Theories of Light and Interference

Questions for practice

1. V 2. F	Vavefront originatin 1) cylindrical luygen's wave theo	g from a point sou 2) spherica ory of light could no	rce is I 3) plar ot explain	ie 4	4) cubical	
	1) diffraction	2) interfere	nce3) polarization	4) photoelectric	effect	
3. T	he fact that light is hat	transverse wave o	lerives its evidenc	e by the support	from the observation	
	1) light travels a	as waves	2) light shows	polarizing effect	S	
	3) light can be	diffracted	4) light waves	undergo reflecti	on	
4. ∖	elocity of light acco 1) Corpuscular	ording to this theor theory 2) V	y, is greater in der Vave theory	nser medium tha	n in rarer medium:	
	Electromagn	etic theory	4) Quantum th	neory		
5. T	he velocity of light	in vacuum is				
	1) $\frac{1}{\sqrt{\mu_o \varepsilon_o}}$	2) $\sqrt{\frac{\mu_o}{\varepsilon_o}}$	3) $\sqrt{\mu_o}$	$\overline{\mathcal{F}}_{o}$	4) $\sqrt{\frac{\varepsilon_o}{\mu_o}}$	
6. A	ccording to the mo	dern theory for na	ture of light, the lig	ght has		
	1) Wave nature	e only	2) Parl	icle nature only		
7 \	3) Both wave a	nd particle (dual n	ature 4) Neit	her particle natu	re nor wave nature	
7. V	vnich one among tr	ne following shows	s particle nature of	a) Defrection	1) Delerization	
8 li	I) Photo electin Young's double s	lit enect 2) II	distance between	5) Reliaction	4) POIdTIZATION	
tl	ne fringe width will	become		1		
	1) 9 times	2) $\frac{1}{9}$ times	3) 3 times	4) $\frac{1}{3}$ tim	nes	
9. T	he intensity ratio o atio of maximum to	f two waves is 9 : 7 o minimum intensit	1 these waves pro y will be	duce the event o	of interference. The	
10.	The refractive inde	x of air is 1.0003.	The thickness of a	hir column which	can accommodate	
	one wave of wave	length 6000 Å	more than in v	acuum will be		
	1) 2 m	2) 2 cm	3) 2 m	m 4	4) 0.2 m	
11. In Young's double silt experiment, if one of the slits is closed then what change in the						
	pattern is observed?					
	2) Diffraction p	pattern will be obtain	ained instead of d	infraction pattern		
	3) Uniform illun	nination will be obtain	ained	enerence pattern		
	4) Alternate bri	aht and dark interf	erence rinas will b	e obtained.		
12.	In Young's double	slit experiment the	amplitudes of two	o sources are 3a	and a respectively.	
	The ratio of intensi	ties of bright and c	lark fringes will be		. ,	
	1) 3 : 1	2) 2 : 1 3) 4	·:1 4)9:1			
13.	The two coherent I	ight sources will p	roduce constructiv	e interference if	they differ in phase	
	by					
	1) 2 π	2) $\pi/2$	3) 3π/2	4) 5π/2		
14.	The ratio of maxim	um and minimum	intensities obtaine	d in the interfere	ence of waves	
	emitted by two col	emitted by two coherent sources is 121 : 81. The ratio of amplitudes of two coherent				
	sources will be			404	1) 101 01	

- 15. The two coherent sources of intensity ratio 2 : 8 produce an interference pattern. The values of maximum and minimum intensities will be respectively
 - 1) I_1 and 9 I_1 2) 9 I_1 and I_1 3) 2 I_1 and 8 I_1 4) 8 I_1 and 2 I_1
- 16. The equations of two light waves are $y_1 = 6\cos\omega t$, $y_2 = 8\cos(\omega t + \phi)$ the ratio of maximum to minimum intensities produced by the superposition of these wave will be 1) 49 : 1 2) 1 : 49 3) 1 : 7 4) 7 : 1
- 17. In Young's double slit experiment 10th order maximum is obtained at the point of observation in the interference pattern for λ =7000 Å. If the source is replaced by another one of wavelength 5000 Å then the order of maximum at the same point will be.
 1) 12th
 2) 14th
 3) 16th
 4) 18th
- 18. When a mica sheet (μ =1.6) of thickness 7 microns is placed in the path of one of interfering beams in the biprism experiment then the central fringe gets shifted at the position of seventh bright fringe. The wavelength of light used will be.
 1) 4000 Å
 2) 5000 Å
 3) 6000 Å
 4) 7000 Å
- 19. In a double slit experiment the intensity of each wave producing interference is I_o. Then the resultant intensity I will be.

1)
$$4I_o \cos^2 \frac{\phi}{2}$$
 2) $4I_o \sin^2 \frac{\phi}{2}$ 3) $4I_o \tan^2 \frac{\phi}{2}$ 4) $2I_o \cos^2 \frac{\phi}{2}$

- 20. The equations of two interfering waves are $y_1 = a \sin \omega t$, and $y_2 = a \sin(\omega t + \theta)$ respectively. Constructive interence will take place at the point of observation if the value of θ is
 - 1) π 2) 3π 3) 2π 4) 5π
- 21. As shown in the figure Q, above point O is the position of the first bright fringe. On the other side of O, D is the position of 11^{th} bright fringe with respect to Q. If the wavelength of light used is 6000 Å then the value of S_1B will be.

- 22. When a plastic thin film of refractive index 1.45 is placed in the path of one of the interfering waves then the central fringe is displaced through width of five fringes. The thickness of the film will be, if the wavelength of light is 5890Å.
- 1) 6.544 x 10⁻⁴ cm
 2) 6.544 x 10⁻⁴ cm
 3) 6.54 x 10⁻⁴ cm
 4) 6.5 x 10⁻⁴ cm
 23. The intensity variation in the interference pattern obtained with the help of two coherent sources is 5% of the average intensity. The ratio of intensities of two sources will be.
 1) 1 : 1600
 2) 1680 : 1
 3) 1 : 400
 4) 400 : 1
- 24. If the distance between two slits is halved then, the fringe width, as compared to its initial value, becomes

1) half2) double3) one fourth4) four times25. Interference event is observed in

- 1) only transverse waves 2) only longitudinal waves
- 3) both types of waves 4) not observed in both type of waves

26. In Young's double slit experiment if the maximum intensity of light is I_{max} then the intensity at path difference $\frac{\lambda}{2}$ will be---

1)
$$I_{\text{max}}$$
 2) $\frac{I_{\text{max}}}{2}$ 3) $\frac{I_{\text{max}}}{4}$ 4) zero

27. The correct curve between fringe width β and distance between the slits (d) is

28. If in Young's double sit experiment, the distance between the slits is halved and the distance between slit and screen is doubled, then the fringe width will become
1) half
2) double
3) four times
4) unchanged

- 29. The fringe width for red colour as compared to that for violet colour is approximately1) Three times 2) double3) four times4) eight times.
- 30. The oil layer on the surface of water appears coloured. This is due to1) interference due to division of amplitude 2) dispersion

3) interference due to division of wavefront 4) diffraction

- 31. What will be the distance between two slits which when illuminated by light of wavelength 5000Å produce fringes of width 0.5 mm on a screen distant 1 m from the slits?
 1) 10⁻² m
 2) 10⁻³ m
 3) 10⁻⁴ m
 4) 10⁻⁶ m
- 32. The equations of waves emitted by s_1 , s_2 , s_3 and s_4 are respectively $y_1 = 20sin(100 \pi t)$, $y_2 = 20 sin(200 \pi t)$, $y_3 = 20cos(100 \pi t)$ and $y_4 = 20 cos(100 \pi t)$. The phenomenon of interference will be produced by—
 - 1) y_1 and y_2 2) y_2 and y_3 3) y_1 and y_3 4) Interference is not possible
- 33. The Young's double slit experiment is performed in succession using blue light of wavelength 4360 Å and green light of wavelength 5460 Å. If the distance of fourth maximum from central maximum is x, then

1) X_{blue} > X_{green}2) X_{blue} < X_{green}3) X_{blue} = X_{green}4)
$$\frac{X_{blue}}{X_{green}} = \frac{5460}{4360}$$

34. In Young's double slit experiment the slits are illuminated by white light. The distance between two slits is b and screen is d distance apart from the slits. Some wavelengths are missing on the screen in front of one of the slits. These wavelengths are---

1)
$$\lambda = \frac{b^2}{d}, \frac{b^2}{3d}, \dots$$
 2) $\lambda = \frac{2b^2}{d}$ 3) $\lambda = \frac{2b^2}{2d}$ 4) $\lambda = \frac{b^2}{d}, \frac{b^2}{2d}$.

35. Two independent monochromatic sodium lamps can not produce interference because

1) The frequencies of two sources are different

- 2) The phase difference between two sources changes with respect to time
- 3) The two sources become coherent
- 4) The amplitudes of two sources are different.
- 36. In Young's slit experiment one slit is covered with red filter and another slit is covered by green filter, then the interference pattern will be
 - 1) red 2) green 3) yellow 4) invisible

37. In double slit experiment the distance between two slits is 0.6 mm and these are illuminated with light of wavelength 4800Å. The angular width of dark fringe on the screen distant 1.20 m from slits will be

1) 8 x 10 ⁻⁴ Radian	2) 6 x 10 ⁻⁴ Radian
3) 4 x 10 ⁻⁴ Radian	4) 16 x 10 ⁻⁴ Radian

38. In Young's experiment the distance between two slits is $\frac{d}{3}$ and the distance between the

screen and the slits is 3D. The number of fringes in $\frac{1}{3}$ m on the screen, formed by

monochromatic light of wave length 3 λ , will be---

1)
$$\frac{d}{9D\lambda}$$
 2) $\frac{d}{27D\lambda}$ 3) $\frac{d}{81D\lambda}$ 4) $\frac{d}{D\lambda}$

39. The experimental arrangement of Young's double slit experiment is shown in the following figure. If λ is the wavelength of light used, the fringe width will be—

40. On using white light in Young's double slit experiment, the fringes will be

- 1) Bright and dark
- 2) Central bright and rest of the fringes coloured
- 3) Only coloured fringes
- 4) Few coloured and few white fringes

88888******888888

QUESTIONS ON DIFFRACTION AND POLARISATION

1)	The diffraction effect can be observed	/ed in	. light ways a			
	a) only sound waves	D) ONIS	/ light waves			
2)	C) Only radio waves	of light using	d) all type of waves	was first aivan by		
2)	a) Grimaldi b) Fraun	hoffer	c) Fresnel	d) Young		
3)	Which of the following waves under	rao maximur	o diffraction ?	u) roung		
3)	a) X-rays b) γ - ra	iys	c) Light waves	d) Radio waves		
4)	Identify the wrong statement.					
	 a) In Fraunhoffer diffraction source and screen are effectively placed at infinity wrt obstacle using lenses 					
	b) In Fresnel diffraction the cer	ntral band of	the diffraction pattern	may be bright or dark.		
	c) Analysis of Fresnel diffraction	n is easy				
	d) In Fraunhoffer diffraction the	e central ban	d of the diffraction pat	tern is always bright		
5)	The fringes obtained in Fraunhoffe	r diffraction a	t a single slit are of			
	a) equal width and equal intens	sity				
	b) equal width and unequal interview	ensity				
	c) unequal width and unequal i	ntensity				
\sim	d) unequal width and equal into	ensity				
6)	In case of diffraction at single slit in	r the waveler	igth of light becomes	equal to the slit width,		
	a) image of the slit	ve	b) diffraction bands			
	a) uniform illumination	d) non	uniform illumination			
7)	Light of wavelength 5000Å is incid	ent on a slit (of width 0.1 mm The	width of the central		
')	bright band on the screen distant	2 m from the	slit will he			
	a) 18mm b) 36mr	n	c) 20mm	d) 6mm		
8)	In Fraunhoffer diffraction at a singl	le slit, the wid	of the central band	l is β . If the wave		
,	length of light is increased by 20%	6. distance of	f the screen from the s	slit is decreased by		
	10% and the slit width is decrease	d by 40% the	e new width of the cen	itral band will be		
	a) 1.8 <i>β</i> b) 2.7 <i>[</i>	3	c) 0.5 <i>β</i>	d) 2 β		
9)	In Fraunhoffer diffraction at a single	e, the width c	of the central band is	β . If the whole		
	apparatus is immersed in water of	RI 4/3. what	is the percentage of c	hange in the width of		
	central band?	,	1 5	5		
	a) 75% b) 25%		c) 30%	d) 40%		
10	The angular width of the central b	and in Fraun	hoffer diffraction at a	single slit is		
	independent of			-		
	a) wavelenght of light		b) width of the slit			
	c) distance of the slit from the	source	d) frequency of light			
11	The width of a slit is 0.012mm. The	e angular ng	sition of first seconda	ry maximum is 5 20		
	The wave length of light used in \hat{b} is [given sin 5.00 \times 0.0000]					
	The wavelength of light used in a		115.2 = 0.0900			
	a) 6040 b) 4026	C) 589	90 d) 724	48		
12	Light of wavelength 6000 Å is inc	ident normal	ly on a slit of width 24	x10 ⁻⁵ cm. The		
	angular position of second minimu	um will be				

a) 0° b) 15° c) 30° d) 60°

13) In Fraunhoffer diffraction at a single slit, third secondary minimum is formed at a distance5 mm from the centre of the pattern on a screen which is at a distance 1 m from thescreen. If the slit width is 0.3 mm, the wavelength of light used is

a) 5000 x 10⁻¹⁰m b) 2500 x 10⁻¹⁰m c) 7500 x 10⁻¹⁰m d) 8500 x 10⁻¹⁰m

14) The path difference between the rays coming from the edges of a slit in Fraunhoffer

diffraction at the position of 3rd secondary minimum is 18 X10⁻⁷ m. The wavelength of light used is

15) If (a+b) is the grating constant and λ is the wavelenght of light used, then the equation corresponding to 2nd order maxima is

a)
$$(a + b) \sin \theta = \frac{5\lambda}{2}$$
 b) $(a + b) \sin \theta = 2\lambda$ c) $(a + b) \sin \theta = \frac{3\lambda}{2}$ d) $(a + b) \sin \theta =$

3λ

- 16) Identify the wrong statement
 - a) In case of lens, the image of a point object is not a point image due to diffraction
 - b) Resolving power of a device is the reciprocal of limit of resolution
 - c) In case of two closely living objects, they can be seen as just separate using an optical instrument if the central maxima of the diffraction pattern of one overlaps with the first minima of the other
 - d) Resolving power of a microscope can be increased by increasing the wavelength of light used.
- If limit of resolution of a microscope is 3 X 10⁻⁷ m and wavelength of light used is 4243Å, the semivertical angle is
 - a) 45° b) 30° c) 90° d) 60°
- If R₁, R₂ and R₃ are the resolving powers of oil immersion microscope, ultraviolet microscope and electron microscope respectively, then the relation between them is

a)
$$R_1 > R_2 > R_3$$
 b) $R_1 < R_3 < R_2$ c) $R_1 > R_3 > R_2$ d) $R_1 < R_2 < R_3$

- 19) Identify the wrong statement
 - a) The limit of resolution of a telescope is the angle subtended at its objective by two distant objects when their image are just seen as separate
 - b) Resolving power of a telescope can be increased by decreasing the diameter of the objective
 - c) Increasing the size of the aperture of a telescope increases the brightness of the images
 - d) Two distant objects separated by a distance 'x' will be just resolved if the distance between the telescope and the objects is equal to $d = \frac{XD}{1.22\lambda}$ where D is the

diameter of the aperture.

20) In a telescope with aperture of diameter 60cm, the limit of resolution for a light of wavelength 6000 Å is

```
a)1.22 X 10<sup>-5</sup>rad
b) 1.22 X 10<sup>-6</sup> rad
c) 1.22 X 10<sup>-4</sup> rad
d) 1.22 x 10<sup>-7</sup>rad
21) The phenomenon of polarisation of electromagnetic waves proves that the electromagnetic waves are
```

a) longitudinal b) transverse c) mechanical d) neither longitudinal nor transverse

The angle between the plane of polarisation and plane of vibration is					
a) 90° b) 0° c) 45° d) 180°					
A beam of light is incident on the surface of a medium having polarising angle of 57 ^o as shown in the figure. If the reflected light is observed through a rotating Nicol prism then					
a) there is no change in intensity)				
b) intensity will be zero for all positions					
c) intensity will be maximum for a particular position and becomes zero on rotating further through 90°					
d) intensity reduces somewhat and increases again					
Ordinary light incidenting on a medium at the polarising angle suffers a deviation of 20°. The value of angle of refraction inside that medium is a) 55° b) 70° c) 35° d) 50°					
If the speed of light and the polarising angle for a given medium are $C_{_m}$ and i					
respectively, then from Brewster's law we find					
a) $C_m = \operatorname{cosec} i$ b) $C_m = \tan i$ c) $C_m = \cos i$ d) $C_m = C \cos i$					
λ_a and λ_m are the wavelengths of a beem of light in air and medium respecticely. If θ is					
the polarising angle, the correct relation is					
a) $\lambda_a = \lambda_m \tan^2 \theta$ b) $\lambda_m = \lambda_a \tan^2 \theta$ c) $\lambda_a = \lambda_m \cot \theta$ d) $\lambda_m = \lambda_a \cot \theta$					
In double refraction, the angle between the plane of polarisation of E - ray and O - ray is					
a) 0° b) 30° c) 90° d) 50°					
A calcite crystal is placed over a dot on a paper and rotated. On observing through					
a) two stationary dots b) two rotating dots					
c) a single dot d) one dot rotating about a stationary dot					
If for a calcite crystal , $n_o^{}$ and $n_e^{}$ are the RI's for $$ O - ray and E-ray respectively, then in a					
direction other than optic axis					
a) $n_o = n_e$ b) $n_o > n_e$ c) $n_o < n_e$ d) $n_o \le n_e$					
0) The wavefront corresponding to O-ray and E-ray are and					
a) spherical, spherical b) spherical, spheroid					
c) spheroid, spherical c) spheroid, spheroid					
Nicol prism used to produce plane polarised light uses					
a) double refraction only b) total internal reflection only					
Polaroids					
a) increase the intensity of light					
b) convert polarised light into unpolarised light					
c) produce plane polarised light by refraction					
d) produce plane polarised light by dicrosim					
a) Optically active substance rotates the plane of vibration a plane polarised light					
passing through it					
b) Arago discovered optical activity					
c) Laevo rotatory substance turns the plane of vibration in clockwise direction					
a) Polarimeter is used to measure specific rotation of solutions					
	The angle between the plane of polarisation and plane of vibration is a) 90° b) 0° c) 45° d) 180° A beam of light is incident on the surface of a medium having polarising angle of 57° as shown in the figure. If the reflected light is observed through a rotating Nicol prism then a) there is no change in intensity b) intensity will be zero for all positions c) intensity will be zero for all positions c) intensity will be zero for all position and becomes zero on rotating further through 90° d) intensity reduces somewhat and increases again Ordinary light incidenting on a medium at the polarising angle suffers a deviation of 20°. The value of angle of refraction inside that medium is a) 55° b) 70° c) 35° d) 50° If the speed of light and the polarising angle for a given medium are C_n and i respectively, then from Brewster's law we find a) $C_m = \cos ci$ b) $C_m = tan i$ c) $C_m = \cos i$ d) $C_m = C \cos i$ $\dot{\lambda}_u$ and λ_m are the wavelengths of a beem of light in air and medium respecticely. If θ is the polarising angle, the correct relation is a) $\lambda_a = \lambda_a$ tan ² θ b) $\lambda_m = \lambda_a$ tan ² θ c) $3c^0$ d) $\delta m = \lambda_a \cot \theta$ In double refraction, the angle between the plane of polarisation of E - ray and O - ray is a) 0° b) 30° c) 90° d) 50° A calcite crystal, one will see a) two stationary dots b) two rotating dots c) a single dot d) n_o $\leq n_e$ The wavefront corresponding to O-ray and E-ray respectively, then in a direction other than optic axis a) $n_o = n_b$ b) $n_o > n_c$ c) $n_o < n_o$ d) $n_o \leq n_e$ The wavefront corresponding to O-ray and E-ray respectively, then in a direction other than optic axis a) $n_o = n_b$ b) $n_o > n_c$ c) $n_o < n_e$ d) $n_o \leq n_e$ The wavefront corresponding to O-ray and E-ray respectively, then in a direction other than optic axis a) $n_o = n_c$ b) $n_o > n_e$ c) $n_o < n_e$ d) $n_o \leq n_e$ The wavefront corresponding to O-ray and E-ray respectively. B) potical activity Polaroids a) increase the intensity of light b) convert polarised light				

34)	Specific rotation of a so 1.520 rad, then the thick a) 4×10^{-2} m	lid is 380 rad/m. If the kness of the solid is b) 4 x 10 ⁻³ m	rota	ation produced in pl 0.4 m	ane of v	<i>i</i> bration is 7 m
35)	A solution rotates the p	lane of polarisation by	18 ⁰	² . If the length of the	e solutio	n is 0.2 m
and concentration is 50 kg m ³ then the encoding rotation of the colution in rad m ²					$d m^2 k a^{-1}$ is	
			->			
	a) 0.314	D) 3.14	C)	0.0314	a) 0.00	314
36)	A solution obtained by a	solution obtained by adding 50g of a substance in 70ml of water produces a rotation of				
	9º in the plane of polarisation. If same mass of substance added to 180 ml water produces					
	a rotation of (all other factors remaining constant)					
	a) 4º	b) 3.5º	c)	1.4 ⁰	d) 5º	
37)	The thickness of the qu	artz plate required to p	oroc	duce half the rotatio	n produ	ced by a
	solution of length 0.19m and concentration 200kg m ⁻³ is (given $S_{quartz} = 380$ rad m ⁻¹ and					
	S _{solution} = 0.01 rad m ²	Kg ⁻¹)				
	a) 1mm	b) 0.7 mm	c)	0.9 mm	d) 0.5 ı	mm
38)	Light beam is observed	with a rotating nicol p	risn	n. If intensity chang	es from	maximum to
miniı	mum but not zero, then i	t may be				
	a) plane polarised			b) circularly p	olarised	l
	c) elliptically polarised		d) unpolarised			
39)	If $\theta_{\rm c}$ is the critical angle	e and θ_{P} is the polars	sing	g angle for a mediur	n, then	
	a) $\theta_{\rm c} = \cos^{-1} (\sin \theta_{\rm F})$	5)	b)	$\theta_{\rm P} = \cos^{-1} (\sin \theta_{\rm C})$		
	c) $\theta_{\rm c} = \sin^{-1} (\cos \theta_{\rm p})$)	d)	$\theta_{\rm P} = \sin^{-1} (\cos \theta_{\rm C})$)	
40)	A polarised light cannot	be produced by				
	a) reflection	b) scattering	c)	double refraction		d) dispersion