Applications of
Derivatives

By
Dr. M. Sathyakrishna

Professor of Mathematics
\&
Vice - Principal MES Degree College

$\mathbf{K}_{\mathbf{A}}{ }^{\text {MATHEMATICS }}$

Slides by

J V Venkatram Sastry

1) The points on the curve $y=x^{3}-3 x$
where the tangents drawn are parallel to the x - axis are
(1) $(1,2)$ and $(-1,2)$
(2) $(1,-2)$ and $(-1,2)$
(3) $(1,2)$ and $(-1,-2)$
(4) $(1,-2)$ and $(-1,2)$

$$
\begin{aligned}
& y=x^{3}-3 x \\
& \frac{d y}{d x}=0 \Rightarrow 3 x^{2}-3=0 \Rightarrow 3\left(x^{2}-1\right)=0 \\
& \\
& \quad \Rightarrow x= \pm 1 \\
& \\
& \quad \begin{array}{l}
\text { when } x=1, \quad y=1-3=-2 \\
\\
\text { when } x=-1, \quad y=-1+3=2
\end{array}
\end{aligned}
$$

\therefore the points are $(1,-2)$ and $(-1,2)$

Choice (2) is the correct answer
2) The tangent to the curve $y=2 x^{2}-3 x+1$ at $(2,3)$ on it is
(1) Parallel to $5 x-y-1=0$
(2) Parallel to $y=3 x+5$
(3) Perpendicular to $5 x-y+3$ (4) Parallel to the x - axis

$$
\begin{aligned}
& y=2 x^{2}-3 x+1 \\
& \frac{d y}{d x}=4 x-3 \\
& \left(\frac{d y}{d x}\right)_{(2,3)}=8-3=5
\end{aligned}
$$

Hence, the tangent is parallel to $5 x-y-1=0$

Choice (1) is the correct answer
3) The equation of the normal to the curve $y=a e^{\bar{b}}$ where it crosses the y-axis is
(1) $b x-a y=a^{2}$
(2) $a x+b y=a b$
(3) $a x-b y=a b$
(4) $\quad b x+a y=a^{2}$
$y=a e^{\bar{b}}$
Put $\mathrm{x}=0, \mathrm{y}=\mathrm{a} . \quad \therefore \quad(0, \mathrm{a})$ is the point
$\left(\frac{d y}{d x}\right)=\frac{a}{b} e^{\frac{x}{b}} \quad \therefore\left(\frac{d y}{d x}\right)_{(0, a)}=\frac{a}{b}$
Slope of the normal $=\frac{-b}{a}$
Eqn: $y-a=\frac{-b}{a}(x-0) \quad \Rightarrow b x+a y=a^{2}$

Choice (4) is the correct answer
4) The tangent drawn to the curve $x=e^{t} \cos t, y=e^{t} \sin t$ at $t=0$, makes an angle with the $x-$ axis equal to
(1) 0
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{3}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{e^{t}(\sin t+\cos t)}{e^{t}(\cos t-\sin t)} \\
& \frac{d y}{d x}=\frac{e^{\prime}(\sin t+\cos t)}{d^{\prime}(\cos t-\sin t)} \\
& \left(\frac{d y}{d x}\right)_{t=0}=1
\end{aligned}
$$

\therefore Angle made by the tangent with the $x-$ axis is $\frac{\pi}{4}$

Choice (3) is the correct answer
5) If the tangent to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ at the point ' θ ' on it is normal to the circle $x^{2}+y^{2}-16 x=0$, then $\theta=$
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{2}$

Point ' θ ' is $(4 \cos \theta, 2 \sin \theta)$
Equation of tangent at this point is $\frac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}+\frac{\mathrm{yy}_{1}}{\mathrm{~b}^{2}}=1$

$$
\begin{aligned}
& \text { i.e. } \frac{x(4 / \cos \theta)}{184}+\frac{y(2 / \sin \theta)}{\not / 2}=1 \\
& \Rightarrow x \cos \theta+2 y \sin \theta=4
\end{aligned}
$$

Centre $(8,0)$ is a point on this. $\quad \therefore 8 \cos \theta=4$

$$
\Rightarrow \cos \theta=\frac{1}{2}
$$

Choice (2) is the correct answer

$$
\therefore \quad \theta=\frac{\pi}{3}
$$

6) The curves $y=x^{3}$ and $y=x^{2}+x-1$ at the point (1, 1)
(1) Cut orthogonally
(2) Touch each other
(3) Intersect at angle $\frac{\pi}{4}$
(4) Intersect at angle $\frac{\pi}{6}$

$$
y=x^{3}
$$

$$
y=x^{2}+x-1
$$

$\frac{d y}{d x}=3 x^{2}$

$$
\frac{d y}{d x}=2 x+1
$$

$$
m_{1}=\left(\frac{d y}{d x}\right)_{(1,1)}=3 \quad m_{2}=\left(\frac{d y}{d x}\right)_{(1,1)}=3
$$

$$
\mathrm{m}_{1}=\mathrm{m}_{2}
$$

\therefore The two curves touch each other

Choice (2) is the correct answer

$\mathbf{K E}_{\mathbf{A}}{ }^{\text {MIATHEMIATICS }}$

7) If θ is the acute angle between $x^{2}+y^{2}=4 x$ and $x^{2}+y^{2}=8$ at $(2,2)$, then $\sin \theta$ is equal to
(1) 1
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{1}{2}$

$K_{\mathbf{K}}^{\mathbf{A}}$

NIATHEMIATICS

$$
\begin{aligned}
& x^{2}+y^{2}=4 x \\
& 2 x+2 y \frac{d y}{d x}=4 \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2-\mathrm{x}}{\mathrm{y}} \\
& m_{1}=\left(\frac{d y}{d x}\right)_{(2,2)}=0 \\
& \text { Diff. w.r.t x } \\
& x^{2}+y^{2}=8 \\
& 2 x+2 y \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-x}{y} \\
& m_{2}=\left(\frac{d y}{d x}\right)_{(2,2)}=-1 \\
& \tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|=\left|\frac{-1-0}{1+0}\right|=1 \\
& \Rightarrow \theta=\frac{\pi}{4} \\
& \therefore \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Choice (3) is the correct answer

K EA MATHENIATHCS

8) If the curves $y^{2}=4 x$ and $x y=K$ intersect at right angles, then $\mathrm{K}^{2}=$
(1) 32
(2) 16
(3) 8
(4) 64

$$
\begin{equation*}
y^{2}=4 x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x y=K \tag{2}
\end{equation*}
$$

$\frac{d y}{d x}=\frac{2}{y}$

$$
x \frac{d y}{d x}+y=0 \Rightarrow \frac{d y}{d x}=\frac{-y}{x}
$$

Since the curves cut orthogonally, $\left(\frac{2}{y}\right)\left(\frac{-y}{x}\right)=-1$

$$
\Rightarrow x=2
$$

Substitute $x=2$ in (1) $\quad y^{2}=8$
From (2) $\mathrm{x}^{2} \mathrm{y}^{2}=\mathrm{K}^{2} \quad \Rightarrow \mathrm{~K}^{2}=(4)(8)=32$
Choice (1) is the correct answer
9) The lengths of the sub-tangent and sub-normal to the curve $x^{2}+x y+y^{2}=7$ at $(1,-3)$ are respectively
(1) 15 and $\frac{5}{3}$
(2) 5 and $\frac{3}{5}$
(3) 15 and $\frac{1}{5}$
(4) 15 and $\frac{3}{5}$

$$
x^{2}+x y+y^{2}=7
$$

$$
\text { Diff. w.r.t } x \quad 2 x+x \frac{d y}{d x}+y+2 y \frac{d y}{d x}=0
$$

$$
\frac{d y}{d x}=\frac{-2 x-y}{(x+2 y)}
$$

$$
\left(\frac{d y}{d x}\right)_{(1,-3)}=\frac{-2+3}{1-6}=\frac{-1}{5}
$$

$$
\mathrm{ST}=\frac{\mathrm{y}}{\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)}=(-3)(-5)=15
$$

$$
\mathrm{SN}=\mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3}{5}
$$

Choice (4) is the correct answer
10) For the curve $y^{2}=4 a x$ at any point
(1) \quad S.T is a constant and $S . N \propto y^{2}$
(2) \quad S.T $\propto y$ and $S . N$ is a constant
(3) \quad S.N is a constant and S.T $\propto x$
(4) Both S. T and S. N are constants

$$
\begin{aligned}
& y^{2}=4 a x \\
& \Rightarrow 2 y \frac{d y}{d x}=4 a \\
& \Rightarrow y \frac{d y}{d x}=2 a \quad \text { which is a constant } \\
& y^{2}=4 a x
\end{aligned}
$$

Taking $\log \quad 2 \log y=\log 4 a+\log x$

$$
\begin{array}{ll}
\text { Diff. w.r.t } x \text { 2. } \frac{1}{y} \frac{d y}{d x}=\frac{1}{x} & \text { i.e } 2 . \frac{1}{S T}=\frac{1}{x} \\
& \Rightarrow \text { S.T }=2 x
\end{array}
$$

Choice (3) is the correct answer
11) For the curve $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$
S. $T=S . N$ at the point $\theta=$
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{2}$
(3) π
(4) $\frac{\pi}{6}$

$$
\mathrm{ST}=\mathrm{SN} \Rightarrow\left(\frac{d y}{d x}\right)^{2}=1 \quad \Rightarrow \frac{d y}{d x}= \pm 1
$$

From the equations $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\mathscr{x}(\sin \theta)}{\mathfrak{x}(1+\cos \theta)} \\
& \text { when } \theta=\frac{\pi}{2} \quad, \quad \frac{d y}{d x}=1
\end{aligned}
$$

Choice (2) is the correct answer
12)

A stone projected vertically upwards moves a distance S metre in time t second given by $S=12 t-2.4 t^{2}$ The time taken by the stone in second to reach the greatest height and the greatest height in metre attained by the stone are respectively
(1) 2.5 and 30
(2) 2.0 and 15
(3) 2.5 and 25
(4) 2.5 and 15

$$
\begin{aligned}
& \mathrm{S}=12 \mathrm{t}-2.4 \mathrm{t}^{2} \\
& \frac{\mathrm{dS}}{\mathrm{dt}}=0 \\
& \Rightarrow 12-4.8 \mathrm{t}=0 \\
& \Rightarrow \mathrm{t}=\frac{12}{4.8}=\frac{120}{48}=\frac{5}{2} \\
& \text { When } \mathrm{t}=\frac{5}{2} \\
& \mathrm{~S}=12\left(\frac{5}{2}\right)-2.4\left(\frac{25}{4}\right)=30-15=15
\end{aligned}
$$

Choice (4) is the correct answer
13) If each side of an equilateral triangle is increasing at the rate of $4 \mathrm{~cm} / \mathrm{sec}$, then the rate at which its area is increasing when the side is 6 cm in sq. $\mathrm{cm} / \mathrm{sec}$ unit is
(1) $6 \sqrt{3}$
(2) $12 \sqrt{3}$
(3) $4 \sqrt{3}$
(4) $24 \sqrt{3}$

$$
\begin{aligned}
A & =\frac{\sqrt{3}}{4} L^{2} \\
\frac{\mathrm{dA}}{\mathrm{dL}} & =\frac{\sqrt{3}}{4}(2 \mathrm{~L}) \frac{\mathrm{dL}}{\mathrm{dt}} \\
& =\frac{\sqrt{3}}{4}(2)(6)(4)=12 \sqrt{3}
\end{aligned}
$$

Choice (2) is the correct answer
14) If the distance 'S' travelled by a particle is proportional to the square root of its velocity, then its acceleration is
(1) A constant
(2) $\propto S^{2}$
(3) $\propto S^{3}$
(4) $\propto \frac{1}{S^{3}}$

$$
\begin{aligned}
& S=K \sqrt{v} \\
& \Rightarrow \mathrm{~S}^{2}=\mathrm{K}^{2} \mathrm{v} \Rightarrow 2 \mathrm{~S} \frac{\mathrm{dS}}{\mathrm{dt}}=\mathrm{K}^{2} \frac{\mathrm{dv}}{\mathrm{dt}} \\
& \therefore \frac{\mathrm{dv}}{\mathrm{dt}}=\frac{2 \mathrm{~Sv}}{\mathrm{~K}^{2}}=\frac{2 \mathrm{~S}}{\mathrm{~K}^{2}}\left(\frac{\mathrm{~S}^{2}}{\mathrm{~K}^{2}}\right) \\
& =(\text { constant }) S^{3} \\
& \Rightarrow \text { acceleration } \propto S^{3}
\end{aligned}
$$

Choice (4) is the correct answer
15) The volume of a sphere is increasing at the rate of $4 \pi \mathrm{cc} / \mathrm{sec}$. The rate at which its radius is increasing, when its surface area is $64 \pi \mathrm{cc}$ in $\mathrm{cm} / \mathrm{sec}$ unit is
(1) $\frac{1}{8}$
(2) $\frac{1}{16}$
(3) $\frac{1}{4}$
(4) 16

$K_{\mathbf{A}}$

VIATHEMIATICS

$$
V=\frac{4}{3} \pi r^{3}
$$

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{4}{3} \pi \nexists \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}
$$

Given $4 \pi r^{2}=64 \pi$
$4 \pi=64 \pi \frac{\mathrm{dr}}{\mathrm{dt}}$
$\therefore \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{1}{16}$

Choice (2) is the correct answer
16) The stationary points of the function $x^{3}-3 x^{2}-9 x+1$ are
(1) $x=3$ and $x=1$
(2) $x=-3$ and $x=-1$
(3) $x=3$ and $x=-1$
(4) $x=-3$ and $x=1$

$$
\begin{aligned}
& y=x^{3}-3 x^{2}-9 x+1 \\
& \frac{d y}{d x}=3 x^{2}-6 x-9 \\
& \\
& =3\left(x^{2}-2 x-3\right)
\end{aligned}
$$

Clearly when $x=-1$, and $x=3, \frac{d y}{d x}=0$

Choice (3) is the correct answer
17) The maximum value of $x e^{-x}$ is
(1) e
(2) $\frac{1}{e}$
(3) 1
(4) e^{2}

$$
f(x)=x e^{-x}
$$

$$
f^{\prime}(x)=0 \Rightarrow(-x+1) e^{-x}=0
$$

$$
\Rightarrow x=1
$$

$$
f(1)=e^{-1}=\frac{1}{e}
$$

Choice (2) is the correct answer
18) The area of a circular sector is 16 sq . units. The radius Of the sector for which the perimeter is minimum is
(1) 4
(2) 8
(3) 2
(4) 6
given $\quad \frac{1}{2} r^{2} \theta=16$
$\Rightarrow r \theta=\frac{32}{r}$
Perimeter

$$
P=2 r+r \theta
$$

$$
P=2 r+\frac{32}{r}
$$

$$
\begin{array}{r}
\frac{\mathrm{dP}}{\mathrm{dr}}=0 \Rightarrow 2-\frac{32}{\mathrm{r}^{2}}=0 \Rightarrow r^{2}=16 \\
\text { or } r=4
\end{array}
$$

Choice (1) is the correct answer
19) If $x=1$ and $x=-2$ are points of minima and maxima respectively of a function $f(x)$ and $f^{\prime}(0)=-2$. Then $f^{\prime}(2)=$
(1) -4
(2) 2
(3) 4
(4) 8

$$
\begin{gathered}
\text { At } \mathrm{x}=1 \text { and } \mathrm{x}=-2 \quad \frac{d y}{d x}=f^{\prime}(x)=0 \\
\therefore f^{\prime}(x)=k(x-1)(x+2) \\
f^{\prime}(0)=-2 \Rightarrow k=1 \\
\therefore f^{\prime}(x)=(x-1)(x+2) \\
f^{\prime}(2)=4
\end{gathered}
$$

Choice (3) is the correct answer
20) The maximum value of $\sqrt{3} \cos x+\sin x$ is
(1) $\sqrt{3}$
(2) 2
(3) 1
(4) $\sqrt{3}+1$

$$
\begin{aligned}
& \sqrt{3} \cos x+\sin x=2\left(\frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x\right) \\
&=2 \cos \left(x-\frac{\pi}{6}\right) \quad-1 \leq \cos \theta \leq 1 \\
& \therefore \quad-1 \leq \cos \left(x-\frac{\pi}{6}\right) \leq 1 \\
& \therefore \quad-2 \leq 2 \cos \left(x-\frac{\pi}{6}\right) \leq 2
\end{aligned}
$$

Choice (2) is the correct answer
21) The maximum value of $15-\sqrt{14+3 \cos x-4 \sin x}$ is
(1) 15
(2) 12
(3) 10
(4) 5

Minimum value of $3 \cos x-4 \sin x$ is -5
\therefore Maximum value of given expression

$$
\begin{aligned}
& 15-\sqrt{14-5} \\
& 15-3=12
\end{aligned}
$$

Choice (2) is the correct answer
22) If the maximum value of $a \cos x+\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$ is 5 , then the value of $\mathrm{a}=$
(1) 1 or -3
(2) 1 or 3
(3) -1 or 3
(4) -1 or -3

$$
\begin{aligned}
\operatorname{acos} x+\sqrt{2} \sin \left(x+\frac{\pi}{4}\right) & =\operatorname{acos} x+\sqrt{2}\left(\sin x\left(\frac{1}{\sqrt{2}}\right)+\cos x\left(\frac{1}{\sqrt{2}}\right)\right) \\
& =a \cos x+\sin x+\cos x \\
& =(a+1) \cos x+\sin x
\end{aligned}
$$

Maximum value of this is $\sqrt{(a+1)^{2}+1}=5$
(Given)

$$
\begin{gathered}
\Rightarrow(a+1)^{2}+1=5 \\
(a+1)^{2}=4 \\
a+1= \pm 2 \\
\therefore a=1 \text { or }-3
\end{gathered}
$$

Choice (1) is the correct answer
23) The minimum and maximum values of $\sin ^{4} x+\cos ^{4} x$ are
(1) $\frac{1}{2}$ and $\frac{3}{2}$
(2) $\frac{1}{2}$ and 1
(3) 1 and $\sqrt{2}$
(4) $\frac{1}{2}$ and $\sqrt{2}$

$$
\sin ^{4} x+\cos ^{4} x=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x
$$

$$
\begin{aligned}
& =1-\frac{1}{2}(2 \sin x \cos x)^{2} \\
& =1-\frac{1}{2} \sin ^{2} 2 x \quad \begin{array}{l}
\text { Max. value of } \sin ^{2} 2 x \text { is } 1 \text { and } \\
\text { Min. value is } 0
\end{array}
\end{aligned}
$$

\therefore Minimum value of the given expression is $1-\frac{1}{2}=\frac{1}{2}$

Maximum value $=1-0=1$

Choice (2) is the correct answer
24) Sum of two positive numbers is 48 . The maximum value of their product is
(1) 320
(2) 560
(3) 576
(4) 380

When sum of two numbers is given, say M, we know that the product is Maximum only when the numbers are equal

$$
\text { i.e } \frac{M}{2} \text { and } \frac{M}{2}
$$

Therefore the maximum product is $\left(\frac{M}{2}\right)^{2}$ In this case it is $\left(\frac{48}{2}\right)^{2}=576$

Choice (3) is the correct answer
25) If α, β and 2 are the roots of the equation $x^{3}-22 x^{2}+b x-c=0$ then the maximum value of ' c ' is
(1) 400
(2) 200
(3) 350
(4) 600

Since α, β and 2 are the roots of the given equation

$$
\begin{array}{ll}
\alpha+\beta+2=22 \\
\alpha+\beta=20 & \text { and } \\
& (\alpha \beta)(2)=c \\
2 \alpha \beta=c \\
\alpha \beta=\frac{c}{2}
\end{array}
$$

The product $\alpha \beta$ is maximum only when $\alpha=\beta=10$
\therefore Max. value of $\alpha \beta=$ (10) (10)
\Rightarrow Max. value of $\frac{c}{2}=100$

$$
\therefore c_{\max }=200
$$

Choice (2) is the correct answer

