MECHANICS

Chapter 01: Motion in one-dimension:-
-Basic definitions.
Equations of motion(Both horizontal \& vertical motions).
Graphical representation($x-t, v-t$ and $a-t)$ \& Significance of different graphs.
Concept of relative velocity.

Chapter 02: Newton's laws of motion:-

Basic definitions: inertia,momentum,force, impulse, etc.,

- Statements of the three laws.

Equations $F=m a, F=k x, p=m v$,etc.,
Conservation of linear momentum.
Inertial \& Non-inertial frames of reference.
Apparent weight.

Chapter 03 : Friction:-

Concepts of Static ,Kinetic and rolling friction. Basic relations involving frictional forces. Advantages and drawbacks of friction.

1. A car goes from A to B with a speed of $40 \mathrm{~km} / \mathrm{hr}$ and returns from B to A with a speed of $60 \mathrm{~km} / \mathrm{hr}$. Its average velocity and average speed, during the whole journey is
1) $50 \& 50 \mathrm{kmph}$
2) $48 \& 0 \mathrm{kmph}$
3) $0 \& 48 \mathrm{kmph}$
4) $40 \& 60 \mathrm{kmph}$

Solution: 1.Averagevelocity=Displacement/time=0

2. Let t_{1} and t_{2} be the time taken to travel from A to B and B to A.
$t_{1}=A B / 40$ and $t_{2}=B A / 60$. So Total time $=t_{1}+t_{2}$
$=A B / 40+A B / 60=100 A B / 2400=A B / 24$.
Total distance $=2 \mathrm{AB}$.
Average speed $=2 A B / A B / 24=48 \mathrm{~km} / \mathrm{hr}$.

Hence the correct answer is (2).
02. A train of length 150 m is going north at a speed of $10 \mathrm{~ms}^{-1}$. A parrot flies at a speed of $5 \mathrm{~ms}^{-1}$ towards south parallel to the railway track. The time taken by the parrot to cross the train is

1) 12 s
2) 8 s
3) 15 s

Solution: As the train and the parrot are moving in opposite directions, the relative velocity of the parrot w.r.t. the train

$$
=[10-(-5)]=15 \mathrm{~ms}^{-1}
$$

Time taken by the parrot to cross the train $=150 / 15=10 \mathrm{~s}$

Hence the answer is (4)
03. Which of the following observers is inertial?

1) A child revolving in a merry-go-round
2) A driver in a car moving with a uniform velocity
3) A pilot in an aircraft which is taking off
4) A passenger in a train which is slowing down to
stop

Solution: If you observe the situations carefully, it is obvious that ' a driver in a car moving with uniform velocity' is the only case of inertial frame (it obeys the law of inertia).

Hence the correct answer is (2)
04. A car moving with a speed of 40 kmph can be stopped by applying brakes after at least 2 m . If the same car is moving with a speed of 80 kmph , what is the minimum stopping distance?

1) 2 m
2) $4 m$
3) 6 m
4) 8 m

Solution: Using the equation of motion, $v^{2}=u^{2}+2 a s$ and taking $u=0$, we can observe that

$$
v^{2} \alpha 2 a s
$$

But ' a ' is constant. So $v^{2} \alpha$ s
$S_{2} / S_{1}=v_{2}{ }^{2} / v_{1}{ }^{2}$ which gives
$S_{2}=S_{1} v_{2}{ }^{2} / v_{1}{ }^{2}=2 m x(80)^{2} /(40)^{2}=8 m$.

Therefore right option is (4)
05. The acceleration ' a ' (in ms^{-2}) of a body, starting from rest varies with time ' t ' (in s) according to the relation $\mathrm{a}=3 \mathrm{t}+4$, the velocity (in ms^{-1}) of the body at time $t=2 s$, will be

1) 10
2) 12
3) 14
4) 16

Given that $\mathbf{a}=3 \mathrm{t}+4$

$$
\text { i.e., } d v / d t=3 t+4
$$

So $d v=3 t+4 d t$.
Integrating on both sides we get,

$$
\begin{array}{rl}
v=3 t^{2}+4 t . ~ N o w ~ a t ~ & t=4 s, \\
v=3 \times 2^{2} / 2+4 \times 2=14 \mathrm{~ms}^{-1} .
\end{array}
$$

The correct option is (3)
06. A force vector $\mathrm{F}=6 \mathrm{i}-8 \mathrm{j}+10 \mathrm{k}(\mathrm{N})$ applied to a body accelerates it by $\mathbf{V} 2 \mathrm{~ms}^{-2}$. The mass of the body (in kg) is

1) 10 V 2
2) 10
3) $2 \sqrt{ } 10$
4) 20

Solution: The magnitude of the force

$$
\begin{aligned}
F & =\left\{(6)^{2}+(-8)^{2}+(10)^{2}\right\}^{1 / 2} \\
& =\{36+64+100\}^{1 / 2} \\
& =\{200\}^{1 / 2}=10 \mathrm{~V} 2 \mathrm{~N}
\end{aligned}
$$

Using $F=m a, m=F / a=10 \mathrm{~V} 2 / \sqrt{ } 2=10 \mathrm{~kg}$.

Hence correct choice is (3)
07. A body A is at rest and a body B is moving with a uniform velocity of $40 \mathrm{~ms}^{-1}$. Force F_{1} acts on A and F_{2} acts on B for 10 s . The velocity of A and B now is $40 \mathrm{~ms}^{-1}$ and $100 \mathrm{~ms}^{-1}$ respectively. If A and B are of masses in the ratio1:2, then

1) $F_{1}=F_{2}$
2) $F_{1}=F_{2} / 2$

$$
\begin{aligned}
& \text { 2) } F_{1}=2 F_{2} \\
& \text { 4) } F_{1}=F_{2} / 3
\end{aligned}
$$

Solution: From Newton's second law,

$$
\mathrm{F}=\mathrm{m}(\mathrm{v}-\mathrm{u}) / \mathrm{t} .
$$

The force on $A, F_{1}=m_{1}(40-0) / 10--$ (i)
The force on $B, F_{2}=m_{2}(100-40) / 10--$ (ii)
Hence $F_{1} / F_{2}=4 m_{1} / 6 m_{2}$

$$
=4 / 6 \times 1 / 2
$$

$$
=1 / 3 \quad\left\{m_{1} / m_{2}=1 / 2\right\}
$$

$$
\text { So } \quad F_{1}=F_{2} / 3
$$

Correct answer is (4)

8. A rope which can withstand a maximum tension of 400 N is hanging from a tree. If a monkey of mass 30 kg climbs on the rope, in which of the following cases will the rope break? $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$. Neglect the mass of the rope.
1) The monkey climbs up with a uniform speed of $5 \mathrm{~ms}^{-1}$
2) The monkey climbs up with a uniform acceleration of $2 \mathrm{~ms}^{-2}$
3) The monkey climbs up with a uniform acceleration of $5 \mathrm{~ms}^{-2}$
4) The monkey climbs down with a uniform acceleration of $5 \mathrm{~ms}^{-2}$

Solution: Given that the maximum tension the rope

 can withstand is 400 N .In case 1) the tension developed in the rope $=m g=30 \times 10=300 \mathrm{~N}$.

In case 2$)$ the tension developed in the rope $=m(g+a)$ $=30(10+2)=360 \mathrm{~N}$.

In case 3$)$ the tension developed in the rope $=m(g+a)$
$=30(10+5)=450 \mathrm{~N}$
\&
In case 4) the tension developed in the rope $=m(g-a)$ $=30(10-5)=150 \mathrm{~N}$.
Obviously, in case 3 the rope breaks.

So correct option is (3)

9. A rope of length 10 m and linear density $0.5 \mathrm{kgm}^{-1}$ is lying lengthwise on a horizontal smooth floor. It is pulled by a force of 25 N . The tension in the rope at a point 8 m away from the point of application, is
1) 20 N
2) 15 N
3) 10 N
4) 5 N

PHYSICS

Solution: Total mass of the rope $=10 \times 0.5=5 \mathrm{~kg}$.
Acceleration $=F / m=25 / 5=5 \mathrm{~ms}^{-2}$
Mass upto $8 \mathrm{~m}=8 x 0.5=4 \mathrm{~kg}$. Force acting on it=4x5=20N. So the remaining tension is $25 N-20 N=5 N$.

Hence the right choice is (4)
10. A shell explodes into 3 fragments of equal masses. Two fragments fly off at right angles to each other with speeds of $9 \mathrm{~ms}^{-1}$ and $12 \mathrm{~ms}^{-1}$. What is the speed of the third fragment (in ms^{-1})?

Solution: The total momentum of the shell before it explodes=0
Let ' m ' be the mass of each fragment. The momentum of the first two fragments are $p_{1}=9 \mathrm{~m}$ and $_{2}=12 \mathrm{~m}$ respectively, and as they are flying at right angles to each other, the resultant momentum of these two fragments $=p=\left\{(9 \mathrm{~m})^{2}+(12 \mathrm{~m})^{2}\right\}^{1 / 2}=15 \mathrm{~m}$.

Now, to conserve momentum, the third fragment must have a momentum p_{3} of magnitude equal to that of resultant. Hence, $p_{3}=15 \mathrm{~m}$ i.e., $\mathrm{mv}_{3}=15 \mathrm{~m}$. This shows that

$$
v_{3}=15 \mathrm{~ms}^{-1}
$$

So the correct option is (3)
11. A car is moving along a straight road with a speed of $20 \mathrm{~ms}^{-1}$. If the coefficient of static friction between the tyre and the road is 0.5 , the shortest distance in which the car can be stopped is ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)

1) 30 m
2) 40 m
3) 20 m
4) 50 m

Solution: Frictional force $\mathrm{F}=\mu \mathrm{mg}$.

 So the retardation needed is $F / m=\mu g$ Let ' x ' be the minimum distance, then using $v^{2}-u^{2}=2 a x$, we get $(0)^{2}-(20)^{2}=2(-\mu \mathrm{g}) x$$$
400=2(0.5 \times 10) x
$$

Which gives ' x ' $=40 \mathrm{~m}$

Correct option is (2)

12. The fast moving vehicles are given special shapes(streamlined) to reduce
1)limiting friction
3)dry friction
2)static friction
4) wet friction

Solution: It is knowledge based. The frictional force between Solid and a Fluid (Air) is called Wet friction.

Correct option is (4)
13. A body of mass 6 kg rests in limiting equilibrium on an inclined plane whose slope is 30°. If the plane is raised to a slope of 60°, then the force in 'kgwt' along the plane required to support it is $\left(g=10 \mathrm{~ms}^{-2}\right)$

1) 3
2) $2 \sqrt{ } 3$
3) $\sqrt{3}$
4) 2

Solution: When the slope is 30°, we have $\mu=\tan \theta$

$$
=\tan 30^{\circ}=1 / \sqrt{ } 3
$$

When the slope is raised, force required to support the body is $=m g \sin \theta-\mu m g \cos \theta$

$$
\begin{aligned}
& \text { So } F=6 \times 10 \times \sin 60^{\circ}-(1 / \sqrt{ } 3) 6 \times 10 \times \cos 60^{\circ} \\
&=60 \times(\sqrt{ } 3 / 2)-60 \times(1 / \sqrt{ } 3) \times 1 / 2 \\
&=30 \sqrt{ } 3-30 / \sqrt{ } 3=20 \sqrt{ } 3 \mathrm{~N}=2 \sqrt{ } 3 \mathrm{kgwt}
\end{aligned}
$$

Correct option is (2)
14. Two balls are dropped from the same point after an interval of 1 second, what will be their separation 3 seconds after the release of the second ball? ($g=10$ $\left.\mathrm{ms}^{-2}\right)$

1) 25 m
2) 30 m
3) 35 m
4) 40 m

Solution:

For the first ball, $\mathrm{t}=4 \mathrm{~s}$ and hence $h_{1}=1 / 2 \mathrm{gt}^{2}=1 / 2 \times 10 \times 4^{2}=80 \mathrm{~m}$.
For the second ball, $t=3 \mathrm{~s}$ and $h_{2}=1 / 2 \mathrm{gt}^{2}=1 / 2 \times 10 \times 3^{2}=45 \mathrm{~m}$.
Hence the separation between the two balls

$$
=h_{1}-h_{2}=80 \mathrm{~m}-45 \mathrm{~m}=35 \mathrm{~m} .
$$

So the correct option is (3)

PHYSICS
15. A stone falls freely from rest and the total distance covered by it in the last second of its motion equals the distance covered by it in the first 3 seconds of its motion. The stone remains in the air for

1) 6 s
2) 5 s
3) 7 s
4) 4 s

Solution: Given $u=0$ and $S_{n}=S_{3}$

Therefore $u+a / 2(2 n-1)=u t+1 / 2 a t^{2}$

$$
\begin{gathered}
\text { i.e., } 0+a / 2(2 n-1)=0+1 / 2 a(3)^{2}, \text { which } \\
\text { gives } n=5 .
\end{gathered}
$$

Hence the correct choice is (2)
16. A body, starting from rest, moves in a straight line with a constant acceleration ' a ' for a time interval ' t ' during which it travels a distance S_{1}. It continues to move with the same acceleration for the next interval ' t ' during which it travels a distance S_{2}. The relation between S_{1} and is S_{2}

1) $S_{2}=S_{1}$
2) $S_{2}=2 S_{1}$
3) $\mathrm{S}_{2}=3 \mathrm{~S}_{1}$
4) $S_{2}=4 S_{1}$

Solution: During the first time interval' $\mathrm{t}^{\prime}, \mathrm{u}=0$ and $\mathrm{S}=\mathrm{S}_{1}$. Then

$$
S_{1}=1 / 2 a t^{2}--\cdots-\cdots------(i)
$$

The velocity gained by the body at the end of this interval of time, $\quad v=a t-------------(i i) ;$
And this will be the initial velocity for the next interval of time't'.
Hence $S_{2}=a t(t)+1 / 2 a t^{2}=a t^{2}+1 / 2 a t^{2}=3 / 2 a t^{2}--($ iii $)$
From (ii) and (iii) we get $\mathrm{S}_{2}=3 \mathrm{~S}_{1}$ So the correct choice is (3)

PHYSICS

17. Displacement (x) of a particle is related to time (t) as $x=a t+b t^{2}-c t^{3}$, where a, b and c are constants of motion. The velocity of the particle when its acceleration is zero is given by
1) $a+b / c^{2}$
2) $a+b^{2} / 3 c$
3) $a+b^{2} / 2 c$
4) $a+b^{2} / 4 c$

PHYSICS

Solution: Given, $x=a t+b t^{2}-c^{3}$
Differentiating w.r.t 't' we get $d x / d t=v=a+2 b t-3 c t^{2}$

$$
\text { Again } d^{2} x / d t^{2}=a^{\prime}=2 b-6 c t
$$

As per the problem, $a^{\prime}=0$
i.e., $\mathbf{2 b}-6 \mathrm{ct}=0$ which gives $\mathrm{t}=\mathrm{b} / 3 \mathrm{c}$

Substituting in (i) and simplifying we get

$$
v=a+b^{2} / 3 c
$$

Correct answer is (3)

18. A doll is dropped from the $25^{\text {th }}$ storey of a hotel building and it reaches the ground in 5 sec . In the first second, it passes through how many storeys of the building? $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
1) 1
2) 3
3) 2
4) 4

Solution: Let ' h ' be the height of each storey. Then the total height of the $\mathbf{2 5}$ storeys is $\mathbf{2 5 h}$.
Taking $u=0, g=10 \mathrm{~ms}^{-2}$ and $\mathrm{t}=5 \mathrm{~s}$, and using the equation of motion $S=u t+1 / 2 \mathrm{at}^{2}$,
$25 h=0 \times 5+1 / 2 \times 10 \times(5)^{2}=125$. This gives $h=5 \mathrm{~m}$.
Let ' n ' be the total number of storeys through which the doll passes in 1 s , then, $\mathrm{n} \times 5=0+1 / 2 \times 10 \times(1)^{2}$

$$
\mathrm{n}=1
$$

Hence the correct answer is (1)
19. A motor boat covers the given distance in 4 hrs moving downstream on a river. It covers the same distance in $\mathbf{1 2}$ hrs moving upstream. The time it takes to cover the same distance in still water is

1) 9 hrs
2) 7 hrs
3) 6 hrs
4) 8 hrs

PHYSICS

Solution: Let ' u ' be the speed of the boat in still water and ' u_{s}^{\prime} be the speed of the stream respectively. For Downstream motion of the boat, $u+u_{s}=S / 4--(i) ; S$ is the distance covered.
For Upstream motion of the boat, $u-u_{s}=S / 12--$ (ii). $2 u=16 S / 48$ or $u=S / 6$. But $u=S / t ; t$ is the time taken to cover the same distance(S) in still water. Hence $\mathrm{S} / \mathrm{t}=\mathrm{S} / 6$ which implies $\mathrm{t}=6 \mathrm{hrs}$.

So the choice is (3)
20. The splash is heard 2.05s after a stone is dropped into a well of depth19.6m.The velocity of sound is (g
$=9.8 \mathrm{~ms}^{-2}$),

1) $352 \mathrm{~ms}^{-1}$
2) $392 \mathrm{~ms}^{-1}$
3) $342 \mathrm{~ms}^{-1}$
4) $372 \mathrm{~ms}^{-1}$

Solution: Let the time taken by the stone to reach the water surface be ' t '.

Using, $h=u t+(1 / 2) g t^{2}$ and taking $u=0$,
$t=(2 h / g)^{1 / 2}=(2 \times 19.6 / 9.8)^{1 / 2}=2 \mathrm{~s}$
Hence the splash produced takes a time of
(2.05-2)s=0.05s to reach the observer.

Speed of sound= Distance/Time=19.6/0.05 =392 ms-1

Correct option is (3)

PHYSICS

21. A person weighing 52 kg is standing in a lift moving up with a constant acceleration of
$2.5 \mathrm{~ms}^{-2}$. The apparent weight of the person is ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
1) 65 kg
2) 60 kg
3) 45 kg
4) 75 kg

PHYSICS

Solution: The apparent weight of a person inside a lift (moving Upwards),

$$
W^{\prime}=W(1+a / g) ;
$$

W-Real weight of the person, a - Acceleration of the lift and g-Acceleration due to gravity.

Here $W^{\prime}=52(1+2.5 / 10)$
$=52(1+0.25)$
$=52(1.25)=65 \mathrm{~kg}$.
Hence the right answer is (1)
22. A truck carrying sand is moving on a smooth horizontal road with a uniform speed $15 \mathrm{~ms}^{-1}$. If a mass of 0.015 kg of sand leaks in a time 10 s from the bottom of the truck, the force needed to keep the truck moving at its uniform speed is

1) 0.0225 N
2) 0.01125 N
3) 0.3375 N
4) Zero

Solution: The force exerted by the leaking sand on the truck= The rate of change of momentum= $(\Delta \mathrm{m} / \Delta \mathrm{t}) \mathrm{u}=0.015 / 10 \times 15=0.0225 \mathrm{~N}$.
The sand falling vertically downward will exert this force on the truck in vertically upward direction. This perpendicular force can do NO work on the truck. Since the friction is absent, No force is needed to keep the truck moving at a constant speed in the horizontal direction.

Hence the correct choice is (4)

PHYSICS

23. 80 railway wagons all of same mass 4000 kg are pulled by an engine with a force of $4 \times 10^{5} \mathrm{~N}$. The tension (in N) in the coupling between $30^{\text {th }}$ and $31^{\text {st }}$ wagons, from the engine is
1) 2.5×10^{5}
2) 1.5×10^{5}
3) 1.25×10^{5}
4) 1.0×10^{5}

PHYSICS

Solution: From Newton's second law,

$$
\begin{array}{cc}
F=m a & \text { i.e., } 4 \times 10^{5}=80 \times 4000 \times a \\
& a=4 \times 10^{5} / 80 \times 4000=1.25 \mathrm{~ms}^{-2}
\end{array}
$$

Tension developed in the coupling between $30^{\text {th }}$ and $31^{\text {st }}$ wagon will be due to mass of remaining 50 wagons. Now, mass of the remaining 50 wagons

$$
=50 \times 4000 \mathrm{~kg}=2 \times 10^{5} \mathrm{~kg} .
$$

Hence required tension $=2 \times 10^{5} \times 1.25=2.5 \times 10^{5} \mathrm{~N}$.

So the correct option is (1)

PHYSICS
24. A rocket of mass 6 tons is set for vertical firing. If the exhaust speed be 1 km per second how much gas must be ejected to give the rocket an upward acceleration of $20 \mathrm{~ms}^{-2}$? (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

1) $45 \mathrm{~kg} / \mathrm{s}$
2) $120 \mathrm{~kg} / \mathrm{s}$
3) $90 \mathrm{~kg} / \mathrm{s}$
4) $180 \mathrm{~kg} / \mathrm{s}$

Solution: In a variable mass situation, according to

 Newton' Second law$$
\begin{array}{r}
\mathrm{F}=\mathrm{u} \times \mathrm{dm} / \mathrm{dt} \\
\mathrm{M}(\mathrm{a}+\mathrm{g})=\mathrm{u} \times \mathrm{dm} / \mathrm{dt}
\end{array}
$$

So, $d m / d t=M(a+g) / u=6000(20+10) / 1000$ $=180 \mathrm{~kg} / \mathrm{s}$

Correct option (4)

25.A drunkard is walking on a straight road. He takes 5 steps forward and 3 steps backward and so on. Each step is 1 m long and takes 1 s .There is a pit on the road 11 m away from the starting point. The drunkard will fall into the pit after,

1) 29 s
2) 21 s
3) 37 s
4) 31 s

Solution: 5 steps forward-3 steps backward= Displacement of 2 m and time taken is 8 s .
Another displacement of 2 m takes 8 s . Now the net displacement $=4 \mathrm{~m}$ ant time is 16 . Again for one more displacement of 2 m he takes 8 s .
Now he is 5 m away from the pit, for which he takes 5 s . So total time $=8+8+8+5=29 \mathrm{~s}$

Correct option is (1)

26. A car starts from rest and moves with constant acceleration. The ratio of the distance covered in the $n^{\text {th }}$ second and to that covered in ' n ' seconds is
1) $\left[2 / n^{2}-1 / n\right]$
2) $\left[2 / n-1 / n^{2}\right]$
3) $\left[2 / n^{2}+1 / n\right]$
4) $\left[2 / n+1 / n^{2}\right]$

Solution: We have $S n=u+a / 2(2 n-1)$ and

$$
S(n)=u n+1 / 2 n^{2}
$$

Taking $u=0, S n=a / 2(2 n-1)$ and

$$
S(n)=1 / 2 n^{2}
$$

Dividing and simplifying we get

$$
S n / S(n)=\left[2 / n-1 / n^{2}\right]
$$

Correct option (3)

27. A particle is released from the top of tower Of height ' 3 h '. The ratio of the times to fall equal heights ' h ', $t_{1}: t_{2}: t_{3}$ is
1) $\sqrt{ } 3: \sqrt{ } 2: 1$
2) $3: 2: 1$
3) $9: 4: 1$
4) $1: \sqrt{ } 2-1: \sqrt{ } 3-\sqrt{ } 2$

PHYSICS

Solution: $\mathrm{h}=1 / 2 \mathrm{gt}_{1}{ }^{2}$,

$2 h=1 / 2 g\left(t_{1}+t_{2}\right)^{2}$ and
$3 h=1 / 2 g\left(t_{1}+t_{2}+t_{3}\right)^{2}$

So

$$
t_{1}:\left(t_{1}+t_{2}\right):\left(t_{1}+t_{2}+t_{3}\right)=1: \sqrt{ } 2: \sqrt{ } 3
$$

$$
t_{1}: t_{2}: t_{3}=1: \sqrt{ } 2-1: \sqrt{ } 3-\sqrt{ } 2
$$

Correct option is (4)
28. If μ_{R}, μ_{S} and μ_{K} are coefficients of rolling friction, static friction and static friction respectively, then

1) $\mu_{R}=\mu_{s}=\mu_{k}$
2) $\mu_{R}<\mu_{k}<\mu_{S}$
3) $\mu_{R}<\mu_{\mathrm{S}}=\mu_{\mathrm{K}}$
4) $\mu_{R}>\mu_{K}<\mu_{s}$

PHYSICS

Solution: Knowledge based:

$$
\mu_{\mathrm{R}}<\mu_{\mathrm{K}}<\mu_{\mathrm{S}}
$$

Correct option: (2)
29. When a stone is thrown up vertically with velocity ' u ', it reaches a maximum height of ' h '. If one wishes to triple the maximum height then the stone should be thrown with velocity

1) v3 u
2) $3 u$
3) $9 u$
4) $3 / 2 u$

Solution: From equations of motion, $u^{2} \alpha h$. In the first case $u^{2} \alpha h$ and in the second case $u^{\prime 2} \alpha 3 h$.

So $u^{\prime 2} / u^{2}=3$ or $\quad u^{\prime}=\sqrt{ } 3 u$.

Correct option is (1)

PHYSICS
30. A passenger is at a distance ' x ' from a bus when the bus begins to move with constant acceleration ' a '. What is the minimum velocity with which the passenger should run towards the bus to catch it?

1) $2 a x$
2) $a x$
3) $\vee 2 a x$

PHYSICS
Solution: Suppose the passenger runs with a velocity ' v ' to catch the bus in a time ' t '.

$$
\begin{aligned}
& v t=x+(1 / 2) a t^{2} . \text { Rearranging we get } \\
& 1 / 2 a t^{2}-v t+x=0, \text { the roots of which are }
\end{aligned}
$$

given by, $t=\left(v \pm v v^{2}-2 a x\right) / a$.
For ' t ' to be real, $\mathrm{v}^{2}-2 a x \geq 0$. Hence Minimum speed, $\mathbf{v}=\mathrm{V} 2 \mathrm{ax}$

