

Areas bounded by the Gurves
By
 Lecturer

B L R P College Sirigere
Vikasana - CET 2012

In this chapter, while calculating the definite integral as the 'limit of the sum'. We have learnt the process of finding the area bounded by the curve $y=f(x)$, the x-axis and the ordinates $x=a$ and $x=b$.

Vikasana - CET 2013

In this chapter we shall discuss the

 use of definite integrals. In computing areas bounded by simple curves such as straight lines, circles, parabolas and other conics.Vikasana - CET 2013

Let $y=f(x)$ be a finite and continuous curve in the interval [a,b]. Then the area between the curve $y=f(x)$, x-axis and two ordinates at the points $x=a$ and $x=b$ is given by,

Vikasana - CET 2013

$K_{\mathbf{A}}$

Let $y=f(x)$ be a continuous curve below the x-axis. Then the area between the curve $y=f(x), x$-axis and the ordinates $x=a$ and $x=b$ is given by $A=\int_{a}^{b}-y d x=-\int_{a}^{b} f(x) d x$
$A=\left|\int_{a}^{b} f(x) d x\right|$

Vikasana - CET 2013

$K_{\mathbf{A}}$

The area bounded by the curve $x=f(y), y$-axis and the lines $y=c$ and $y=d(c<d)$ is given by

$$
A=\int_{c}^{d} x d y=\int_{c}^{d} f(y) d y
$$

Vikasana - CET 2013

$K^{E_{A}}$

If the curve $x=f(y)$ lies to the left of y-axis then the area bounded by the curve $y=f(x)$ and the lines $y=c$ and $y=d$ is given by
$A=\int_{c}^{d}(-x) d y=-\int_{c}^{d} x d y$
$A=\left|\int_{c}^{d} f(y) d y\right|$

Vikasana - CET 2013

$K_{\mathbf{A}}$

If the curve crosses x-axis at one point ' C ' then the area bounded by the curve is given by.

$$
A=\left|\int_{a}^{c} f(x) d x\right|+\left|\int_{c}^{b} f(x) d x\right|
$$

Vikasana - CET 2013

$K_{\mathbf{A}}$

If the curve crosses x-axis in two points c\&d, then the area between the curve $y=f(x)$, the x-axis and the ordinates $x=a \quad \& \quad x=b$ is

$$
A=\left|\int_{a}^{c} f(x) d x\right|+\left|\int_{c}^{d} f(x) d x\right|+\left|\int_{d}^{b} f(x) d x\right|
$$

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

The area enclosed between the curves $y=f_{1}(x)$ and $y=f_{2}(x)$ between the ordinates $x=a \quad \& x=b$ is given by

Vikasana - CET 2013

If the two curves do not cross each other between lines $x=a \& x=b$, then the area is

Curve Sketching for Area

For the evaluation of area of bounded regions, it is very essential to draw the rough sketch of the curves. The following points are very useful to draw a rough sketch of the curve.

Vikasana - CET 2013

- For all ' x ' for which $y=f(x)=0 \quad(a \leq x \leq b)$
- Mark these points on x-axis.
- In case of two curves, find the point of intersection of two curves.
- Use symmetry of the curve in finding area.

Vikasana - CET 2013

$K_{\mathbf{E}}^{\mathbf{A}}$

Symmetry about x-axis -

If the equation of the curve does not change when ' y ' is changed to ' $-y$ ', then the curve is symmetrical about x - axis.
(i.e. If only even power of 'y' occur, then the curve is symmetrical about x-axis).

Ex: $y^{2}=4 a x$ is symmetrical about x-axis. Vikasana - CET 2013

Symmetry about y-axis :
If the equation of the curve does not change, when x is changed to $-x$, then the curve is symmetrical about y-axis. (If only even power of x occur in the equation then then curve is symmetrical about y-axis) $E x: x^{2}=4 a y$ is symmetrical about y-axis. Vikasana - CET 2013 the curve is symmetric in opposite quadrants.

Ex: $y=\operatorname{Sin} x$ is symmetrical in opposite quadrants.

Vikasana - CET 2013

Symmetric about the line $y=x$:

 If the equation of the curve remains same on interchanging x and y, then the curve is symmetrical about the line $y=x$.Ex: $x^{3}+y^{3}=3 a x y$ is symmetrical about the line $y=x$.

Vikasana - CET 2013

${ }_{K} \mathbf{E}_{\mathbf{A}}$

Some standard results on area :

- The area of the region bounded by $y^{2}=4 a x$ and $x^{2}=4 b y$ is $\frac{16 a b}{3}$ sq units.
- Area of the region bounded by $y^{2}=4 a x$ and $y=m x$ is $\frac{8 a^{2}}{3 m^{3}}$ sq units.
- Area of the region bounded by $y^{2}=4 a x$ and its latus return is $\frac{8 a^{2}}{3} \mathrm{sq}$ units.

Vikasana - CET 2013

- Area bounded by $y=\sin x$, x-axis is 2 sq units. Infact, area of one loop of $y=\sin x$ and $y=\cos x$ is 2sq. units
- Area bounded by, $y=\log _{e} x, y=0$ and $x=0$ is 1 sq units

Vikasana - CET 2013

$K_{\mathbf{E}}^{\mathbf{A}}$

- Area of region bounded by the curve $y=\operatorname{sinax}$ and x-axis in $[0, n p]$ is $\frac{2 n}{a}$
- Area of region bounded by the curve $y=\cos a x$ and x-axis in $[0, \mathrm{n} p]$ is $\frac{2 n}{a}$
- Area of region bounded by one ${ }^{a}$ arch of sinax or cosax and x-axis is $\frac{2}{a}$ sq units.
- Area of circle $x^{2}+y^{2}=a^{2}$ is πa^{2} sq. uints Vikasana - CET 2013
- The area of region bounded by parabola $y=a x^{2}+b x+c$ or $x=a y^{2}+b y+c$ \& x-axis is $\frac{\left(b^{2}-4 a c\right)^{\frac{3}{2}}}{6 a^{2}}$
- The area ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$ sq units.

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

1. The area region bounded by the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is

$$
\text { 1. } \frac{16 a^{2}}{3}
$$

4. none

Vikasana - CET 2013

Sol ${ }^{n}$: WKT The area of the region bounded by $y^{2}=4 a x$ and $x^{2}=4 a y$ is $16 a b$ sq. units.

Here replace 'b' by 'a' we get sq. units.

Vikasana - CET 2013

$K^{\mathbf{K}_{\mathbf{A}}}$

2. The area enclosed between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is
3. $\frac{3}{4}$ squnits 2. 16 sq units 3. $\frac{16}{3}$ sq units 4. $\frac{32 a^{2}}{3}$ sq units

Vikasana - CET 2013

Here $a=1 \quad \& \quad b=1$
Required area is

Vikasana - CET 2013

$K_{\mathbf{K}}^{\mathbf{A}}$

3. The area enclosed between the parabolas $y^{2}=6 x$ and $x^{2}=6 y$ is

1. $\mathbf{1 2}$ sq. uints 2. $\frac{16}{3}$ sq. uints
2. 36 sq. uints 4. none of these

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{E}}^{\mathbf{A}}$

$$
\begin{array}{ll}
y^{2}=6 x & x^{2}=6 y \\
y^{2}=4 a x & x^{2}=4 b y \\
4 a=6 & 4 b=6 \\
\hline a=\frac{3}{2} & b=\frac{3}{2} \\
\hline
\end{array}
$$

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

4. The area inside the parabola $y^{2}=4 a x$ between the lines $x=a$ and $x=4 a$ is

$$
\begin{array}{ll}
\text { 1. } 4 a^{2} & \text { 2. } 28 a^{2} \\
\text { 3. } \frac{28 a^{2}}{3} & \text { 4. } \frac{56 a^{2}}{3}
\end{array}
$$

Vikasana - CET 2013

$K_{\mathbf{A}}$

Since $y^{2}=4 a x$ and is symmetrical about x-axis Area of the region $=2$ (area of the region in the $1^{\text {st }}$ quadrant)
$=2 \int_{a}^{4 a} y d x=2 \int_{a}^{4 a} \sqrt{4 a x} d x=2 \quad 2 \sqrt{a} \int_{a}^{4 a} \sqrt{x} d x$
$=4 \sqrt{a} \frac{x^{3 / 2}}{3}$

$$
=\frac{8}{3} \sqrt{a}\left[(4 a)^{\frac{3}{2}}-a^{\frac{3}{2}}\right] \frac{8}{3} \sqrt{a}\left[8 a^{3 / 2}-a^{3 / 2}\right]
$$

$\mathbf{K}_{\mathbf{A}}$

5. The area bounded by the parabola $y^{2}=4 a x$ and the line $x=a$ and $x=4 a$ and x-axis is

$$
\begin{array}{ll}
\text { 1. } \frac{35 a^{2}}{3} & \text { 2. } \frac{4 a^{2}}{3} \\
\text { 3. } \frac{7 a^{2}}{3} & \text { 4. } \frac{28 a^{2}}{3}
\end{array}
$$

Vikasana - CET 2013

Since the area bounded by the parabola $y^{2}=4 a x$ \& x-axis and lines $x=a$ and $x=4 a$ is

$\mathbf{K}_{\mathbf{A}}$

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

6. The area of the figure bounded by $y=\operatorname{Cos} x$ and $y=\operatorname{Sin} x$ and the
ordinates $x=0$ and $x=\frac{\pi}{4}$ is

Vikasana - CET 2013

$$
\begin{aligned}
& \mathbf{K E}_{\mathbf{A}} \\
& \text { Required Area }=\int_{0}^{\frac{\pi}{4}}(\operatorname{Cos} x-\sin x) d x \\
&=[\sin x+\cos x]_{0}^{\frac{\pi}{4}} \\
&=\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right)-(\sin 0+\operatorname{Cos} 0) \\
&=\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(0+1)=\frac{2}{\sqrt{2}}-1=\sqrt{2}-1 \\
& \text { Vikasana-CET 2013 }
\end{aligned}
$$

${ }_{K} \mathbf{E}_{\mathbf{A}}$

7. The area bounded by $y=\log _{e} x$, the x-axis and the line $x=\boldsymbol{e}$ is

$$
\begin{array}{ll}
\text { 1. } 1 & \text { 2. } 1-\frac{1}{e} \\
\text { 3. } 1+\frac{1}{e} & \text { 4. } e
\end{array}
$$

Vikasana - CET 2013

$K_{\mathbf{K}}^{\mathbf{A}}$

$$
\begin{array}{rl|l}
\text { Area } & =\int_{1}^{e} \log x d x & \begin{array}{c}
y=\log x \\
\text { et } x=e \\
1
\end{array} \\
& =[x \log x-x]_{1}^{e} & y=\operatorname{leg}_{\varepsilon} \boldsymbol{e}=\mathbf{1}
\end{array}
$$

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{E}}^{\mathbf{A}}$

8. The area of the region bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$ is given by,

$\mathbf{K}_{\mathbf{A}}$

Given $y=x^{2}+1 \& x+y=3 \Rightarrow y=3-x$
ie. $3-x=x^{2}+1$
$(x+2)(x-1)=0 \Rightarrow x=1,-2$
Required area $=\int_{-2}^{1}(3-x)-\left(x^{2}+1\right) d x$

$\left.=\int_{-2}^{1}\left(2-x-x^{2}\right) d x=2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-2}^{1}$

Vikasana - CET 2013

${ }^{K} E_{A}$

$$
=\left(2-\frac{1}{2}-\frac{1}{3}\right)-\left(-4-\frac{z^{2}}{z}+\frac{8}{3}\right)
$$

$$
=\left(\frac{12-3-2}{6}\right)-\left(\frac{-18+8}{3}\right)
$$

$$
=\frac{720}{6}=z^{9}
$$

$$
=\frac{720}{6}=Z^{9}=\frac{9}{2}
$$

Vikasana - CET 2013
9. The area of portion of the circle $x^{2}+y^{2}=64$ which is exterior to the parabola $y^{2}=12 x$
3. $\frac{16}{3}(8+\sqrt{3})$ squnits 4. None of these

Vikasana - CET 2013

In the first quadrant the point of intersection of the circle $x^{2}+y^{2}=64$ and the parabola $y^{2}=12 x$ is $(4, \pm 4 \sqrt{3})$ $x^{2}+y^{2}=64 \quad$ ie., $x^{2}+12 x-64=0$
$\Rightarrow x^{2}+16 x-4 x-64=0 \Rightarrow(x-4)(x+16)=0$
$\Rightarrow x=4 \& x=-16$ (neglet it)
ie., $\quad y^{2}=48 \quad \therefore y= \pm 4 \sqrt{3}$
Vikasana - CET 2013

$K_{\mathbf{A}}$

Required area =
Area of the circle - Area of circle exterior to the parabola.
$=64 \pi-2 \int_{0}^{4} y d x-2 \int_{4}^{8} y d x$
$=64 \pi-2 \int_{0}^{4} 2 \sqrt{3} \sqrt{x} d x-2 \int_{4}^{8} \sqrt{64-x^{2}} d x$
Vikasana - CET 2013

$$
\begin{aligned}
& { }^{K} \mathbf{E}_{\mathbf{A}} \\
& =64 \pi-4 \sqrt{3}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4}-2\left[\frac{x}{2} \sqrt{64-x^{2}}+\frac{64}{2} \operatorname{Sin}^{-1}\left(\frac{x}{8}\right)\right]_{4}^{8} \\
& =64 \pi-\frac{8 \sqrt{3}}{3}\left[4^{\frac{3}{2}}-0\right]-\left[8(0)+64 \operatorname{Sin}^{-1}(1)\right]-\left(4 \sqrt{64-16}+64 \operatorname{Sin}^{-1}\left(\frac{1}{2}\right)\right) \\
& =64 \pi-\frac{8 \sqrt{3}}{3}(8)-\left[64\left(\frac{\pi}{2}\right)-4 \sqrt{48}-64 \frac{\pi}{6}\right]
\end{aligned}
$$

Vikasana - CET 2013

${ }^{K} \mathbf{E}_{\mathbf{A}}$

$=64 \pi-\frac{64 \sqrt{3}}{3}-32 \pi+16 \sqrt{3}+\frac{32 \pi}{3}$
$=\frac{192 \pi-64 \sqrt{3}-96 \pi+48 \sqrt{3}+32 \pi}{3}$
$=\frac{128 \pi-16 \sqrt{3}}{3}=\frac{16}{3}[8 \pi-\sqrt{3}]$ sq. units.

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

10. The area enclosed between the concentric circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$ is

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

Given $x^{2}+y^{2}=9 \rightarrow(1)$
Let A_{1} be the area of circle (1) is $A_{1}=9 \pi$ sq. units.
Let A_{2} be the area of circle (2) is $A_{2}=4 \pi$ sq. units.
Let ' A ' be the area enclosed between the two circles
$A=A_{1}-A_{2}=9 \pi-4 \pi \quad \therefore A=5 \pi$ squints Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

11. Area bounded by the curves
$y=\log x, y=\log |x|, y=|\log x| \& y=|\log | x| |$ is
12. 4squm
$2654 \mu m$

31 Sqqum

Vikasana - CET 2013
W.K.T. $\log x$ is defined for $x>0$ and $\log |x|$ is defined for all $x \in \mathrm{R}-\{0\}$ Also $|\log x| \geq 0$ and $|\log | x|\mid \geq 0$ Required area is symmetrical in all the four quadrants

So the area $=4 \int_{0}^{1}|\log x| d x$
Vikasana - CET 2013

$\mathbf{K}^{\mathbf{E}_{\mathbf{A}}}$

$=4 \sqrt{1} \log \operatorname{l-2x} \ln] \cos$

$$
\begin{aligned}
& =-4[x \log x-x]_{0}^{1} \\
& =-4[(1 \log 1-1)-(0-0)]_{0}^{1}
\end{aligned}
$$

Vikasana - CET 2013
12. The area bounded by the curves $y=x$ \& $y=x^{3}$ is

Vikasana - CET 2013

$K^{E_{A}}$

\ll When $x=0, y=0 \quad x= \pm 1 \Rightarrow y= \pm 1$

$$
\text { i.e. } x=x^{3} \Rightarrow x\left(x^{2}-1\right)=0 \quad \therefore x=0, \quad x= \pm 1
$$

\therefore The line $y=x$ intersect the curve $y=x^{3}$ at three points $(-1,-1),(0,0) \&(1,1)$ Hence it is symmetric in opposite quadrant.

Repuinceres

Vikasana - CET 2013

$\mathbf{K E}_{\mathbf{A}}$

$=\int_{0}^{1}\left(x-x^{3}\right) d x+\int_{-1}^{0}\left(x^{3}-x\right) d x$
$\left.\left.=\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1}+\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{-1}^{0}$
$=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$ sq units
Vikasana - CET 2013

13. The area bounded by the curves $|x|+|y| \geq 1$ and $x^{2}+y^{2} \leq 1$ is

1. 2squn

$$
2 \text { тsqur. }
$$

Vikasana - CET 2013

Area of square $\quad A B C D=2$ sq. Area of circle $=\pi$ sq. units.

Required area $=(\pi-2) \operatorname{sgin}$

Vikasana - CET 2013

$K^{E_{A}}$

14) The area of region bounded by $x^{2}=16 y$ \& $x=0$ and $y=1, y=4$ and y - axis in the $1^{\text {st }}$ quadrant is

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

Vikasana - CET 2013

15) The area of the region bounded by $y=x^{2}-5 x+4$ and x-axis is

Vikasana - CET 2013

$K^{E_{A}}$

Since the curve $y=x^{2}-5 x+4$ crosses x-axis $y=0$
zese $x^{2}-4 x-1 x+4=0$
$(x-4)(x-1)=0 \quad \therefore x=1,4 \quad \therefore A(1)$ Eस3O

- Rquincarater $\int_{x}^{4} y d x$
$x=\int_{1}^{4}\left(x^{2}-5 x+4\right) d x$

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

$$
\begin{aligned}
& =\left(\frac{64}{3}-\frac{80}{2}+16\right)-\left(\frac{1}{3}-\frac{5}{2}+4\right) \\
& \quad=\left(\frac{64}{3}-24\right)-\left(\frac{2-15+24}{6}\right)=\left(\frac{64-72}{3}\right)-\left(\frac{11}{6}\right)
\end{aligned}
$$

$$
=\left|\frac{-16-11}{6}\right|=\frac{27}{6}=\frac{9}{2} \quad O R \quad a=1, b=-5, c=4
$$

$$
W \cdot K \cdot T \frac{\left(b^{2}-4 a c\right)^{3 / 2}}{6 a^{2}}
$$

$$
=\frac{(25-16)^{3 / 2}}{6(1)^{2}}=\frac{9^{3 / 2}}{6}=\frac{9}{2}
$$

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

16. The area enclosed by the parabola $y^{2}=16 x$ and its latus rectum

Vikasana - CET 2013

$K^{E_{\mathbf{A}}}$

Requindeas $2 \int_{0} y d x$

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

17. The area of smaller segment cut off from the circle $x^{2}+y^{2}=9$ by $x=1$ is

18. $\left(9 \sec ^{-1} 3-\sqrt{8}\right)$ squnits
19. $\left(\sqrt{8}-9 \sec ^{-1} 3\right)$ squnits

Vikasana - CET 2013

${ }^{K} \mathrm{E}_{\mathrm{A}}$

18. The ratio of which the area bounded by the curves $y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $x=3$ is

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

$x+\frac{3}{6}=\frac{y^{2}}{6}$

$=\frac{4 \sqrt{3}}{3}(3 \sqrt{3})-\frac{1}{36}(27)=12-\frac{3}{4}$
$A=45$ squni
Vikasana - CET 2013

${ }^{\underline{E_{A}}}$

Let $\begin{aligned} A_{2} & =\int_{3}^{12} \sqrt{12 x} d x-\int_{3}^{12} \frac{x^{2}}{12} d x \\ & =\frac{4 \sqrt{3}}{3}\left[12^{\frac{3}{2}}-3^{\frac{3}{2}}\right]-\frac{1}{36}\left(12^{3}-3^{3}\right) \\ & =\frac{4 \sqrt{3}}{3}[24 \sqrt{3}-3 \sqrt{3}]-\frac{1}{36}(1728-27) \\ & =\frac{4 \sqrt{3}}{3}[21 \sqrt{3}]-\frac{1}{36}(1701)=84-\frac{189}{4}=\frac{3369<}{4}=\end{aligned}$

Vikasana - CET 2013

$K^{E_{A}}$

19. The area bounded by $y=a x^{2}$ and $x=a y^{2}(a>0)$ is 1 then ' a ' is

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

Solve the given equations, we get $(0,0)$ \&

Rquinctas Area of OCBDO - Area of OABDO

${ }^{\mathrm{KE}_{\mathrm{E}}}$

Vikasana - CET 2013

$K^{E_{A}}$

20. The area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$

Vikasana - CET 2013

Given equation of the circle and the line are $x^{2}+y^{2}=1$ and $x+y=1$ Solving these equations we get $x=0, x=1$

$$
A(1,0) \text { and } B(0,1)
$$

Required Area =

Area of $O A B$ - Area of triangle $O A B$

$\mathbf{K}_{\mathbf{A}}^{\mathbf{A}}$

21. Area of included between the curves $y=x^{2}-3 x+2$ and $y=-x^{2}+3 x-2$ is

Vikasana - CET 2013

 Requincta

 Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

22. The area bounded by the curve
$y=\mathrm{e}^{|x|}, x$-axis and the lines $x=-1$ and $x=1$ is

Vikasana - CET 2013

${ }^{{ }^{5} E_{A}}$

Rguivera $=\int_{1}^{1} e^{\frac{e^{2}}{5 x}} d x$

$$
=2 \int_{0}^{1} e^{x} d x
$$

$$
=2\left[e^{1}-e^{0}\right]
$$

$$
=2[e-1] \text { squnits }
$$

Vikasana - CET 2013

$K^{E_{A}}$

23. The area bounded by the curve $x^{2}=y+4$ and the lines $y=0$ and $y=5$ is

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

Requinceat Area of $A B C D A=2($ Area of $A B M O A)$

$$
\begin{aligned}
& =2 \int_{0}^{5} x d y \\
& =2 \int_{0}^{5} \sqrt{y+4} d y \\
& \left.=2 \frac{(y+4)^{3 / 2}}{3 / 2}\right]_{0}^{5}
\end{aligned}
$$

$=\frac{4}{3}\left[9^{3 / 2}-4^{3 / 2}\right]=\frac{4}{3}[27-8]=\frac{4}{3}[19]$
$A=\frac{76}{3}$ squnits \quad Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

24. The area region bounded by $x=a \cos$

and $y=a \sin \theta$ or $x=a \frac{1-t}{1+t^{2}}$ \&

$$
\begin{aligned}
& \text { 1. 2rà 2. } \pi a^{2} \\
& \text { 3. } 2 \pi a r a \\
& \text { Vikasana-CET } 2013
\end{aligned}
$$

Since

$$
\begin{aligned}
& x=a \cos \theta \rightarrow \text { (1) } \quad y=a \sin \theta \rightarrow \text { (2) } \\
& x^{2}+y^{2}=a^{2}
\end{aligned}
$$

Required area $=4$ area of $O A B=4 \int_{a}^{a} y d x$

Vikasana－CET 2013

$\mathbf{K}_{\mathbf{A}}$

"tisqum

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

25. The area of the region bounded

$$
\text { by } x=a \cos _{\theta} \text { and } y=b \sin _{\theta} \text {, i.e. }
$$

1. 2ai 2 rai

3 4rai 4 ai
Vikasana - CET 2013

Since $x=a \cos \theta$ and $y=b \sin \theta$

Vikasana - CET 2013

Vikasana - CET 2013

$\mathbf{K}_{\mathbf{A}}$

$=\frac{46}{2}\left[0, \frac{a^{2}}{2}\left(\frac{\pi}{2}\right)\right]$
$A=$ rabsquni

Vikasana - CET 2013

