75=300 / 0.75=400 \mathrm{~K}=127^{\circ} \mathrm{C}
\end{aligned}
$$

Thank you All the Best.....

