Techniques For CET PHYSICS

Dr. A. S. Govind

Prof, Dept. Of PHYSICS, Vijaya College, R. V. Road, Basavanagudi, Bangalore -4.

Direct application

1. Height of free fall in 10 s is... (490m).
2.8 kg of a radioactive sample is reduced to 1 kg in 6 years. The half life is(2 yrs)
2. Copper, gold and germanium are cooled. The electrical resistance increases for
(1) copper only
(3) gold only
(2) germanium
(4)copper and gold

Direct application contd..

4. Dimensional formula for the product of electrical resistance and electrical capacitance is

$$
\begin{array}{llll}
\text { (1) } \mathrm{T}^{1 / 2} & \text { (2) } \mathrm{T}^{-1 / 2} & \text { (3) } 1 / \mathrm{T} & \text { (4) } \mathrm{T}
\end{array}
$$

Soln: $\mathrm{RC}=\frac{\mathrm{V}}{\mathrm{I}} \times \frac{\mathrm{Q}}{\mathrm{V}}=\frac{\mathrm{Q}}{\mathrm{I}} \Rightarrow \frac{\mathrm{C}}{\mathrm{C} / \mathrm{S}}=\mathrm{s}$
Hence Ans is (4)

Numericals

1. Time of free fall from a height ' 3 m ' is
(1) 4 s
(2) 8 s
(3) 2.4 s
(4) 0.78 s

Soln: $s=1 / 2 \mathrm{gt}^{2}=3$,
$1 / 2 \mathrm{~g} \approx 5 ;$ so, $\mathrm{t}^{2}=3 / 5=0.6$
This gives $t \approx 0.8 \mathrm{~s}$.
Hence Ans is (4)

Numericals contd..

2. Approximate volume of Be^{8} nucleus is __ cc.
(1) 7×10^{-38}
(2) 7×10^{-24}
(3) 10^{-13}
(4) 7×10^{-44}

Soln: $R^{3}=R_{0}{ }^{3} A$,

$$
\begin{aligned}
V=4 \pi \mathrm{R}^{3} / 3 \approx 4 \mathrm{R}_{0}^{3} \times 8 & =32 \times(1.3)^{3} \times 10^{-45} \mathrm{~m}^{3} \\
& ={ }^{*} \times 10^{-44} \mathrm{~m}^{3} \\
& ={ }^{*} \times 10^{-38} \mathrm{cc}
\end{aligned}
$$

Ans: (1)

Numericals contd..

Binomial approximation:
$(1+x)^{n} \approx 1+n x$ for $x \ll 1$.

Eg.1: If the length is increased by 1\%, area increases by ..?
area $L^{2}, L^{2}(1+0.01)^{2}=L^{2}(1+0.02)$
Thus, area increases by 2%.

Numericals contd..

$$
\begin{aligned}
& \text { Eg.2: } \quad 1 / 98=? \\
& \frac{1}{98}=\frac{1}{100-2}=\frac{1}{100(1-0.02)} \\
& =\frac{(1-0.02)^{-1}}{100}=\frac{(1+0.02)}{100}=\frac{1.02}{100}=0.0102
\end{aligned}
$$

Elimination

1. Effective resistance of $1 \Omega, 5 \Omega$ and 10Ω connected in parallel is \qquad Ω.
(1) 16
(2) 5
(3) 7.5
(4) 0.77

Soln: R_{P} is < least.

- ans must be <1.
- ans is (4)

Elimination contd

2. A car accelerates from rest at a constant rate α for some time t_{1} after which it decelerates at a constant rate β for time t_{2} and comes to rest. if the total time elapsed is t, the maximum velocity acquired by the car is given by
(1) $\frac{\left(\alpha^{2}+\beta^{2}\right) t}{\alpha \beta}$ (2) $\frac{\left(\alpha^{2}-\beta^{2}\right) t}{\alpha \beta}$ (3) $\frac{(\alpha+\beta) t}{\alpha \beta}$ (4) $\frac{(\alpha \beta) t}{(\alpha+\beta)}$

Elimination contd

3. An object is placed at a distance of 18 cm from a convex lens. The image is formed at a distance of 9 cm . The focal length of the lens is
(1) 6 cm
(3) 10 cm
(2) 9 cm
(4) 18 cm

Soln: $f<$ both u and v for a real image $\mathrm{f}<9 \mathrm{~cm}$ and ans (1)
This is faster than using uv/(u+v)

Elimination contd

4. A parallel plate capacitor is filled with two dielectrics as shown. The ratio of its capacitance with and without dielectric is
(1) $K_{1}+K_{2} \quad$ (2) $\frac{K_{1}+K_{2}}{K_{1}-K_{2}}$
(3) $\frac{2 \mathrm{~K}_{1} K_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}} \quad$ (4) $\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}$

$\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}$ should give ans K. Verify. Ans is (3)

HOTS

In the network shown in the figure, each resistance is 1 ohm. The effective resistance between A and B is ___ ohm.
(1) $4 / 3$
(2) $3 / 2$
(3) 7
(4) $8 / 7$

HOTS contd

(1) $4 / 3$
(2) $3 / 2$
(3) 7
(4) $8 / 7$

$(2+2 / 3)||2<3|| 2=(3 \times 2) / 5=1.2$
Ans is little <1.2 Ans (4) 8/7

HOTS contd

The resistance of a conductor is 5 ohm at $50^{\circ} \mathrm{C}$ and 6 ohm at $100^{\circ} \mathrm{C}$. Its resistance at $0^{\circ} \mathrm{C}$ is ___ ohm.
(1) 2.5
(2) 4.5
(3) 7
(4) 4

Its resistance at $25^{\circ} \mathrm{C}$ is ___ ohm.
Ans: (2) 4.5

