I PUC ALGEBRA

1. SET THEORY
2. LOGARITHMS
3. SUMMATION OF SERIES
4. THEORY OF EQUATIONS
5. MATHEMATICAL LOGIC 6. PARTIAL FRACTIONS
6. BINOMIAL THEOREM

1. Which of the following is not a singleton?

a) $\{x:|x|<1, x \in Z\}$ b) $\{x:|x|=5, x \in N\}$
c) $\left\{x: x^{3}+27=0, x \in R\right\}$
d) $\left\{x: x^{2}+3 x+4=0, x \in R\right\}$

Ans: (d). VIATHEMIATHCS

Solution :

[A singleton set is a set having only one element.]
a) : $\{0\}$
b) : $\{5\}$
c) : $\{-3\}$
d) : $\boldsymbol{\phi}$
\therefore Answer is option (d)
2. If $g(x)=1+\sqrt{x}$ and $f(g(x))=3+2 \sqrt{x}+x$, then $f(4)=$
a) 3
b) 18
c) 11
d) 4

Ans b.

KE
 A VIATHEMIATHCS

Solution:

$$
\begin{aligned}
& f(g(x))=3+2 \sqrt{x}+x \\
&=\left[1+2 \sqrt{x}+\sqrt{x}^{2}\right]+2 \\
&=(1+\sqrt{x})^{2}+2 \\
&=[g(x)]^{2}+2 \\
& \therefore f(g(x))=[g(x)]^{2}+2 \text { put } g(x)=4 \\
& \therefore f(4)=(4)^{2}+2=18 \\
& \therefore \text { Answer is option (b) }
\end{aligned}
$$

3. Let $A=\{-1,0,1\}$ and $B=\{0,2\}$ and a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined by $y=\mathbf{2} \mathrm{x}^{\mathbf{4}}$, then f is
a) one one onto
b) one one into
c) many one onto
d) many one into.

Ans c.

Solution:
$f: A \rightarrow B$ defined by $y=2 \mathbf{x}^{4}$.
when $\mathrm{x}=\mathbf{- 1}, \mathrm{y}=2$;

$$
x=0, y=0 \text { and } x=1, y=2
$$

$\therefore-1$ and 1 have 2 as their image.
$\therefore \mathrm{f}$ is not one-one.$: \mathrm{f}$ is many one.
\therefore Answer is either option cor option d Since both 0 and 2 are images, f is onto.
$\therefore \mathrm{f}$ is many one and onto
\therefore Answer is option (c)
4. Let R be a relation on the set of real numbers defined by a R b

$$
\text { if }|a-b| \leq 1, \text { then } R \text { is }
$$

a) Reflexive and symmetric
b) Reflexive and transitive
c) symmetric and transitive
d) only reflexive.

Ans a.

Solution:

$$
|a-a| \leq 1 \Rightarrow 0 \leq 1 \text { is true. } \therefore a R a
$$

$\therefore \mathbf{R}$ is reflexive.
We have $|\mathbf{x}|=|-\mathbf{x}| \Rightarrow|\mathbf{a}-\mathrm{b}| \leq 1$
$\Rightarrow|\mathrm{b}-\mathrm{a}| \leq 1 \quad \therefore \mathrm{R}$ is symmetric
\mid 3-2| ≤ 1 and $|2-1| \leq 1$ but \mid 3-1| $\ddagger 1$
$\therefore \mathbf{R}$ is not transitive.
$\therefore \mathbf{R}$ is only reflexive and symmetric .
\therefore Answer is option (a)
5. If a function $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$ such that $f(1)=1, f(n+1)=2 f(n)+1$, then $\mathrm{f}(\mathrm{n})=$

$$
\begin{array}{ll}
\text { a) } 2^{n-1} & \text { b) } 2^{n}-1 \\
\text { c) } 2^{n-1}-1 & \text { d) } 2^{n+1}+1
\end{array}
$$

Ans b.

Solution:
Given $f(1)=1, \operatorname{Now} f(n+1)=2 f(n)+1$.
\therefore put $\mathbf{n}=\mathbf{1}$,

$$
\begin{aligned}
& f(2)=2 f(1)+1=2+1=3 \quad(\because f(1)=1) \\
& \therefore f(2)=3 . \\
& \begin{array}{ll}
\text { (a) } \rightarrow 2^{n-1}=2 ; & \text { (b) } \rightarrow 2^{n}-1=4-1=3 ; \\
(c) \rightarrow 2^{n-1}-1=1 ; & \text { (d) } \rightarrow 2^{n+1}+1=9
\end{array}
\end{aligned}
$$

$\therefore f(2)=3$ matches with option (b)
\therefore Answer is option (b)
6. The range of the function

$$
f(x)={ }^{7-x} P_{x-3} \text { is }
$$

a) $\{1,2,3,4\} \quad$ b) $\{1,2,3,4,5,6\}$
c) $\{1,2,3\} \quad$ d) $\{3,4,5\}$

Ans c.

$\mathbf{K E}_{\mathbf{A}}$ MATHEMIATHCS

Solution: $f(x)={ }^{7-x} \boldsymbol{P}_{x-3}$.
clearly $7-x \geq x-3 \Rightarrow 10 \geq 2 x \Rightarrow 5 \geq x$ $\Rightarrow x \leq 5$

But $\mathrm{x} \geq 3 \therefore \mathrm{x}=3,4,5$.

\therefore Domain is
$\left\{{ }^{7-x} P_{x-3} \backslash x=3,4,5\right\}=\left\{{ }^{4} P_{0},{ }^{3} P_{1},{ }^{2} P_{2}\right\}=\{1,3,2\}$
\therefore Answer is option (c)

K EA MATHENIATHCS

7. If $f(x)=\frac{2 x+1}{1-3 x}$ then $f^{-1}(x)=$
a) $\frac{x-1}{3 x+2}$
b) $\frac{3 x+2}{x-1}$
c) $\frac{x+1}{3 x-2}$
d) $\frac{2 x+1}{1-3 x}$

Ans a.

Solution:

$$
f(x)=\frac{2 x+1}{1-3 x}
$$

$$
\text { put } x=0, f(0)=1 \quad \therefore f^{-1}(1)=\{0\}
$$

$$
\text { Now put } x=1 \text { in options. }
$$

$$
\begin{array}{lll}
\text { a) } \frac{x-1}{3 \mathrm{x}+2} & \text { b) } \frac{3 \mathrm{x}+2}{x-1} & \text { c) } \frac{\mathrm{x}+1}{3 x-2}
\end{array} \text { d) } \frac{2 \mathrm{x}+1}{1-3 x}
$$

(a) $\rightarrow 0$
(b) $\rightarrow \infty$
(c) $\rightarrow 2$
(d) $\rightarrow-3 / 2$
$\therefore f^{-1}(1)=\{0\}$ matches with option (a) only
\therefore Answer is option (a)

$\mathbf{K E}_{\mathbf{A}}$

8. If $A=\{1,2,3,4\}$ Then which of the following is a function from A to itself
a) $f_{1}=\{(x, y) \backslash y=x+1\}$
b) $f_{2}=\{(x, y) \backslash(x+y)>4\}$
c) $f_{3}=\{(x, y) \backslash(y<x)\}$
d) $f_{4}=\{(x, y) \backslash(x+y=5)\}$

Ans d.

Solution :

a) when $x=4, y=x+1=5 \notin A \therefore 4$ has no image
b) $f_{2}=\{(\mathrm{x}, \mathrm{y}) \backslash(\mathrm{x}+\mathrm{y})>4\}$
$2+3>4$ and $2+4>4 \quad \therefore 2$ has two images \#
c) $f_{3}=\{(x, y) \backslash(y<x)\}$
when $x=1, y<1 \therefore y \notin A$
\therefore options a, b, c are rejected.
Hence only possibility is option (d).
\therefore Answer is option (d)
9. If $\log _{e} 2, \log _{e}{ }^{(2 x-1)}$ and $\log _{e}{ }^{(2 x+3)}$ are in $A P$ then the value of x is

$$
\begin{array}{ll}
\text { a) }-\frac{1}{2} & \text { b) } \frac{5}{2} \\
\text { c) } 1 & \text { d) } \frac{1}{2}
\end{array}
$$

$\mathbf{K}_{\mathbf{A}}$

Solution :
when $(\mathrm{a}) \rightarrow \mathrm{x}=-\frac{1}{2}$,

$$
\log _{e}^{(2 x-1)}=\log _{e}^{(-2)}, \text { meaningless }
$$

When $(\mathrm{c}) \rightarrow \mathrm{x}=1 ; \log _{e}{ }^{2}, \log _{e}{ }^{(1)}=0$ and $\log _{e}{ }^{(5)}$, which are not in AP when $(\mathrm{d}) \rightarrow \mathbf{x}=\frac{1}{2}$,

$$
\log _{e}^{(2 x-1)}=\log _{e}^{(0)}, \text { meaningless }
$$

Hence only possibility is option (b) \therefore Answer is option (b)

$K_{\mathbf{A}}$

10. If $x=\log _{4}{ }^{2}, \quad y=\log _{6}{ }^{4}$ and

$$
z=\log _{8}{ }^{6}
$$

then $y z(2-x)=$

$$
\begin{array}{ll}
\text { a) } 2 & \text { b) }-2 \\
\text { c) } 1 & \text { d) } 3
\end{array}
$$

Ans c.

$\mathbf{K E}_{\mathbf{A}}$ VIATHEMIATACS

Solution:

yz(2 - x) = 2 yz - xyz

$$
\begin{aligned}
& =2 \log _{6}^{4} \log _{8}{ }^{6}-\log _{8}{ }^{2} \\
& =2 \log _{8}^{4}-\log _{8}^{2} \\
& =\log _{8}{ }^{16}-\log _{8}^{2} \\
& =\log _{8}{ }^{8}=1
\end{aligned}
$$

Hence answer is option (c)
11. If $\frac{1}{\log _{3}{ }^{\pi}}+\frac{1}{\log _{4}{ }^{\pi}}>\mathrm{k}$ then the greatest integral value of $k=$

$$
\begin{array}{ll}
\text { a) } 3 & \text { b) } 2 \\
\text { c) } 1 & \text { d) } 4
\end{array}
$$

Ans b.

Solution:

Given $\log _{\pi}{ }^{3}+\log _{\pi}^{4}>k$

$$
\Rightarrow \log _{\pi}^{12}>k
$$

$\Rightarrow 12>\pi^{k}$. (k greatest integer)
Now $12>\pi^{2}$ and $12>\pi^{3}$
$\therefore \mathrm{k}=2$
\therefore Answer is option (b)

$\mathbf{K E}_{\mathbf{A}}$

12. If $\log _{a}^{a b}=x$ then $\log _{b}^{a b}=$

$$
\begin{array}{ll}
\text { a) } \frac{1}{x} & \text { b) } \frac{x}{x+1} \\
\text { c) } \frac{x}{x-1} & \text { d) } \frac{x}{1-x}
\end{array}
$$

Ans c.

Solution:

We have $\log _{a}{ }^{a b}=\mathrm{x} \quad \therefore \log _{a b}^{a}=\frac{1}{x}$
Now $\log _{a b}^{a}+\log _{a b}^{b}=\log _{a b}^{a b}=1$
$\Rightarrow \log _{a b}^{b}=1-\log _{a b}^{a}=1-\frac{1}{x}=\frac{x-1}{x}$
$\therefore \log _{b}{ }^{a b}=\frac{1}{\log _{a b}^{b}}=\frac{x}{x-1}$
\therefore Answer is option (c).
13. If $x=27, y=\log _{3} 4$ then $x^{y}=$
a) 64
b) 16
b) $\frac{1}{16}$
c) $\frac{3}{7}$

Ans a

K_{A}

 VIAIHEVIATHCS
Solution :

$$
\begin{aligned}
x^{y} & =27^{\log _{3}{ }^{4}} \\
& =3^{3 \log _{3}{ }^{4}} \\
& =3^{\log _{3}{ }^{64}} \\
& =64 \quad\left(\because a^{\log _{a}^{x}}=x\right) \\
\therefore & \text { Answer is option (a) }
\end{aligned}
$$

K_{A}

14. If $2 \log _{10}{ }^{a}-3 \log _{10}{ }^{b}=2$ then $100 b^{3}=$

a) a^{2} b) a
c) a^{3}
d) $3 a$

Ans a.

NIATHENIATHICS

Solution :

$$
\begin{aligned}
& \text { Given } 2 \log _{10}{ }^{a}-3 \log _{10}{ }^{b}=2 \\
& \quad \Rightarrow \log _{10} a^{2}-\log _{10}^{b^{3}}=2
\end{aligned}
$$

$$
\Rightarrow \log _{10}{ }^{\frac{a^{2}}{b^{3}}}=2 \Rightarrow \frac{a^{2}}{b^{3}}=100
$$

$$
\Rightarrow 100 b^{3}=a^{2}
$$

\therefore Answer is option (a)

KE
 A MATHEMATHCS

15. If x, y and z are any three odd consecutive odd positive integers then $\log _{\mathrm{e}}(\mathrm{xz}+4)=$

$$
\begin{array}{ll}
\text { a) } \log _{e}^{2 y} & \text { b) } \log _{e} y \\
\text { c) } 2 \log _{e} y & \text { d) } 4 \log _{e} y
\end{array}
$$

Ans c.

Solution:

Take 3 consecutive odd positive
integers as $x=1 \quad y=3 \quad z=5$
then $x z+4=9$
$\therefore \log _{e}(x z+4)=\log _{e} 9$
$=2 \log _{e} 3$
$=2 \log _{e}{ }^{y}(\because y=3)$
\therefore Answer is option (c)

K_{A}

16. If $S_{n}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots \ldots \ldots .$. to n terms, then $S_{n}=$

$$
\begin{array}{ll}
\text { a) } \frac{2 n}{2 n+1} & \text { b) } \frac{n}{2 n+1} \\
\text { c) } \frac{n}{n+2} & \text { d) } \frac{2 n}{n+5}
\end{array}
$$

Ans b.

Solution: By inspection method

$$
\begin{array}{ll}
\text { a) } \frac{2 n}{2 n+1} & \text { b) } \frac{n}{2 n+1}
\end{array} \text { c) } \frac{n}{n+2} \text { d) } \frac{2 n}{n+5}
$$

Put $\mathrm{n}=2$, Then LHS $=S_{2}=\frac{1}{3}+\frac{1}{15}=\frac{6}{15}=\frac{2}{5}$

$$
\Rightarrow S_{2}=\frac{2}{5}
$$

In options, $a \rightarrow \frac{4}{5} b \rightarrow \frac{2}{5} c \rightarrow \frac{1}{2} \quad d \rightarrow \frac{4}{7}$
\therefore The value of S_{2} matches with option (b).
\therefore Answer is option (b).
Or $S_{n}=\frac{n}{a(a+n d)}=\frac{n}{1(1+2 n)}=\frac{n}{2 n+1}$

$\mathbf{K E}_{\mathbf{A}}$ VATHEMIATACS

17. The sum $1.3+3.5+5.7+\ldots$. up to n terms is
a) $\frac{n}{5}\left[3 n^{2}+7 n+5\right)$
b) $\frac{n}{2}\left[2 n^{2}+3 n+1\right)$
c) $\frac{n}{3}\left[4 n^{2}+6 n-1\right)$
d) $\frac{n}{3}\left[5 n^{2}+3 n+1\right)$

KE
 A

Solution: By inspection method:

 instead of checking for $\mathrm{n}=1$ or $\mathrm{n}=2$, check for $n=3$ (fast) LHS $=1.3+3.5+5.7=53$When $n=3$ the values of the options are

$$
\begin{array}{ll}
\text { a) } \frac{n}{5}\left[3 n^{2}+7 n+5\right) & \text { b) } \frac{n}{2}\left[2 n^{2}+3 n+1\right) \\
\text { c) } \frac{n}{3}\left[4 n^{2}+6 n-1\right) & \text { d) } \frac{n}{3}\left[5 n^{2}+3 n+1\right)
\end{array}
$$

$\begin{array}{llll}\text { a) } \frac{3}{5} \cdot 53 & \text { b) } \frac{3}{2} \cdot 28=42 & \text { c) } 53 & \text { d) } 55\end{array}$ \therefore Answer is option (c).
18. The value of
$1+\frac{2}{5}+\frac{3}{25}+\cdots-\infty$ to ∞ is
$\begin{array}{ll}\text { a) } \frac{1}{25} & \text { b) } \frac{16}{25}\end{array}$
c) $\frac{25}{16} \quad$ d) $\frac{5}{4}$

Ans c.

Solution:

Given is in AG series

$$
\begin{aligned}
& \text { where } \mathrm{a}=1, \mathrm{~d}=1, \mathrm{r}=\frac{1}{5} \\
& S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-\mathrm{r})^{2}}=\frac{1}{1-\frac{1}{5}}+\frac{\frac{1}{5}}{\left(1-\frac{1}{5}\right)^{2}} \\
& \\
&
\end{aligned}
$$

\therefore Answer is option (c)

MATHEMATHCS

19. The $25^{\text {th }}$ term of the series
$3+15+35+63+\ldots \ldots .$. is
$\begin{array}{ll}\text { a) } \mathbf{2 5 0 0} & \text { b) } \mathbf{2 4 9 9}\end{array}$
c) $\mathbf{2 5 0 1}$
d) $\mathbf{1 2 4 9}$

Ans b.

Solution:
summation by the method of differences.
Here I differences: 12, 20, 28;
II differences : 8,8,8,....

$$
\begin{aligned}
& \Delta=12 \quad \Delta^{2}=8 \quad T_{1}=3 \\
& T_{n}= T_{1}+(n-1) \Delta+\frac{1}{2} \quad(n-1)(n-2) \Delta^{2} \\
& T_{25}=3+24.12+\frac{1}{2} \cdot 24.23 .8 \\
&=3+288+2208=2499 \\
& \therefore \text { Answer is option (b) }
\end{aligned}
$$

$\mathbf{K E}_{\mathbf{A}}$ MATHENIATACS

20. If
$2^{3}+4^{3}+6^{3}+\ldots . .+(2 n)^{3}=k . n^{2}(n+1)^{2}$ then $k=$

$$
\begin{array}{ll}
\text { a) } \frac{1}{2} & \text { b) } 1 \\
\text { c) } \frac{3}{2} & \text { d) } 2
\end{array}
$$

$\mathbf{K E}_{\mathbf{A}}$ MATHENIATACS

Solution:

Inspection Method :

$2^{3}+4^{3}+6^{3}+\ldots . .+(2 n)^{3}=$ k. $n^{2}(n+1)^{2}$
Put $\mathrm{n}=1$
LHS = $8 \quad$ RHS = k. 4
$\therefore 4 k=8$
$\Rightarrow k=2$
\therefore Answer is option (d)
21. If the sum of n terms of an AP is $n A+n^{2} B$ where A and B are constants. Then its common difference is
a) A-B
b) $A+B$
c) 2 A
d) 2 B

Ans d.

$K_{\text {K }}$

Solution:
Given $S_{n}=n A+n^{2} B$. Put $n=1,2$

$$
\therefore T_{1}=S_{1}=A+B
$$

And $S_{2}=2 A+4 B \quad B u t S_{2}=T_{1}+T_{2}$
$\therefore \mathrm{T}_{2}=\mathrm{S}_{2}-\mathrm{T}_{1}=(2 A+4 B)-(A+B)$ $=A+3 B$.
Now $T_{1}=A+B$ and $T_{2}=A+3 B$
\therefore Common difference $=T_{2}-T_{1}=2 B$ \therefore Answer is option (d)
22. If the roots of the quadratic equation $x^{2}+p x+q=0$ are $\tan 30^{0}$ and $\tan 15^{0}$, Then $q=$

$$
\begin{array}{ll}
\text { a) } 1-p & \text { b) } p-1 \\
\text { c) } p+1 & \text { d) } \sqrt{3} p
\end{array}
$$

Ans c.

K ${ }^{\text {A }}$ NATHENIATACS

Solution: Consider $x^{2}+p x+q=0$ Let $\alpha=\tan 30^{0}$ and $\beta=\tan 15^{0}$.
The $\alpha+\beta=-b / a=-p$ and $\alpha \beta=c / a=q$.
Now $\tan 45^{\circ}=\tan \left(30^{0}+15^{\circ}\right)$

$$
\left.\begin{array}{rl}
\Rightarrow 1 & =\frac{\tan 30^{0}+\tan 15^{0}}{1-\tan 30^{0}} \cdot \tan 15^{0}
\end{array}=\frac{\alpha+\beta}{1-\alpha \beta}=\frac{-p}{1-q}\right)
$$

\therefore Answer is option (c)

KE
 A VIATHEMAATHCS

23. The roots of the equation $x^{3}-12 x^{2}+39 x-28=0$ are in AP, then the roots are

$$
\begin{array}{ll}
\text { a) } 3,4,5 & \text { b) } 2,4,6 \\
\text { c) } 1,4,7 & \text { d) }-1,-4,-7
\end{array}
$$

Solution: $x^{3}-12 x^{2}+39 x-28=0$

The sum of the roots $=-b / a=12 . \rightarrow(m)$
Now product of the roots $=-\mathrm{d} / \mathrm{a}=28 \rightarrow(\mathrm{n})$

$$
\begin{array}{ll}
\text { (a) } 3,4,5 & \text { (b) } 2,4,6 \\
\text { (c) } 1,4,7 & \text { (d) }-1,-4,-7
\end{array}
$$

(m) and (n) matches with option (c) only. \therefore Answer is option (c)

K $\mathbf{E A M}_{\text {M }}$ NATHENIATHCS

24. If two roots of $x^{3}+p x^{2}+q x+r=0$ are connected by the relation $\alpha \beta+1=0$, then the condition is
a) $r^{2}-p r+q+1=0$
b) $r^{2}+p r+q+1=0$
c) $p^{2}+p r+q+1=0$
d) $q^{2}+p r+q+1=0$

Ans c.

K
 A

Solution: Consider $x^{3}+\mathrm{p} \boldsymbol{x}^{2}+\mathrm{qx}+\mathrm{r}=0$ Let the roots be α, β and γ. Now by data $\alpha \beta=-1$
Then the sum $=\alpha+\beta+\gamma=-b / a=-p ;$ product $=\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}=-\mathrm{r}$
Now $\propto \beta \gamma=-r \Rightarrow(-1) \gamma=-r \Rightarrow \gamma=r$
Now $\gamma=r$ satisfies $x^{3}+p x^{2}+q x+r=0$

$$
\Rightarrow r^{3}+p r^{2}+q r+r=0
$$

$\Rightarrow \mathrm{r}\left[r^{2}+\mathrm{p} r+\mathrm{q}+1 \mathrm{~d}=0 \Rightarrow r^{2}+\mathrm{p} r+\mathrm{q}+1=0\right.$
\therefore Answer is option (c)

$\mathbf{K E}_{\mathbf{A}}$ MATHENIATACS

25. If the roots of the equation $3 x^{3}-\mathrm{k} x^{2}+52 \mathrm{x}-24=0$ are in GP, then $\mathrm{k}=$
a) 21
b) -21
c) -26
d) $\mathbf{2 6}$

Ans d.

K EA MATHENIATHCS

Solution:
Since the roots are in GP ,
$x=\sqrt[3]{\frac{-d}{a}}=\sqrt[3]{\frac{24}{3}}=\sqrt[3]{8}=2$ is a root.
Put $x=2$ in $3 x^{3}-k x^{2}+52 x-24=0$
we have $24-4 k+104-24=0$

$$
\Rightarrow 4 k=104 \Rightarrow k=26
$$

\therefore Answer is option (d)
26. Two roots of the equation $x^{3}-7 x^{2}+k x+m=0$ are related by $\beta=2 \propto$ and the third root being -2 , then k and m are respectively,
a) 1 and 36
b) -1 and-36
c) 0 and 36
d) 36 and 0
Ans c. VIATHENIATHCS
Solution: $\boldsymbol{x}^{3}-7 x^{2}+\mathrm{kx}+\mathrm{m}=\mathbf{0} \rightarrow\left(^{*}\right)$
Let the roots be α, β and γ.
Then by data $\gamma=-2$ and $\beta=2 \alpha$
Sum of the roots $=\alpha+\beta+\gamma=-b / a=7$
$\Rightarrow \alpha+2 \alpha+(-2)=7 \Rightarrow 3 \alpha=9 \Rightarrow \alpha=3$
Now $\propto=3$ satisfies (${ }^{*}$) $\therefore 27-63+3 k+m=0$
$\Rightarrow 3 k+m=36$ which is satisfied by option (c) only, i.e. (c) 0 and 36
where $\mathbf{k}=0$ and $\mathbf{m}=36$, by inspection.
\therefore Answer is option (c)

$\mathbf{K E}_{\mathbf{A}}$ VATHEMIATACS

27. If the equation $x^{3}+a x+1=0$ and $x^{4}+a x^{2}+1=0$ have a root in common, then $\mathbf{a}=$
a) 2
b) $\mathbf{- 2}$
c) 1
d) -1

Ans b.

K $\mathbf{E A M}_{\text {A }}$ NATHEMIATHCS

Solution:

Given $x^{3}+a x+1=0 \Rightarrow x^{3}+a x=-1$ multiply by $\mathrm{x}, \quad x^{4}+\mathrm{a} \boldsymbol{x}^{2}=-\mathrm{x}$ Now given eq2 $\left(x^{4}+a x^{2}\right)+1=0$

$$
\Rightarrow-x+1=0 \Rightarrow x=1
$$

Put $x=1$ in $x^{3}+a x+1=0 \Rightarrow a=-2$
Given options (a) 2 (b) -2 (c) 1 (d) -1
\therefore Answer is option (b)

$\mathbf{K E}_{\mathbf{A}}$ VIATHENIATACS

28. If α, β, γ and δ are the roots of the equation $x^{4}-3 x^{2}+7=0$,
then $\sum \frac{1}{\alpha \beta}=$

$$
\begin{array}{ll}
\text { a) } \frac{3}{7} & \text { b) } \frac{7}{3} \\
\text { c) }-\frac{7}{3} & \text { d) }-\frac{3}{7}
\end{array}
$$

Ans d.

K NIATHENIATHCS

Solution:

Consider $x^{4}-3 x^{2}+7=0$ here $a=1, b=0, c=-3, d=0, e=7$
$\sum \alpha=-b / a=0, \sum \alpha \beta=c / a=-3$ product $=\alpha \beta \gamma \delta=$ e/a $=7$

Now $\sum \frac{1}{\alpha \beta}=\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \delta}+\frac{1}{\delta \alpha}$
$=\frac{\alpha \beta+\beta \gamma+\gamma \delta+\delta \alpha}{\alpha \beta \gamma \delta}=\frac{\sum \alpha \beta}{\alpha \beta \gamma \delta}=\frac{-3}{7}$
\therefore Answer is option (d)
29. The number of solutions of the equation $x^{2}+3|x|+2=0$ is
a) 2
b) 1
c) 4
d) 0

Ans d.

$K_{\text {A }}$ IVIATHENIATHCS

Solution:

Let $y=|x|$ then $y^{2}=x^{2}$ then

$$
y^{2}+3 y+2=0
$$

$$
\Rightarrow(y+2)(y+1)=0
$$

$$
\Rightarrow y=-2,-1 \Longrightarrow|x|=-2,-1
$$ not possible as $|x| \geq 0$

Hence no solution .
\therefore Number of solutions $=0$
Hence Answer is option (d)

K EA MATHENIATHCS

30. If $1 \mathbf{- p}$ is a root of the equation

$$
x^{2}+p x+(1-p)=0,
$$

then the roots are

$$
\begin{array}{ll}
\text { a) } 0,1 & \text { b) } \\
\text { c) } 0,-1 & \text { d) } \\
\text { Ans } & -1,1
\end{array}
$$

$\mathbf{K E A}_{\mathbf{A}}$ VIATHEMIATHCS

Solution:

Since $1-p$ is a root of
$x^{2}+p x+(1-p)=0$,
we have $(1-p)^{2}+p(1-p)+(1-p)=0$.

$$
\begin{aligned}
& \Rightarrow(1-p)[1-p+p+1]=0 \\
& \Rightarrow 2(1-p)=0 \Rightarrow p=1
\end{aligned}
$$

\therefore when $p=1$, the equation becomes

$$
\begin{aligned}
& x^{2}+x=0 \Longrightarrow x(x+1)=0 \Longrightarrow x=0,-1 \\
& \therefore \text { Answer is option (c) }
\end{aligned}
$$

$\mathbf{K E A}_{\mathbf{A}}$ MATHENTATACS

31. The contrapositive of the inverse of $p \rightarrow \sim q$ is

$$
\begin{array}{ll}
\text { a) } p \rightarrow q & \text { b) } \sim q \rightarrow p \\
\text { c) } \sim p \rightarrow \sim q & \text { d) } \sim q \rightarrow \sim p
\end{array}
$$

Ans b.

Solution:
We know that the inverse of

$$
\mathbf{p} \rightarrow \mathbf{q} \text { is } \sim \mathbf{p} \rightarrow \sim \mathbf{q}
$$

and contrapositive is $\quad \sim q \rightarrow \sim p$
\therefore The inverse of $\mathbf{p} \rightarrow \sim \mathbf{q}$ is $\sim \mathbf{p} \rightarrow \mathbf{q}$. Its contrapositive is $\sim \mathbf{q} \rightarrow \mathbf{p}$
\therefore Answer is option (b)

K EA MATHENIATHCS

32. The proposition $\left(p^{\wedge} \sim q\right) \rightarrow(r \vee \sim s)$ is known to be false. Then the truth values of p, q, r \& s are respectively,
a) T, F, T, T
b) T, T, T, F
c) T, F, F, T
d) T, T, F, F

Solution: We know that $p \rightarrow q$ is false when $p: T$ and $q: F$
Given $\left(p^{\wedge} \sim q\right) \rightarrow(r \vee \sim s)$ is false
$\therefore p^{\wedge} \sim q: T$ and $r \vee \sim s: F$
$\Rightarrow p: T$ and $\sim q: T$; $r: F$ and $\sim s: F$
$\Rightarrow \mathrm{p}: \mathrm{T}, \mathrm{q}: \mathrm{F}$; r: F; s: T
Given options a) T, F, T, T b) T, T, T, F

$$
\text { c) T, F, F, T } \quad \text { d) T, T, F, F }
$$

\therefore Answer is option (c)
33. The negation of statement " If $x=4$ and $y=6$ then $x+y=10$ " is
a) " if $x \neq 4$ and $y \neq 6$ then $x+y \neq 10$ "
b) "if $x \neq 4$ or $y \neq 6$ then $x+y \neq 10$ "
c) "if $x=4$ and $y=6$ then $x+y \neq 10$ "
d) " $x=4$ and $y=6$ and $x+y \neq 10$ " Ans d.

$\mathbf{K E}_{\mathbf{A}}$ VATHEMIATACS

Solution:

Let $p:(x=4$ and $y=6) \& q:(x+y=10)$
Then given statement is $\mathbf{p} \rightarrow \mathbf{q}$.
Now $\sim(p \rightarrow q) \equiv p^{\wedge} \sim q$
\therefore The negation of the given statement
is " $x=4$ and $y=6$ and $x+y \neq 10$ "
\therefore Answer is option (d)

K EA MATHENIATHCS

34. If $\frac{(x+1)^{2}}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{\left(x^{2}+1\right)}$,
then $\boldsymbol{\operatorname { s i n }}^{-1}\left[\frac{A}{c}\right]=$
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$

Ans a.

KEA MATHENATACS

Solution: Given $\frac{(x+1)^{2}}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{\left(x^{2}+1\right)}$
$(x+1)^{2}=A\left(x^{2}+1\right)+(B x+c) x$ $x^{2}+2 x+1=\mathrm{A}\left(x^{2}+1\right)+\left(\mathrm{B} x^{2}+\mathrm{c} x\right)$

Put $\mathbf{x}=\mathbf{0} \quad \therefore \mathrm{A}=1$

Compare coefficient of x, we have $\mathrm{C}=2$
$\therefore \sin ^{-1}\left[\frac{A}{c}\right]=\sin ^{-1}\left[\frac{1}{2}\right]=30^{0}=\frac{\pi}{6}$
\therefore Answer is option (a)

$\mathbf{K}_{\mathbf{A}}$

35. $\frac{3 x-1}{(x+2)\left(1-x+x^{2}\right)}$ is resolved into partial fractions, then it is equal to

$$
\begin{array}{ll}
\text { a) } \frac{1}{x+2}+\frac{x}{\left(1-x+x^{2}\right)} & \text { b) } \frac{1}{x+2}+\frac{x-1}{\left(1-x+x^{2}\right)} \\
\text { c) } \frac{-1}{x+2}+\frac{x}{\left(1-x+x^{2}\right)} & \text { d) } \frac{-1}{x+2}+\frac{x-1}{\left(1-x+x^{2}\right)}
\end{array}
$$

Ans c.

Solution. $\frac{3 x-1}{(x+2)\left(1-x+x^{2}\right)}=\frac{A}{x+2}+\frac{B x+C}{\left(1-x+x^{2}\right)}$
Put $x=-2$ except at $x+2$ on LHS: $A=\frac{-7}{7}=-1$ Hence answer is either option (c) or (d)

$$
\begin{array}{ll}
\text { c) } \frac{-1}{x+2}+\frac{x}{\left(1-x+x^{2}\right)} & \text { d) } \frac{-1}{x+2}+\frac{x-1}{\left(1-x+x^{2}\right)}
\end{array}
$$

But after comparing the constant,

$$
2 C+A=-1 \Rightarrow C=0(\because A=-1)
$$

$\mathrm{C}=0$ holds good in option (c) only .
\therefore Answer is option (c)

$\mathbf{K}_{\mathbf{A}}$

36. The greatest coefficient in the expansion of $[1+x]^{10}$ is

$$
\begin{array}{ll}
\text { a) } \frac{10!}{5!6!} & \text { b) } \frac{10!}{[5!]^{2}}
\end{array}
$$

c) $\frac{10!}{5!7!}$
d) $\frac{10!}{5!4!}$

Ans b.

Solution:

The greatest coefficient is the coefficient of the middle term.
In . $(x+a)^{n}=[1+x]^{10}$, there are 11 terms.
$\therefore T_{6}$ is the middle term.
$\mathrm{n}=10, \mathrm{r}=5, \mathrm{x} \rightarrow 1, \quad \mathrm{a} \rightarrow \mathrm{x}$
$T_{6}={ }^{n} C_{r} x^{n-r} a^{r}={ }^{10} C_{5} \cdot 1 \cdot x^{5}$.
\therefore The coefficient is ${ }^{10} C_{5}=\frac{10!}{[5!][5!]}=\frac{10!}{[5!]^{2}}$
Hence Answer is option (b)

$\mathbf{K E A}_{\mathbf{A}}$ MATHENTATACS

37. In the expansion of $\left[x^{2}-\frac{1}{x}\right]^{18}$, the constant term is
a) ${ }^{18} C_{4}$ b) ${ }^{18} C_{6}$
c) ${ }^{18} C_{5}$
d) ${ }^{18} C_{7}$

Ans b.

Solution:

$$
\begin{aligned}
T_{r+1} & ={ }^{n} C_{r} x^{n-r} a^{r} \\
& ={ }^{18} C_{r}\left[x^{2}\right]^{18-r}\left[\frac{-1}{x}\right]^{r} \\
& ={ }^{18} C_{r}\left[x^{36-3 r}\right]\left(-1^{r}\right)
\end{aligned}
$$

For constant term $36-3 r=0 \quad \Rightarrow r=12$ $T_{13}={ }^{18} C_{12}\left[x^{0}\right]\left(-1^{12}\right)={ }^{18} C_{12}={ }^{18} C_{6}$ which is option (b).

Hence Answer is option (b)
38. The sum of the coefficients in the expansion of $\left[1+2 x-4 x^{2}\right]^{173}$ is
a) 0
b) 1
c) -1
d) 2

Ans c. MATHEMATHCS

Solution:

Consider $\left[1+2 x-4 x^{2}\right]^{173}$
To find the sum of the coefficients,
Put $x=1$
Sum of the coefficients is $\mathbf{- 1}$
\therefore Answer is option (c)

K $\mathbf{E A M}_{\text {A }}$ NATHEMIATHCS

39. In the expansion of $[1+x]^{n}\left[1+\frac{1}{x}\right]^{n}$, the term independent of \mathbf{x} is
a) $C_{0}{ }^{2}+2 . C_{1}{ }^{2}+3 . C_{2}{ }^{2}+\ldots \ldots+(n+1) . C_{n}{ }^{2}$
b) $\left(C_{0}+C_{1}+C_{2}+\ldots \ldots .+C_{n}\right)^{2}$
c) $C_{0}{ }^{2}+C_{1}{ }^{2}+C_{2}{ }^{2}+\ldots \ldots . .+C_{n}{ }^{2}$
d) $C_{0} C_{1}+C_{1} C_{2}+C_{2} C_{3}+\ldots \ldots+C_{n-1} C_{n}$

> Ans c.

$\mathbf{K E}_{\mathbf{A}}$

VIATHEMIATHCS

Solution:

$[1+x]^{n}\left[1+\frac{1}{x}\right]^{n}=$

$$
\left[C_{0}+C_{1} \mathrm{x}+C_{2} x^{2}+\ldots \ldots \ldots+C_{n} x^{n}\right]
$$

$$
\left[C_{0}+C_{1} \frac{1}{x}+C_{2} \frac{1}{x^{2}}+\ldots \ldots \ldots+C_{n} \frac{1}{x^{n}}\right]
$$

\therefore The term independent of \mathbf{x} in RHS is

$$
=C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots \ldots \ldots+C_{n}^{2}
$$

which is option (c)
\therefore Answer is option (c)

$\mathbf{K}_{\mathbf{A}}$ VIATHEMIATACS

40. In the expansion of $[1+x]^{50}$, the sum of the coefficients of odd powers of x is
a) 0
b) $\mathbf{2}^{49}$
c) $\mathbf{2}^{50}$
d) $\mathbf{2}^{51}$

Solution:

The sum of the coefficients of odd powers of x in $[1+x]^{n}$ is 2^{n-1} Hence required sum in $[1+x]^{50}$ is

$$
2^{50-1}=2^{49}
$$

$\begin{array}{llll}\text { options a) } 0 & \text { b) } \mathbf{2}^{\mathbf{4 9}} & \text { c) } \mathbf{2}^{\mathbf{5 0}} & \text { d) } \mathbf{2}^{51}\end{array}$
\therefore answer is option (b)

K EA MATHENIATHCS

41. If $[1+x]^{n}=a_{0}+a_{1} x+a_{2} x^{2}+$. $\ldots \ldots+a_{n} x^{n}$ then the values of $a_{1}+2 a_{2}+3 a_{3}+4 a_{4} \ldots \ldots \ldots \ldots=$
$\begin{array}{ll}\text { a) } 0 & \text { b) } \mathbf{2}^{n}\end{array}$
c) $\mathbf{n} \cdot \mathbf{2}^{\mathrm{n}-1}$
d) 2^{n-1}

Ans c.

KEA MATHENATACS

Solution:

$[1+x]^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \ldots+a_{n} x^{n}$
Differentiating w.r.t. x,
$n[1+x]^{n-1}=a_{1}+a_{2} 2 x+\ldots \ldots \ldots+a_{n} n x^{n-1}$
Put $x=1$, we have
$a_{1}+2 a_{2}+3 a_{3}+4 a_{4}+\ldots . .+n a_{n}=n .2^{n-1}$
Hence answer is option (c).

$\mathbf{K E}_{\mathbf{A}}$ VIATHEMIATHCS

42. If $\left[1+x-2 x^{2}\right]^{6}$
$=1+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{12} x^{12}$,
then the value of $a_{2}+a_{4}+\ldots \ldots+a_{12}$ is
a) 31
b) 32
c) 64
d) 1024

Ans a.

Solution:

$\left[1+x-2 x^{2}\right]^{6}=1+a_{1} x+a_{2} x^{2}+\ldots .+a_{12} x^{12}$ put $x=1$,

$$
1+a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots+a_{12}=0 . \rightarrow(1)
$$

put $x=-1$,

$$
1-a_{1}+a_{2}-a_{3}+\ldots \ldots . .+a_{12}=2^{6}=64 . \rightarrow(2)
$$

$$
(1)+(2) \Rightarrow 2\left[1+a_{2}+a_{4}+\ldots \ldots . .+a_{12}\right]=64
$$

$$
\Rightarrow 1+a_{2}+a_{4}+\ldots \ldots+a_{12}=64 / 2=32
$$

$$
\Rightarrow a_{2}+a_{4}+\ldots \ldots .+a_{12}=32-1=31
$$

Hence Answer is option (a)

K_{A}

43. The resolution of $\frac{3 x-7}{x^{3}-x}$ into partial fractions yields

$$
\begin{array}{ll}
\text { a) } \frac{2}{x}-\frac{7}{(x-1)}-\frac{5}{(x+1)} & \text { b) } \frac{7}{x}-\frac{2}{(x-1)}-\frac{5}{(x+1)} \\
\text { c) } \frac{7}{x}+\frac{2}{(x-1)}-\frac{5}{(x+1)} & \text { d) } \frac{7}{x}-\frac{5}{(x-1)}-\frac{2}{(x+1)}
\end{array}
$$

Ans b.

KEA MATHENATACS

Solution :

$$
\frac{3 x-7}{x^{3}-x}=\frac{3 x-7}{x\left(x^{2}-1\right)}=\frac{3 x-7}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}
$$

To find A, B, C put $x=0,1,-1$ on LHS except at $x, x-1$ and $x+1$ resp.

Then $A=7, B=-4 / 2=-2, C=-10 / 2=-5$ which matches with option b
\therefore Answer is option (b)
44. The domain of the function

$$
\sqrt{x-2}+\sqrt{1-x} \text { is }
$$

$\begin{array}{ll}\text { a) } x \geq 2 & \text { b) set of real numbers }\end{array}$

$$
\text { c) } x \leq 2 \quad \text { d) }\left\{x \backslash x \in N: x^{2}<1\right\}
$$

Ans: d.

Solution:
$\sqrt{x-2}$ is defined when $x \geq 2$. but not defined when $x \leq 1$
$\sqrt{1-x}$ is defined when $x \leq 1$. but not defined when $x \geq 2$

Hence options a, b, c are rejected as the domain is an empty set, which matches with option (d). Hence Answer is option (d)
45. The correct statement of the following is
a) The relation " is less than " on Z is antisymmetric
b) The relation "is sister of " on the members of the family is transitive
c) The relation " is relatively prime " on N is reflexive.
d) The relation " is perpendicular " on the set of lines in a plane is transitive.

> Ans: b.

Solution:

a) on $Z, a<b$ and $b<a \nRightarrow a=b$ hence R is not antisymmetric
b) If A is a sister of B and B is a sister of C, then clearly A is a sister of C. Hence relation is transitive. Hence (b) is true.
c) since GCD of $2,2=(2,2)=2 \neq 1$
\therefore The relation " is relatively prime " is not reflexive [for $a, b \in Z$ if $(a, b)=1$ then a and b are relatively prime.]
d) On L , the set of lines if $\mathrm{L} 1 \perp \mathrm{~L} 2$ and $\mathrm{L} 2 \perp \mathrm{~L} 3$ then $\mathrm{L} 1 \perp \mathrm{~L} 3$ is wrong. Hence only option (b) is true.
\therefore Answer is option (b)

$\mathbf{K E}_{\mathbf{A}}$ MATHENIATACS

46. If $t_{n}=\frac{1}{4}(n+1)(n+2)$ for
$n=1,2,3, \ldots . . .$. then

$$
\begin{aligned}
& \frac{1}{t_{1}}+\frac{1}{t_{2}}+\ldots \ldots+\frac{1}{t_{100}}= \\
& \begin{array}{ll}
\text { a) } \frac{51}{100} & \text { b) } \frac{51}{50} \\
\text { c) } \frac{100}{51} & \text { d) } \frac{50}{51}
\end{array}
\end{aligned}
$$

Ans c.

$\mathbf{K E}_{\mathbf{A}}$

Solution:

$$
\begin{aligned}
\frac{1}{t_{n}}= & \frac{4}{(n+1)(n+2)}=4\left[\frac{1}{(n+1)(n+2)}\right] \\
\therefore \sum_{n=1}^{100} \frac{1}{t_{n}} & =4 \sum_{n=1}^{100} \frac{1}{(n+1)(n+2)} \\
& =4\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{101.102}\right] \\
& =4\left[\frac{n}{a(a+n d)}\right]=4\left[\frac{100}{2(2+100)}\right]=\frac{4.100}{4.51} \\
& =\frac{100}{51} \text { which is option (c) } \\
& \text { Hence Answer is option (c) }
\end{aligned}
$$

$\mathbf{K E}_{\mathbf{A}}$ MATHENIATACS

47. If $1, a_{1}, a_{2}, a_{3} \ldots \ldots, a_{n-1}$ are the nth roots of unity, then

$$
\left(1-a_{1}\right)\left(1-a_{2}\right)\left(1-a_{3}\right) \ldots . .\left(1-a_{n-1}\right)=
$$

a) 0
b) 1
c) n
d) \mathbf{n}^{2}

Ans c.

Solution :

Let $\mathrm{n}=3$. then we know that cube roots of unity are $1, \omega$ and ω^{2}
Then

$$
\begin{aligned}
\left(1-a_{1}\right) & \left(1-a_{2}\right)\left(1-a_{3}\right) \ldots \ldots .\left(1-a_{n-1}\right) \\
& =\left(1-a_{1}\right)\left(1-a_{2}\right) \\
& =(1-\omega)\left(1-\omega^{2}\right) \\
& =1-\left(\omega+\omega^{2}\right)+\omega^{3} \\
& =1-(-1)+1=3=n \\
& \quad\left(\because \omega^{3}=1 \text { and } 1+\omega+\omega^{2}=0\right)
\end{aligned}
$$

\therefore Answer is option (c).
48. If two roots of the equation $x^{4}+x^{3}-25 x^{2}+41 x+66=0$ are $3 \pm i \sqrt{2}$, then the other two roots satisfies the equation

$$
\begin{array}{ll}
\text { a) } x^{2}+7 x+6=0 & \text { b) } x^{2}-7 x+6=0 \\
\text { c) } x^{2}+7 x-6=0 & \text { d) } x^{2}-7 x-6=0
\end{array}
$$

Ans a.

KE

Solution: Let the roots be α, β, γ and δ Let $\alpha, \beta=3 \pm i \sqrt{2}$ then $\alpha+\beta=6$ and $\alpha \beta=(3+i \sqrt{2})(3-i \sqrt{2})=11$
sum of the roots $=(\alpha+\beta)+\gamma+\delta=-b / a=-1$

$$
\Rightarrow 6+(\gamma+\delta)=-1 \Rightarrow(\gamma+\delta)=-7
$$

product of the roots $=\alpha \beta \gamma \delta=\mathrm{e} / \mathrm{a}=66$

$$
\Rightarrow \gamma \delta=66 / \propto \beta=66 / 11=6
$$

Now $(\gamma+\delta)=-7$ and $\gamma \delta=6$
satisfies option a only.
\therefore Answer is option (a)

$\mathbf{K}_{\mathbf{A}}$

 VATHENIATHCS49. The coefficient of x in the expansion of $\left[x^{2}+\frac{c}{x}\right]^{5}$ is
a) $\mathbf{2 0 c}$ b) 10 c
c) $10 c^{3}$
d) $\mathbf{2 0} c^{2}$

Ans c.

Solution:

Consider $\left[x^{2}+\frac{c}{x}\right]^{5}$ compare with $[x+a]^{n}$ Here $\mathrm{x} \rightarrow \boldsymbol{x}^{2}, \mathrm{n} \rightarrow \mathbf{5}, \mathrm{a} \rightarrow \frac{c}{x}, \therefore \mathrm{r}=\mathbf{3}$

$$
\begin{gathered}
T_{r+1}={ }^{n} C_{r} x^{n-r} a^{r}={ }^{5} C_{r}\left(x^{2}\right)^{5-r}\left(\frac{c_{r}}{x}\right)^{r} \\
{ }^{5}{ }^{5} C_{r} x^{10-3 r} \cdot c^{r}={ }^{5} C_{r} . c^{r} x^{10-3 r}{ }_{-\left({ }^{*}\right)}
\end{gathered}
$$

$$
\text { For coefficient of } x, 10-3 r=1 \Rightarrow r=3
$$

$$
\left(^{*}\right) \Rightarrow T_{4}=T_{3+1}={ }^{5} C_{3} \cdot c^{3} \cdot \mathrm{x}=10 c^{3} \mathrm{x}
$$

\therefore The coefficient of \mathbf{x} is $10 c^{3}$
\therefore Answer is option (c)

K_{A}

50. The number of solutions of

$$
\log _{4}^{(x-1)}-\log _{2}^{(x-3)}=0 \text { is }
$$

a) 3
b) 1
c) 2
d) 0

Ans b.

$\mathbf{K E}_{\mathbf{A}}$

Solution:

$$
\begin{aligned}
& \log _{4}^{(x-1)}=\log _{2}^{(x-3)} \\
& \quad \Rightarrow \frac{1}{2} \log _{2}^{(x-1)}=\log _{2}^{(x-3)} \\
& \quad \Rightarrow \log _{2}^{(x-1)}=2 \log _{2}^{(x-3)} \\
& \quad \Rightarrow \log _{2}^{(x-1)}=\log _{2}(x-3)^{2} \\
& \quad \Rightarrow x-1=(x-3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}-1=x^{2}-6 \mathrm{x}+9 \\
& \Rightarrow x^{2}-7 \mathrm{x}+10=0 \\
& \Rightarrow(\mathrm{x}-5)(\mathrm{x}-2)=0 \\
& \Rightarrow \mathrm{x}=5,2
\end{aligned}
$$

but $x=2$ is not a solution
since $\boldsymbol{\operatorname { l o g }}_{2}{ }^{(x-3)}$ is not defined when $\mathrm{x}=2$
$\therefore \mathrm{x}=5$ is the only solution.
\therefore Answer is option (b)

MATHEMATIGS

Shri Lakshminarayana K.S.

Dept. of Mathematics

Shri Bhuvanendra College, Karkala, Udupi Dist KARNATAKA.

