

Applications of

Derivatives

By Dr. M. Sathyakrishna

Professor of Mathematics & Vice – Principal MES Degree College

Slides by

J V Venkatram Sastry

1) The points on the curve $y = x^3 - 3x$

where the tangents drawn are parallel to the x - axis are

(3) (1, 2) and (-1, -2) **(4)** (1, -2) and (-1, 2)

$$y = x^3 - 3x$$

$$\frac{dy}{dx} = 0 \Longrightarrow 3x^2 - 3 = 0 \Longrightarrow 3(x^2 - 1) = 0$$

 $\Rightarrow x = \pm 1$

when
$$x = 1$$
, $y = 1 - 3 = -2$
when $x = -1$, $y = -1 + 3 = 2$

 \therefore the points are (1, - 2) and (- 1, 2)

Choice (2) is the correct answer

2) The tangent to the curve $y = 2x^2 - 3x + 1$

at (2, 3) on it is

(1) Parallel to 5x - y - 1 = 0 (2) Parallel to y = 3x + 5

(3) Perpendicular to 5x - y + 3 (4) Parallel to the x - axis

$$y=2x^2-3x+1$$

$$\frac{dy}{dx} = 4x - 3$$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(2,3)} = 8 - 3 = 5$$

Hence, the tangent is parallel to 5x - y - 1 = 0

Choice (1) is the correct answer

3) The equation of the normal to the curve $y = ae^{\overline{b}}$ where it crosses the y – axis is

Х

(1)
$$bx - ay = a^2$$
 (2) $ax + by = ab$

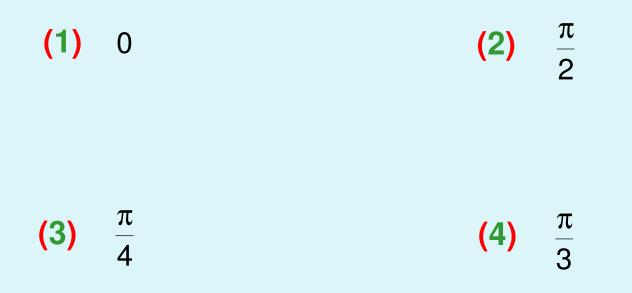
(3)
$$ax - by = ab$$
 (4) $bx + ay = a^2$

MATHEMATICS $v = ae^{\overline{b}}$ Put x = 0, y = a. (0, a) is the point $\left(\frac{dy}{dx}\right) = \frac{a}{b}e^{\frac{x}{b}} \qquad \qquad \therefore \qquad \left(\frac{dy}{dx}\right)_{(0,a)} = \frac{a}{b}$ Slope of the normal = $\frac{-b}{a}$ Eqn: $y-a = \frac{-b}{a}(x-0) \implies bx + ay = a^2$

K.

Choice (4) is the correct answer

- 4) The tangent drawn to the curve $x = e^t cost$, $y = e^t sint$
 - at t = 0, makes an angle with the x axis equal to



 $\frac{dy}{dx} = \frac{e^t(sint + cost)}{e^t(cost - sint)}$

$$\frac{dy}{dx} = \frac{e^{t}(\sin t + \cos t)}{e^{t}(\cos t - \sin t)}$$

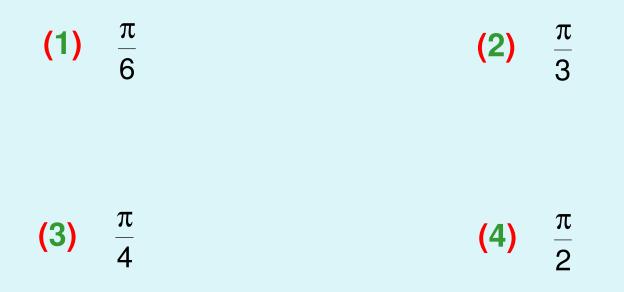
$$\left(\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}\right)_{\mathrm{t}=0} = 1$$

 \therefore Angle made by the tangent with the x – axis is $\frac{\pi}{4}$

Choice (3) is the correct answer

KEA MATHEMATICS

5) If the tangent to the ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$ at the point ' θ ' on it is normal to the circle $x^2 + y^2 - 16x = 0$, then $\theta =$



Point ' θ ' is (4 cos θ , 2 sin θ)

K.

Equation of tangent at this point is

$$\frac{\mathbf{x}\mathbf{x}_1}{\mathbf{a}^2} + \frac{\mathbf{y}\mathbf{y}_1}{\mathbf{b}^2} = \mathbf{1}$$

i.e.
$$\frac{x(4\cos\theta)}{164} + \frac{y(2\sin\theta)}{42} = 1$$

$$\Rightarrow x \cos \theta + 2y \sin \theta = 4$$

Centre (8, 0) is a point on this. $\therefore 8 \cos\theta = 4$ $\Rightarrow \cos\theta = \frac{1}{2}$ Choice (2) is the correct answer $\therefore \theta = \frac{\pi}{3}$

MATHEMATICS

6) The curves $y = x^3$ and $y = x^2 + x - 1$ at the point (1, 1)

(1) Cut orthogonally (2) Touch each other

(3) Intersect at angle
$$\frac{\pi}{4}$$
 (4) Intersect at angle $\frac{\pi}{6}$

$$\frac{dy}{dx} = 3x^2 \qquad \qquad \frac{dy}{dx} = 2x + 1$$

$$m_1 = \left(\frac{dy}{dx}\right)_{(1,1)} = 3 \qquad m_2 = \left(\frac{dy}{dx}\right)_{(1,1)} = 3$$

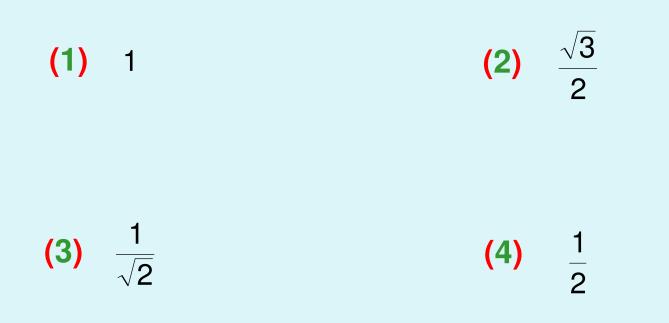
 $m_1 = m_2$

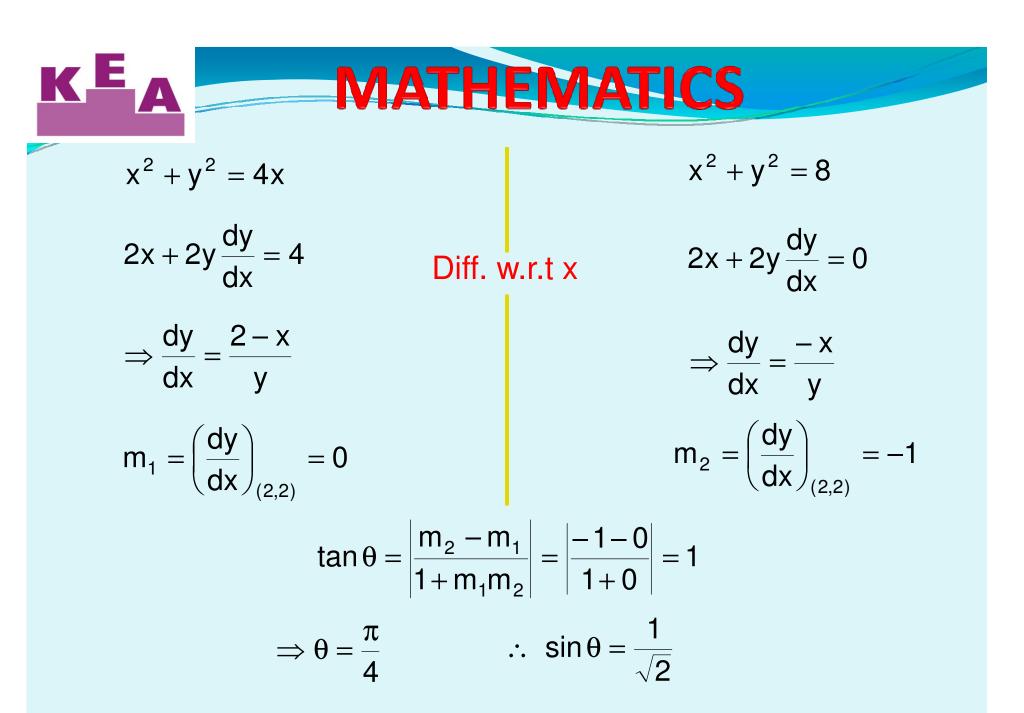
 \therefore The two curves touch each other

Choice (2) is the correct answer

7) If θ is the acute angle between $x^2 + y^2 = 4x$ and

 $x^2 + y^2 = 8$ at (2, 2), then sin θ is equal to





Choice (3) is the correct answer

8) If the curves $y^2 = 4x$ and xy = K intersect at right angles, then $K^2 =$

(1) 32 **(2)** 16

(3) 8 **(4)** 64

$$\frac{dy}{dx} = \frac{2}{y} \qquad \qquad x\frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = \frac{-y}{x}$$

Since the curves cut orthogonally,

$$\left(\frac{2}{y}\right)\left(\frac{-y}{x}\right) = -1$$

$$\Rightarrow x = 2$$

Substitute x = 2 in (1) $y^2 = 8$

From (2) $x^2y^2 = K^2 \implies K^2 = (4)(8) = 32$

Choice (1) is the correct answer

9) The lengths of the sub-tangent and sub-normal to the curve $x^2 + xy + y^2 = 7$ at (1, - 3) are respectively

(1)
$$15 \text{ and } \frac{5}{3}$$
 (2) $5 \text{ and } \frac{3}{5}$
(3) $15 \text{ and } \frac{1}{5}$ (4) $15 \text{ and } \frac{3}{5}$

$$x^2 + xy + y^2 = 7$$

Diff. w.r.t x
$$2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$$

 $\frac{dy}{dx} = \frac{-2x - y}{(x + 2y)}$

$$\left(\frac{dy}{dx}\right)_{(1,-3)} = \frac{-2+3}{1-6} = \frac{-1}{5}$$

$$ST = \frac{y}{\left(\frac{dy}{dx}\right)} = (-3)(-5) = 15$$

$$SN = y\frac{dy}{dx} = \frac{3}{5}$$

Choice (4) is the correct answer

KEA MATHEMATICS

10) For the curve $y^2 = 4ax$ at any point

(1) S.T is a constant and S.N $\propto y^2$

(2) S.T \propto y and S. N is a constant

(3) S.N is a constant and S.T $\propto x$

(4) Both S. T and S. N are constants

$$y^2 = 4ax$$

$$\Rightarrow 2y \frac{dy}{dx} = 4a$$

$$\Rightarrow y \frac{dy}{dx} = 2a \quad \text{which is a constant}$$

$$y^{2} = 4ax$$

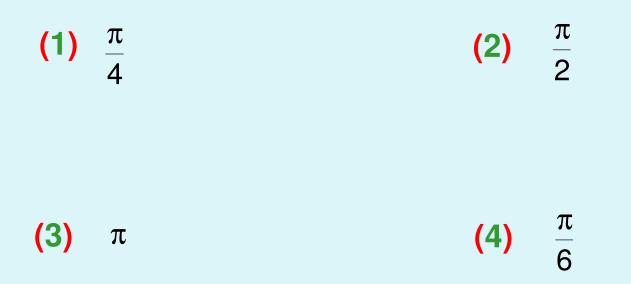
Taking log $2\log y = \log 4a + \log x$
Diff. w.r.t $x \quad 2.\frac{1}{y}\frac{dy}{dx} = \frac{1}{x}$ i.e $2.\frac{1}{ST} = \frac{1}{2}$

 \Rightarrow S.T = 2x

Choice (3) is the correct answer

11) For the curve $x = a (\theta + \sin \theta)$, $y = a (1 - \cos \theta)$

S. T = S. N at the point θ =



KEA MATHEMATICS

$$ST = SN \implies \left(\frac{dy}{dx}\right)^2 = 1 \implies \frac{dy}{dx} = \pm 1$$

From the equations $x = a (\theta + \sin \theta)$ and $y = a (1 - \cos \theta)$

$$\frac{dy}{dx} = \frac{\alpha(\sin\theta)}{\alpha(1+\cos\theta)}$$

when
$$\theta = \frac{\pi}{2}$$
 , $\frac{dy}{dx} = 1$

Choice (2) is the correct answer

12) A stone projected vertically upwards moves a distance S metre in time t second given by $S = 12t - 2.4t^2$ The time taken by the stone in second to reach the greatest height and the greatest height in metre attained by the stone are respectively

(1) 2.5 and 30 **(2)** 2.0 and 15

(3) 2.5 and 25

(4) 2.5 and 15

0 1+2

0

101

$$S = 12t - 2.4t$$

$$\frac{dS}{dt} = 0$$

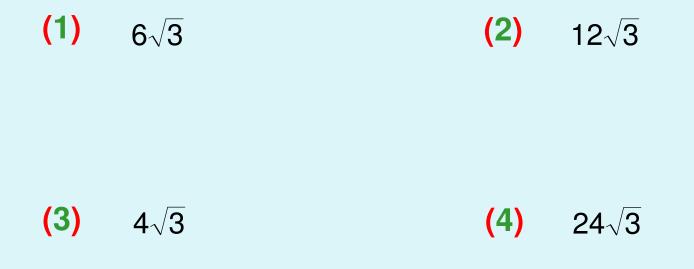
$$\Rightarrow 12 - 4.8t = 0$$

$$\Rightarrow t = \frac{12}{4.8} = \frac{120}{48} = \frac{5}{2}$$

When $t = \frac{5}{2}$
$$S = 12\left(\frac{5}{2}\right) - 2.4\left(\frac{25}{4}\right) = 30 - 15 = 15$$

Choice (4) is the correct answer

13) If each side of an equilateral triangle is increasing at the rate of 4 cm/sec, then the rate at which its area is increasing when the side is 6 cm in sq. cm/sec unit is



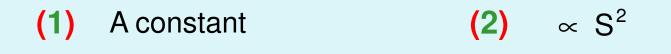
$$A = \frac{\sqrt{3}}{4}L^2$$

$$\frac{\mathrm{dA}}{\mathrm{dL}} = \frac{\sqrt{3}}{4} (2\mathrm{L}) \frac{\mathrm{dL}}{\mathrm{dt}}$$

$$=\frac{\sqrt{3}}{4}(2)(6)(4)=12\sqrt{3}$$

Choice (2) is the correct answer

14) If the distance 'S' travelled by a particle is proportional to the square root of its velocity, then its acceleration is



 $\propto S^3$ (4 (3)

)
$$\propto \frac{1}{S^3}$$

$$S = K\sqrt{v}$$

$$\Rightarrow S^{2} = K^{2}v \Rightarrow 2S\frac{dS}{dt} = K^{2}\frac{dv}{dt}$$

$$\therefore \frac{\mathrm{dv}}{\mathrm{dt}} = \frac{2\mathrm{Sv}}{\mathrm{K}^2} = \frac{2\mathrm{S}}{\mathrm{K}^2} \left(\frac{\mathrm{S}^2}{\mathrm{K}^2}\right)$$

= (constant) S³

 \Rightarrow acceleration \propto S³

Choice (4) is the correct answer

15) The volume of a sphere is increasing at the rate of 4π cc/sec. The rate at which its radius is increasing, when its surface area is 64π cc in cm/sec unit is

(1) $\frac{1}{8}$ (2) $\frac{1}{16}$ (3) $\frac{1}{4}$ (4) 16

$$V = \frac{4}{3}\pi r^3$$

$$\frac{dV}{dt} = \frac{4}{3}\pi \, \mathcal{S}r^2 \, \frac{dr}{dt}$$

Given $4\pi r^2 = 64\pi$

$$4\pi = 64\pi \frac{\mathrm{dr}}{\mathrm{dt}} \qquad \therefore \quad \frac{\mathrm{dr}}{\mathrm{dt}} = \frac{1}{16}$$

Choice (2) is the correct answer

16) The stationary points of the function $x^3 - 3x^2 - 9x + 1$ are

(1)
$$x = 3$$
 and $x = 1$ (2) $x = -3$ and $x = -1$

(3) x = 3 and x = -1 (4) x = -3 and x = 1

$$y = x^3 - 3x^2 - 9x + 1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x - 9$$

$$=3(x^2-2x-3)$$

Clearly when x = -1, and x = 3,
$$\frac{dy}{dx} = 0$$

Choice (3) is the correct answer

17) The maximum value of xe^{-x} is

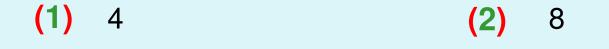
(1) e (2) $\frac{1}{e}$

(3) 1 (4) e^2

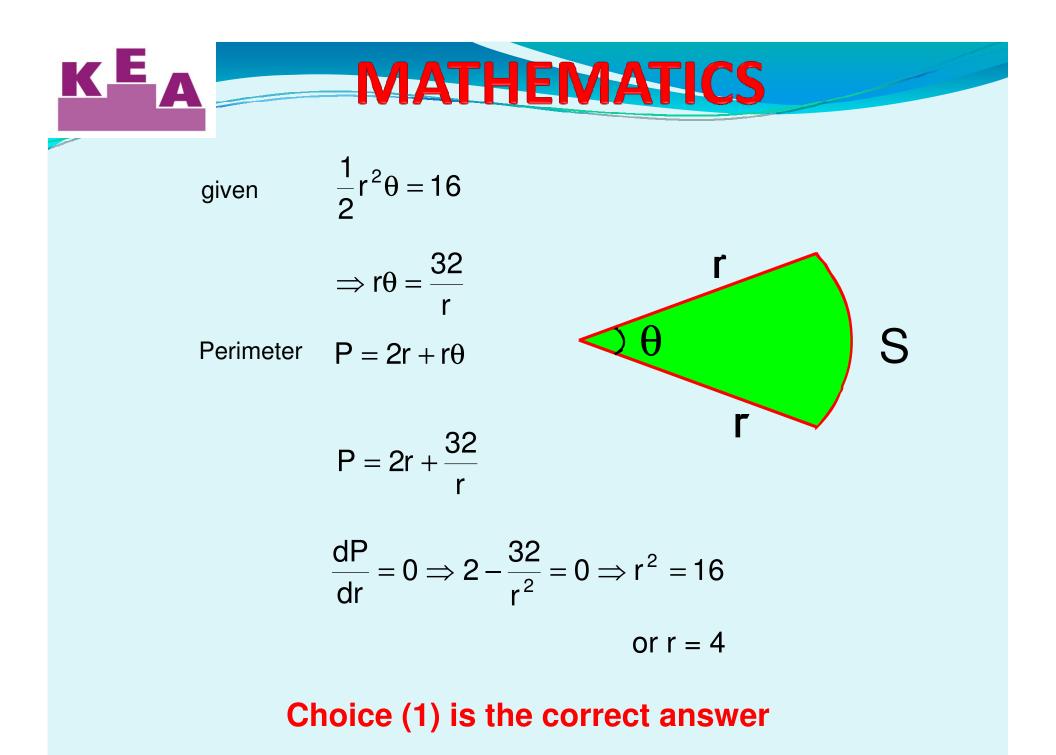
$$f(x) = xe^{-x}$$

$$f'(x) = 0 \Longrightarrow (-x+1)e^{-x} = 0$$
$$\Longrightarrow x = 1$$
$$f(1) = e^{-1} = \frac{1}{e}$$

18) The area of a circular sector is 16 sq. units. The radiusOf the sector for which the perimeter is minimum is



(3) 2 **(4)** 6



19) If x = 1 and x = -2 are points of minima and maxima respectively of a function f(x) and f'(0) = -2. Then f'(2) =

(3) 4 **(4)** 8

At x = 1 and x = -2
$$\frac{dy}{dx} = f'(x) = 0$$

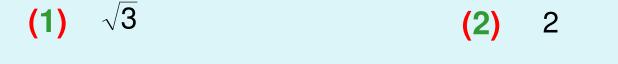
.:. $f'(x) = k(x-1)(x+2)$

$$f'(0) = -2 \implies k = 1$$

$$f'(x) = (x-1)(x+2)$$

$$f'(2) = 4$$

20) The maximum value of $\sqrt{3}\cos x + \sin x$ is



(3) 1 (4) $\sqrt{3}+1$

$$\sqrt{3}\cos x + \sin x = 2\left(\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x\right)$$

$$= 2\cos\left(x - \frac{\pi}{6}\right) \qquad -1 \le \cos\theta \le 1$$

$$-1 \le \cos\left(x - \frac{\pi}{6}\right) \le 1$$

$$-2 \le 2\cos\left(x-\frac{\pi}{6}\right) \le 2$$

21) The maximum value of $15 - \sqrt{14 + 3\cos x - 4\sin x}$ is

(1) 15 **(2)** 12

(3) 10 **(4)** 5

Minimum value of $3 \cos x - 4 \sin x$ is -5

... Maximum value of given expression

$$15 - \sqrt{14 - 5}$$

$$15 - 3 = 12$$

KEA MATHEMATICS

22) If the maximum value of $a\cos x + \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)$ is 5, then the value of a =

(1) 1 or – 3 (2) 1 or 3

(3) -1 or 3 **(4)** -1 or -3

EXAMPLATE CONTINUES:

$$a\cos x + \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = a\cos x + \sqrt{2}\left(\sin x\left(\frac{1}{\sqrt{2}}\right) + \cos x\left(\frac{1}{\sqrt{2}}\right)\right)$$

$$= a\cos x + \sin x + \cos x$$

$$= (a + 1)\cos x + \sin x$$
Maximum value of this is $\sqrt{(a + 1)^2 + 1} = 5$ (Given)

$$\Rightarrow (a + 1)^2 + 1 = 5$$

$$(a + 1)^2 + 1 = 5$$

$$(a + 1)^2 = 4$$

$$a + 1 = \pm 2$$

$$\therefore a = 1 \text{ or } -3$$
Choice (1) is the correct answer

23) The minimum and maximum values of $\sin^4 x + \cos^4 x$ are

(1)
$$\frac{1}{2}$$
 and $\frac{3}{2}$ (2) $\frac{1}{2}$ and 1
(3) 1 and $\sqrt{2}$ (4) $\frac{1}{2}$ and $\sqrt{2}$

$$\sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x$$

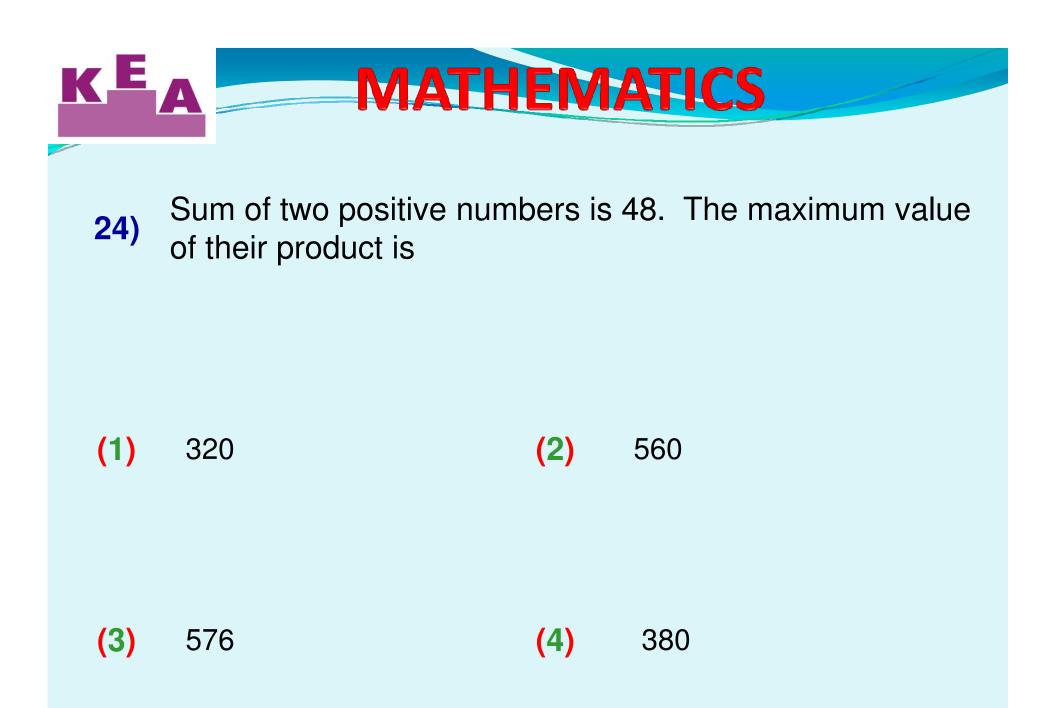
$$=1-\frac{1}{2}(2\sin x\cos x)^2$$

$$=1-\frac{1}{2}\sin^2 2x$$

Max. value of $\sin^2 2x$ is 1 and Min. value is 0

 \therefore Minimum value of the given expression is $1 - \frac{1}{2} = \frac{1}{2}$

Maximum value = 1 - 0 = 1



KEA MATHEMATICS

When sum of two numbers is given, say M, we know that the product is Maximum only when the numbers are equal

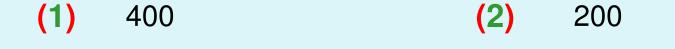
i.e
$$\frac{M}{2}$$
 and $\frac{M}{2}$

Therefore the maximum product is

$$\left(\frac{M}{2}\right)^2$$

In this case it is
$$\left(\frac{48}{2}\right)^2 = 576$$

25) If α , β and 2 are the roots of the equation $x^3 - 22x^2 + bx - c = 0$ then the maximum value of 'c' is



(3) 350 **(4)** 600

Since α , β and 2 are the roots of the given equation

 $\alpha + \beta + 2 = 22$ and $(\alpha\beta)(2) = c$ $\alpha + \beta = 20$ $2\alpha\beta = c$ $\alpha\beta = \frac{c}{2}$

The product $\alpha \beta$ is maximum only when $\alpha = \beta = 10$

∴ Max. value of
$$\alpha \beta = (10) (10)$$

⇒ Max. value of $\frac{c}{2} = 100$
∴ $c_{max} = 200$

