PHYSICS

Mahantesh Yadwad
Lecturer in Physics
P.D.J. PU College

Bijapur

PHYSICS

TOPICS :

UNITS \& DIMENSIONS

 SCALARS \&VECTORS STATICSEARTH'S ATOMOSPHERE
\& ASTROPHYSICS

PHYSICS

1) A Vernier calliper has 20 divisions on the Vernier scale Which coincide with 19 on the main scale. The least counts of the instrument is 0.1 mm . The main scale divisions are of,
$\begin{array}{ll}\text { 1) } 0.5 \mathrm{~mm} & \text { 2) } 1 \mathrm{~mm}\end{array}$
2) 2 mm
3) $1 / 4 \mathrm{~mm}$

PHYSICS

Least count $=1 \mathrm{M} \mathrm{S} \mathrm{D} \mathrm{/} \mathrm{Number}$
 Vernier divisions

$$
\text { . . } 0.1 \mathrm{~mm}=1 \mathrm{M} \mathrm{~S} \mathrm{D} \mathrm{/} 20
$$

$$
\text { . } 1 \mathrm{M} \mathrm{~S} \mathrm{D}=20 \times 0.1=2 \mathrm{~mm}
$$

ANS: 3

PHYSICS

2) A pressure of 10^{6} dynes $/ \mathrm{cm}^{2}$ is equivalent to:
3) $10^{5} \mathrm{~N} / \mathrm{m}^{2}\left(\frac{1}{2} m\right.$ 2) $10^{4} \mathrm{~N} / \mathrm{m}^{2}$
4) $10^{6} \mathrm{~N} / \mathrm{m}^{2}$
5) $10^{7} \mathrm{~N} / \mathrm{m}^{2}$

PHYSICS

Pressure $(p)=\frac{10^{6} \text { dynes }}{1 \mathrm{Cm}^{2}}$

$$
=\frac{10^{6} \times 10^{-5}}{10^{-4} \mathrm{~m}^{2}} \mathrm{~N}=10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

ANS : 1

PHYSICS

3) If C and L denote the capacitance and inductance, then the units of LC are:

$$
\begin{array}{ll}
\text { 1) } M^{0} L^{0} T^{2} & \text { 2) } M^{0} L^{2} T^{-2} \\
\text { 3) } M L T^{-2} & \text { 4) } M^{0} L^{0} T
\end{array}
$$

PHYSICS

We have,

$$
\begin{aligned}
& F=1 / 2 \pi \sqrt{ } L C \\
& F^{2}=1 / 4 \pi^{2} L C \\
& M C=1 / 4 \pi^{2} F^{2} \\
& L C=1 /\left(T^{-1}\right)^{2}=T^{2}=\left[M^{0} L^{0} T^{2}\right]
\end{aligned}
$$

PHYSICS

4) Force F is given in terms of time (t)and distance (x) by F=A sin Ct + B cos DX .Then dimensions of A / B and C/D are:

$$
\begin{aligned}
& \text { 1) }\left[\mathrm{M} L \mathrm{~T}^{-2}\right],\left[\mathrm{M}^{0} L^{0} \mathrm{~T}^{-2}\right] \\
& \text { 2) }\left[\mathrm{M} L \mathrm{~T}^{-2}\right],\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right] \\
& \text { 3) }\left[\mathrm{M}^{0} L^{0} \mathrm{~T}^{0}\right],\left[\mathrm{M}^{0} L \mathrm{~T}^{-1}\right] \\
& \text { 4) }\left[\mathrm{M}^{0} L \mathrm{~T}^{-1}\right],\left[\mathrm{M}^{0} L^{0} \mathrm{~T}^{0}\right]
\end{aligned}
$$

PHYSICS

(A/B) $=($ force $/$ force $)=\left[M^{0} L^{0} T^{0}\right]$
$\mathrm{Ct}=$ angle $\quad \mathrm{C}=$ angle $/$ time

$$
C=(1 / T)=T^{-1}
$$

$$
\begin{aligned}
& \text { Dx = angle } \begin{array}{l}
D=\text { angle / length } \\
D=(1 / L)=L^{-1} \\
(C / D)=T^{-1} / L^{-1}=\left[M^{0} L T^{-1}\right]
\end{array}
\end{aligned}
$$

ANS : 3

PHYSICS

5) The velocity v of a particle is given in terms of time t by the equation $\mathrm{V}=\mathrm{at}+\mathrm{b} / \mathrm{t}+\mathrm{c}$. The dimensions of a, b and c are:

$$
\begin{array}{ll}
\text { 1) } L^{2}, T, L T^{2} & \text { 2) } L T^{2}, L T, L \\
\text { 3) } L T^{-2}, L, T^{2} & \text { 4) } L, L T, T^{2}
\end{array}
$$

PHYSICS

By principle of homogeneity,

$$
\begin{aligned}
\operatorname{dim}(\text { at }) & =\operatorname{dim}(\mathrm{v})=\mathrm{LT}^{-1} \\
\mathrm{a} & =\left(\mathrm{LT}^{-1} / \mathrm{T}\right)=\left[\mathrm{LT}^{-2}\right]
\end{aligned}
$$

$$
\operatorname{dim}(c)=\operatorname{dim}(t)=[T]
$$

(b / time) $=$ Velocity

$$
\mathrm{b}=\text { Velocity } \times \text { time }=\mathrm{LT} \mathrm{~T}^{-1} \times \mathrm{T}=[\mathrm{L}]
$$

ANS : 3

PHYSICS

6) The dimensional formula for thermal conductivity is :

$$
\begin{array}{ll}
\text { 1) }\left[M L T^{-3} K^{-1}\right]^{2} & \text { 2) }\left[M L^{2} T^{-2} K^{-1}\right] \\
\text { 3) }\left[M L^{2} T^{-3} K^{-1}\right] & \text { 4) None of these }
\end{array}
$$

PHYSICS

We have,
Thermal conductivity $=$ Heat \times distance $/$ area \times temperature \times time

$$
\begin{aligned}
& =\left[M L^{2} T^{-2}\right][L] /\left[L^{2}\right][K][T] \\
& =\left[M L T^{-3} K^{-1}\right]
\end{aligned}
$$

PHYSICS

7) Choose the physical quantity that is different from others.
8) Moment of inertia
9) Electric current
10) Pressure energy
11) Rate of change of velocity

PHYSICS

Rate of change of velocity is equal to acceleration which is a vector quantity and all others are scalar quantities

ANS : 4

PHYSICS

8) If the relation $V=\frac{\pi \mathrm{Pr}}{8 \mathrm{nI}}$,

Where the letters have their usual meanings, the dimensions of V are :

$$
\begin{array}{ll}
\text { 1) } M^{0} L^{3} T^{0} & \text { 2) } M^{0} L^{3} T^{-1} \\
\text { 3) } M^{0} L^{-3} T^{-1} & \text { 4) } M^{1} L^{3} T^{0}
\end{array}
$$

PHYSICS

Since,V is the volume of liquid flowing per unit time, then $\operatorname{dim}(V)=\left[M^{0} L^{3} T^{-1}\right]$

ANS : 2

PHYSICS

9) The dimensions of gravitational constant G are:

$$
\begin{aligned}
& \text { 1) }\left[M L^{2} T^{-2}\right] \\
& \text { 2) }\left[M L^{3} T^{-2}\right] \\
& \text { 3) }\left[M M^{-1} T^{-2}\right] \\
& \text { 4) }\left[M^{-1} L^{3} T^{-2}\right]
\end{aligned}
$$

PHYSICS

We have

$$
\begin{aligned}
F & =G m_{1} m_{2} / d^{2} \\
G & =F d^{2} / m_{1} m_{2} \\
G & =\left[M L T^{-2}\right]\left[L^{2}\right] /[M][M] \\
G & =\left[M^{-1} L^{3} T^{-2}\right]
\end{aligned}
$$

ANS : 1

PHYSICS

10) The unit of reduction factor of a tangent galvanometer is:
11) ampere
12) gauss
13) radian
14) None of these

PHYSICS

Since $\mathrm{I}=\mathrm{K} \tan \theta$, therefore K has same unit as that of current i.e ampere

PHYSICS

11) The dimensions of intensity of wave are:

$$
\begin{aligned}
& \text { 1) }\left[\mathrm{M} L^{2} \mathrm{~T}^{-3}\right] \\
& \text { 2) }\left[\mathrm{M} L^{0} \mathrm{~T}^{-3}\right] \\
& \text { 3) }\left[\mathrm{M} L^{-2} L^{-3}\right] \\
& \text { 4) }\left[\mathrm{M} L^{2} L^{3}\right]
\end{aligned}
$$

PHYSICS

Intensity of wave $=$ energy $/$ area \times time

$$
\begin{aligned}
& =\left[M L^{2} T^{-2}\right] /\left[L^{2}\right][T] \\
& =\left[M L^{0} T^{-3}\right]
\end{aligned}
$$

PHYSICS

12) What is the dimensional formula of power?

$$
\begin{array}{ll}
\text { 1) }\left[M L^{-2} T^{2}\right] & \text { 2) }\left[M^{0} L^{2} T^{-2}\right] \\
\text { 3) }\left[M^{1} L^{2} T^{-3}\right] & \text { 4) }\left[M L^{2} T^{-2}\right]
\end{array}
$$

PHYSICS

We have,

> Power = work done / time

$$
\begin{aligned}
& =\left[M L^{2} T^{-2}\right] /[T] \\
& =\left[M L^{2} T^{-3}\right]
\end{aligned}
$$

PHYSICS

13) A gas bubble from an explosion under water oscillates with a period proportional to P, d, E, where P is the static pressure, d is the density of water and E is the energy of explosion. Then a,b,c are respectively:

$$
\begin{array}{ll}
\text { 1) } \left.1,1,1 \mathrm{~m} v^{2}\right) & \text { 2) } 1 / 3,1 / 2,-5 / 6 \\
\text { 3) }-5 / 6,1 / 2,1 / 3 & \text { 4) } 1 / 2,-5 / 6,, 1 / 3
\end{array}
$$

PHYSICS

Let $\quad T=P^{a} d^{b} E^{c}$
Writing dimensions on both sides,
$\left[M^{0} L^{0} T\right]=\left[M L^{-1} T^{-2]}\right]^{a}\left[M L^{-3}\right]^{b}\left[M L^{2} T^{-2}\right]^{c}$
$\left[\begin{array}{lll}\left.M^{0} L^{0} T\right]=\left[\begin{array}{ll}M^{a+b+c} & L^{-a-3 b+2 c}\end{array} T^{-2 a-2 c}\right]\end{array}\right]$
Thus $a+b+c=0,-a-3 b+2 c=0,-2 a-2 c=1$ On solving these equations, we get

$$
a=-5 / 6, b=1 / 2 \quad \& \quad c=1 / 3
$$

PHYSICS

14) The dimensional formula for coefficient of restitution is:

$$
\begin{aligned}
& \text { 1) } M L T^{-2} \\
& \text { 2) } M^{0} L^{1} T^{-1} \\
& \text { 3) } M^{0} L^{2} T^{-1} \\
& \text { 4) } M^{0} L^{0} T^{0}
\end{aligned}
$$

PHYSICS

It is the ratio of relative velocity of the colliding bodies after collision to the relative velocity before collision. Therefore the dimensional formula is [$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]

ANS : 4

PHYSICS

15) Unit of permittivity of free space ε_{0} is :

$$
\begin{aligned}
& \text { 1) } \mathrm{Nm}^{2} C^{-2} \\
& \text { 2) } C^{2} N^{-1} m^{-2} \\
& \text { 3) } C^{2}\left(\mathrm{Nm}^{-2}\right. \\
& \text { 4) } C N^{-1} m^{-1}
\end{aligned}
$$

PHYSICS

We have,

$$
\begin{aligned}
F & =\left(1 / 4 \pi \varepsilon_{0}\right) \times q_{1} q_{2} / d^{2} \\
\varepsilon_{0} & =(1 / 4 \pi) q_{1} q_{2} / d^{2} \times F \\
& =\left(\frac{1}{2} \times C / m^{2} N=C^{2} m^{-2} N^{-1}\right.
\end{aligned}
$$

ANS : 2

PHYSICS

16) Which of the following systems of units is not base on units of mass, length and time alone?

$$
\begin{array}{ll}
\text { 1) } \left.\mathrm{S} \operatorname{lm}+v^{2}\right) & \text { 2) MKS } \\
\text { 3) } \mathrm{FPS} & \text { 4) } \mathrm{CGS}
\end{array}
$$

PHYSICS

It's S I system as it contains seven fundamental units

ANS : 1

PHYSICS

17) Out of following pairs which one does NOT have identical dimensions?
18) angular momentum and planck's constant
19) impulse and momentum
20) momentum of inertia and moment of force 4) Work and torque

PHYSICS

It's moment of inertia and moment of force.

PHYSICS

18) Dimensions of $\left(1 / \mu_{0} \varepsilon_{0}\right)$, where symbols have their usual meanings are:

$$
\begin{aligned}
& \text { 1) }\left[L^{-1} T\right] V^{2} \text { 2) }\left[L^{-2} T^{2}\right] \\
& \text { 3) }\left[L^{2} T^{-2}\right] \\
& \text { 4) }\left[L T^{-1}\right]
\end{aligned}
$$

PHYSICS

We have ,
Speed of light $C=1 / \sqrt{ } \varepsilon_{0} \mu_{0}$

$$
\begin{aligned}
& \frac{v^{2}}{2 C^{2}} C^{2}=1 / \varepsilon_{0} \mu_{0} \\
& \left(L T^{-1}\right)^{2}=1 / \varepsilon_{0} \mu_{0} \\
& \left(1 / \varepsilon_{0} \mu_{0}\right)=L^{2} T^{-2}
\end{aligned}
$$

ANS : 3

PHYSICS

19) A force of $10 \hat{\imath}+2 \hat{\jmath}$ newton displaces a body through $3 \hat{i}+6 \mathrm{k}$ metre . The work done is :

$$
\begin{array}{llll}
\text { 1) } 0 \mathrm{~J} & \text { 2) } 12 \mathrm{~J} & \text { 3) } 42 \mathrm{~J} & \text { 4) } 30 \mathrm{~J}
\end{array}
$$

PHYSICS

Work done $=\mathbf{F} \cdot \mathbf{S}=(10 \hat{\imath}+2 \hat{\jmath}) \cdot(3 \hat{\imath}+6 k)$

$$
\begin{aligned}
& =10 \times 3+0 \\
& =30 \mathrm{~J}
\end{aligned}
$$

ANS : 4

PHYSICS

20) Given $\mathbf{A}=2 \hat{\imath}-\hat{\jmath}+2 \kappa$ and $\mathbf{B}=-\hat{\imath}-2 \hat{\jmath}+2 k$. The unit vector of $\mathbf{A}-\mathbf{B}$ is :

$$
\begin{array}{ll}
\text { 1) } \left.k / \sqrt{10} m v^{2}\right) & \text { 2) } 3 \hat{\imath} / \sqrt{ } 10 \\
\text { 3) } 3 \hat{\imath}+\hat{\jmath} / \sqrt{10} & \text { 4) }-3 \hat{\imath}-k / \sqrt{ } 10
\end{array}
$$

PHYSICS

$$
\begin{aligned}
\mathbf{A}-\mathbf{B} & =(2 \hat{\imath}-\hat{\jmath}+2 \mathrm{k})-(-\hat{\imath}-2 \hat{\jmath}+2 \mathrm{k}) \\
& =3 \hat{\imath}+\hat{\jmath}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{n} & =\mathbf{A}-\mathbf{B} /|\mathbf{A}-\mathbf{B}| \\
& =3 \hat{\imath}+\hat{\jmath} / \sqrt{ } \mathbf{y}+1 \\
& =3 \hat{\imath}+\hat{\jmath} / \sqrt{ } 10
\end{aligned}
$$

PHYSICS

21) If $A \cdot B=O$ then magnitude of $|A \times B|$ is:
22) zero
23) 1
24) $\sqrt{ } A B$
25) $|A||B|$

PHYSICS

$$
\begin{aligned}
\mathrm{A} \cdot \mathrm{~B}=0 & \\
\mathrm{AB} \cos \theta & =0 \\
\text { i.e } \theta & =\pi / 2 \\
|\mathrm{~A} \times \mathrm{B}| & =\mathrm{AB} \sin \pi / 2 \\
& =|\mathrm{A}||\mathrm{B}|
\end{aligned}
$$

ANS : 4

PHYSICS

22) The magnitude of the vector product of two vectors is $\sqrt{ } 3$ times their scalar product. The angle between the vectors is:

$$
\begin{array}{ll}
\text { 1) } \pi / 2 & c^{2} \\
\text { 3) } \pi / 3 & \text { 2) } \pi / 6 \\
\text { 4) } \pi / 4
\end{array}
$$

PHYSICS

$\mathbf{A} \times \mathbf{B}=\sqrt{ } \mathbf{3} \mathbf{A} . \mathbf{B}$
$A B \operatorname{Sin} \theta=\sqrt{ } 3 A B \operatorname{Cos} \theta$
$\operatorname{Sin} \theta=\sqrt{ } 3 \operatorname{Cos} \theta$ $\tan \theta=\sqrt{ } 3$
i.e $\theta=\pi / 3$

ANS : 3

PHYSICS

23) A boat is sent across the river with a velocity $8 \mathrm{~km} / \mathrm{hr}$ in a direction perpendicular to the flow of river. If resultant velocity of boat is $10 \mathrm{~km} / \mathrm{hr}$, then velocity of river flow is:
$\begin{array}{ll}\text { 1) } 18 \mathrm{~km} / \mathrm{hr} & \text { 2) } 2 \mathrm{~km} / \mathrm{hr}\end{array}$
24) $6 \mathrm{~km} / \mathrm{hr}$
25) None of these

PHYSICS

From Fig. $\mathbf{V}_{\mathrm{r}}^{2}=\mathbf{V}_{\mathrm{b}}^{2}+\mathbf{u}^{2}$

$$
\begin{aligned}
\mathbf{u}^{2} & =\mathbf{V}_{\mathrm{r}}^{2}-\mathbf{V}_{\mathrm{b}}^{2} \\
& =100-64=36 \\
\mathbf{u} & =6 \mathrm{Km} / \mathrm{hr}
\end{aligned}
$$

PHYSICS

24) The resultant of two forces, each having equal magnitude F acting at an angle θ is :

$$
\text { 1) } 2 F \sin \theta / 2 \text { 2 } \quad \text { 2) } 2 F \cos \theta
$$

3) $2 F \cos \theta / 2$ 4) None of these

PHYSICS

$$
\begin{aligned}
& F_{r}^{2}=F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \Theta \\
& \text { Since } F_{1}=F_{2}=F \\
& F_{r}^{2}=4 F^{2}\left(\cos ^{2} \Theta / 2\right) \\
& F_{r}=2 F(\cos \Theta / 2)
\end{aligned}
$$

ANS : 3

PHYSICS

25) Two forces each = F/2, act at right angles. Their effect may neutralized by a third force acting along their bisector in the opposite direction with a magnitude of :

$$
\text { 1) } F \quad \text { 2) } F / \sqrt{ } 2 \quad \text { 3) } \sqrt{ } 2 F \quad \text { 4) } F / 2
$$

PHYSICS

$$
\begin{aligned}
& F_{r}=2 F(\operatorname{Cos} \Theta / 2) \\
& \text { Since, } \Theta=90^{\circ} \& F=F / 2 \\
& F_{r}=2 F / 2\left(\operatorname{Cos} 90^{\circ} / 2\right) \\
& F_{r}=F / \sqrt{ } 2
\end{aligned}
$$

ANS : 2

PHYSICS

26) The resultant of two forces is 20 N when one of force is $20 \sqrt{ } 3 \mathrm{~N}$ and angle between two forces is 30° then what is value of second force?

$$
\begin{array}{ll}
\text { 1) } 10 \mathrm{~N} & \text { 2) } 20 \mathrm{~N} \\
\text { 3) } 20 \sqrt{ } 3 & \text { 4) } 10 \sqrt{ } 3
\end{array}
$$

PHYSICS

$F_{r}^{2}=F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \operatorname{Cos} \theta$
Since $F_{r}=20 \mathrm{~N}$
$F_{1}=20 \sqrt{ } 3 \mathrm{~N}, \Theta=30^{\circ}$
By Substituting we get
$F_{2}^{2}+60 F_{2}+800=0$
By Solving the quadratic equation we get $\mathrm{F}_{2}=20 \mathrm{~N}$

PHYSICS

27) Three forces start acting simultaneously on a particle moving with velocity, v. These forces are represented in magnitude and direction by the three sides of a triangle ABC. The particle will now move with velocity :
28) v, remaining unchanged
29) less than v
30) greater than

4)| v | in the direction of the largest force $B C$

PHYSICS

Since the forces act on a particle are represented as a sides of a triangle.
Therefore the forces are in equilibrium Hence they produce no change in Velocity

PHYSICS

28) Insolation is due to ,

1) Radiations from the stars
2) Radiations from the sun
3) Radiations from the neutron
4) Radiations from the red giant

ANS : 2

PHYSICS

29) Ionosphere is formed by the absorption of
30) IR and gamma rays
31) Gamma rays and X rays
32) UV rays and IR rays
33) UV rays and X rays

ANS : 4

PHYSICS

30) Auroral displays are seen only in regions
31) Around Earth's magnetic South and North poles
32) Near the Earth's equator
33) Around the Earth's 30° latitude
34) Near oceans

ANS : 1

PHYSICS

31) $H-R$ diagrams are graphs representing the relation between
1)Luminosity and surface temperature
2)Luminosity and mass of the star
3)Luminosity and size of the star
4)Luminosity and distance of the star from the earth

PHYSICS

32) Which of the following is a main sequence star?
33) Sirius
34) Antares
35) polaris
36) sun

ANS : 4

PHYSICS

Thank you All the Best......

