

Techniques For CET PHYSICS

Dr. A. S. Govind

Prof, Dept. Of PHYSICS, Vijaya College, R. V. Road, Basavanagudi, Bangalore -4.

Direct application

- 1. Height of free fall in 10s is... (490m).
- 2. 8 kg of a radioactive sample is reduced to 1 kg in 6 years. The half life is(2 yrs)
- 3. Copper, gold and germanium are cooled. The electrical resistance increases for
 - (1) copper only
- (2) germanium

(3) gold only

(4)copper and gold

Direct application contd...

4. Dimensional formula for the product of electrical resistance and electrical capacitance is

(1)
$$T^{1/2}$$
 (2) $T^{-1/2}$ (3) $1/T$ (4) T

Soln:
$$RC = \frac{V}{I} \times \frac{Q}{V} = \frac{Q}{I} \Rightarrow \frac{C}{\frac{C}{S}} = s$$

Hence Ans is (4)

Numericals

```
1. Time of free fall from a height '3m' is (1) 4s (2) 8s (3) 2.4s (4) 0.78s
```

```
Soln: s = \frac{1}{2} gt^2 = 3,

\frac{1}{2} g \approx 5; so, t^2 = \frac{3}{5} = 0.6

This gives t \approx 0.8s.

Hence Ans is (4)
```


Numericals contd...

2. Approximate volume of Be⁸ nucleus is __ cc.

```
(1)7x10<sup>-38</sup>
```

Soln:
$$R^3 = R_0^3 A$$
,

$$V = 4\pi R^3/3 \approx 4 R_0^3 x8 = 32x(1.3)^3 x 10^{-45} m^3$$

$$= * x 10^{-44} m^3$$

$$= * x 10^{-38} cc$$

Ans: (1)

Numericals contd...

Binomial approximation:

 $(1 + x)^n \approx 1 + nx$ for x << 1.

Eg.1: If the length is increased by 1%, area increases by ..?

Numericals contd...

Eg.2:
$$1/98 = ?$$

$$\frac{1}{98} = \frac{1}{100 - 2} = \frac{1}{100(1 - 0.02)}$$

$$= \frac{(1 - 0.02)^{-1}}{100} = \frac{(1 + 0.02)}{100} = \frac{1.02}{100} = 0.0102$$

Elimination

- 1. Effective resistance of 1 Ω , 5 Ω and 10 Ω connected in parallel is ____ Ω .
 - (1) 16

(2) 5

(3) 7.5

(4) 0.77

Soln: R_P is < least.

- ans must be <1.
- ans is (4)

Elimination contd

2. A car accelerates from rest at a constant rate α for some time t_1 after which it decelerates at a constant rate β for time t_2 and comes to rest. if the total time elapsed is t, the maximum velocity acquired by the car is given by

(1)
$$\frac{(\alpha^2 + \beta^2)t}{\alpha\beta}$$
 (2) $\frac{(\alpha^2 - \beta^2)t}{\alpha\beta}$ (3) $\frac{(\alpha + \beta)t}{\alpha\beta}$ (4) $\frac{(\alpha\beta)t}{(\alpha + \beta)}$

Elimination contd

3. An object is placed at a distance of 18 cm from a convex lens. The image is formed at a distance of 9 cm. The focal length of the lens is

(1) 6 cm

(2) 9 cm

(3) 10 cm

(4) 18 cm

Soln: f < both u and v for a <u>real</u> image

f < 9 cm and ans (1)

This is faster than using uv/(u+v)

Elimination contd

4. A parallel plate capacitor is filled with two dielectrics as shown. The ratio of its capacitance with and without dielectric is

(1)
$$K_1 + K_2$$
 (2) $\frac{K_1 + K_2}{K_1 - K_2}$

$$(3)\frac{2K_1K_2}{K_1+K_2} \quad (4)\frac{K_1+K_2}{2K_1K_2}$$

 $K_1 = K_2 = K \text{ should}$ give ans K. Verify. Ans is (3)

HOTS

In the network shown in the figure, each resistance is 1 ohm. The effective resistance between A and B is ____ ohm.

(1) 4/3 (2) 3/2 (3) 7

(4) 8/7

HOTS contd

$$(2 + 2/3) || 2 < 3 || 2 = (3x2)/5 = 1.2$$

Ans is little <1.2 **Ans (4) 8/7**

HOTS contd

The resistance of a conductor is 5 ohm at 50° C and 6 ohm at 100° C. Its resistance at 0^0 C is ohm.

(1) 2.5 (2) 4.5 (3) 7

(4) 4

Its resistance at 25°C is ohm.

Ans: (2) 4.5