

I PUC ALGEBRA

- 1. SET THEORY
- 2. LOGARITHMS
- 3. SUMMATION OF SERIES
- 4. THEORY OF EQUATIONS
- 5. MATHEMATICAL LOGIC
- 6. PARTIAL FRACTIONS
- 7. BINOMIAL THEOREM

1. Which of the following is not a singleton?

a) { x : $|x| < 1, x \in Z$ } b) { x : $|x| = 5, x \in N$ } c) { x : $x^3 + 27 = 0, x \in R$ } d) { x : $x^2 + 3x + 4 = 0, x \in R$ }

Ans: (d).

Solution :

[A singleton set is a set having only one element.]

- a) : {0}
- b) : { 5 }
- c) : {-3}
- d): φ
- ∴ Answer is option (d)

2. If $g(x) = 1 + \sqrt{x}$ and $f(g(x)) = 3 + 2\sqrt{x} + x$, then f(4) =a) 3 b) 18 c) 11 d) 4 Ans b.

Solution:

f(g(x)) = 3 + 2
$$\sqrt{x}$$
 + x
= [1+2 \sqrt{x} + $\sqrt{x^2}$] +2
= $(1 + \sqrt{x})^2$ +2
= [g(x)]^2 +2
 \therefore f(g(x))=[g(x)]^2 +2 put g(x)=4
 \therefore f(4) = (4)^2 +2 = 18
 \therefore Answer is option (b)

- 3. Let A={ -1, 0, 1} and B= { 0, 2} and a function f: A \rightarrow B defined by y = 2 x⁴, then f is
 - a) one one onto
 - b) one one into
 - c) many one onto
 - d) many one into.

Ans c.

K. MATHEMATICS Solution: f: $A \rightarrow B$ defined by $y = 2 x^4$. when x = -1, y = 2; x = 0, y = 0 and x = 1, y = 2∴ -1 and 1 have 2 as their image. \therefore f is not one-one \therefore f is many one. Answer is either option c or option d Since both 0 and 2 are images, f is onto. ∴ f is many one and onto

∴ Answer is option (c)

K^EA MATHEMATICS

- 4. Let R be a relation on the set of real numbers defined by a R b
 if | a b | ≤ 1, then R is
 - a) Reflexive and symmetric
 - b) Reflexive and transitive
 - c) symmetric and transitive
 - d) only reflexive.

Solution:

K

 $|a - a| \le 1 \Longrightarrow 0 \le 1$ is true. $\therefore a R a$

E A MATHEMATICS

- \therefore R is reflexive.
- We have $|\mathbf{x}| = |-\mathbf{x}| \implies |\mathbf{a} \mathbf{b}| \le 1$
- $\Rightarrow | \mathbf{b} \mathbf{a} | \leq 1 \qquad \qquad \therefore \mathbf{R} \text{ is symmetric}$
- $|3-2| \le 1$ and $|2-1| \le 1$ but $|3-1| \le 1$
- . R is not transitive.
- \therefore R is only reflexive and symmetric .
 - : Answer is option (a)

5. If a function f: N \rightarrow N such that f(1) = 1, f(n+1) = 2 f(n) + 1, then f(n) =

a)
$$2^{n-1}$$
 b) $2^n - 1$
c) $2^{n-1} - 1$ d) $2^{n+1} + 1$
Ans b.

KEA MATHEMATICS

Solution:

Given f(1) = 1, Now f(n+1) = 2 f(n) + 1.

 \therefore put n=1, f(2) = 2 f(1) + 1 = 2 + 1 = 3 (:: f(1) = 1) ∴ f(2) = 3. When n= 2, (a) $\rightarrow 2^{n-1} = 2$; (b) $\rightarrow 2^n - 1 = 4 - 1 = 3$; (c) $\rightarrow 2^{n-1}$ - 1=1; (d) $\rightarrow 2^{n+1}$ + 1=9 \therefore f(2) = 3 matches with option (b) \therefore Answer is option (b)

6. The range of the function $f(x) = {}^{7-x}P_{x-3}$ is a) { 1, 2, 3, 4 } b) { 1, 2, 3, 4, 5, 6 } c) { 1, 2, 3 } d) { 3, 4, 5 } Ans c.

Solution: $f(x) = {}^{7-x}P_{x-3}$. clearly 7- $x \ge x - 3 \implies 10 \ge 2x \implies 5 \ge x$ $\implies x \le 5$

But $x \ge 3$: x = 3,4,5.

∴ Domain is

 ${7^{-x}P_{x-3} \setminus x = 3,4,5} = {4P_0, 3P_1, 2P_2} = {1,3,2}$

∴ Answer is option (c)

7. If $f(x) = \frac{2x+1}{1-3x}$ then $f^{-1}(x) =$ _____ a) $\frac{x-1}{3x+2}$ b) $\frac{3x+2}{x-1}$ c) $\frac{x+1}{3x-2}$ d) $\frac{2x+1}{1-3x}$

Ans a.

8. If A = { 1, 2, 3, 4} Then which of the following is a function from A to itself

a)
$$f_1 = \{ (x, y) \setminus y = x + 1 \}$$

b) $f_2 = \{ (x, y) \setminus (x + y) > 4 \}$
c) $f_3 = \{ (x, y) \setminus (y < x) \}$
d) $f_4 = \{ (x, y) \setminus (x + y = 5) \}$

KEA MATHEMATICS

Solution :

a) when x= 4, y = x+1=5 \notin A \therefore 4 has no image b) $f_2 = \{ (x, y) \setminus (x + y) > 4 \}$ 2+3>4 and 2+4>4 \therefore 2 has two images # c) $f_3 = \{ (x, y) \setminus (y < x) \}$ when x = 1, $y < 1 \therefore y \notin A$ \therefore options a, b, c are rejected. Hence only possibility is option (d). \therefore Answer is option (d) 17

9. If log_e^2 , $log_e^{(2x-1)}$ and $log_e^{(2x+3)}$ are in A P then the value of x is _____

a)
$$-\frac{1}{2}$$
 b) $\frac{5}{2}$

c) 1 d)
$$\frac{1}{2}$$

Ans b.

Solution : when (a) $\rightarrow x = -\frac{1}{2}$, $log_e^{(2x-1)} = log_e^{(-2)}$, meaningless When (c) \rightarrow x = 1; log_{e}^{2} , $log_{e}^{(1)} = 0$ and $log_e^{(5)}$, which are not in AP when (d) $\rightarrow x = \frac{1}{2}$, $log_e^{(2x-1)} = log_e^{(0)}$, meaningless Hence only possibility is option (b) ∴ Answer is option (b) 19

10. If
$$x = log_4^2$$
, $y = log_6^4$ and
 $z = log_8^6$,
then yz(2 - x) =

Ans c.

Solution:

yz(2-x) = 2yz - xyz $= 2log_{6}^{4}log_{8}^{6} - log_{8}^{2}$ $= 2log_8^4 - log_8^2$ $= log_8^{16} - log_8^2$ $= log_8^8 = 1$ Hence answer is option (c)

11. If $\frac{1}{\log_3^{\pi}} + \frac{1}{\log_4^{\pi}} > k$ then the greatest integral value of k =

a) 3
b) 2
c) 1
d) 4

Ans b.

Solution:

Given $log_{\pi}^{3} + log_{\pi}^{4} > k$ $\Rightarrow log_{\pi}^{12} > k$ $\Rightarrow 12 > \pi^{k}$. (k greatest integer) Now 12 > π^{2} and 12 $\Rightarrow \pi^{3}$ \therefore k= 2 \therefore Answer is option (b)

12. If $log_a^{ab} = \mathbf{x}$ then $log_b^{ab} =$

Ans c.

KEA MATHEMATICS

Solution:

We have $\log_a^{ab} = x$ $\therefore \log_{ab}^{a} = \frac{1}{x}$ Now $\log_{ab}^{a} + \log_{ab}^{b} = \log_{ab}^{ab} = 1$ $\Rightarrow \log_{ab}^{b} = 1 - \log_{ab}^{a} = 1 - \frac{1}{x} = \frac{x-1}{x}$ $\therefore \log_b^{ab} = \frac{1}{\log_{ab}^{b}} = \frac{x}{x-1}$

∴ Answer is option (c).

13. If x = 27, y = log_3^4 then $x^y =$ a) 64 b) 16 **b)** $\frac{1}{16}$ **c)** $\frac{3}{7}$

Solution :

$$x^{y} = 27^{\log_{3}^{4}}$$

$$= 3^{3 \log_{3}^{4}}$$

$$= 3^{\log_{3}^{64}}$$

$$= 64 \quad (\because a^{\log_{a}^{x}} = x)$$

$$\therefore \text{Answer is option (a)}$$

14. If $2 \log_{10}^{a} - 3 \log_{10}^{b} = 2$ then 100 $b^{3} =$ _____

a) a^2 b) a

- c) a^3 d) 3a
 - Ans a.

KEA MATHEMATICSSolution :

Given $2 \log_{10}^{a} - 3 \log_{10}^{b} = 2$ $\Rightarrow log_{10}^{a^2} - log_{10}^{b^3} = 2$ $\Rightarrow \log_{10}^{\frac{a^2}{b^3}} = 2 \Rightarrow \frac{a^2}{b^3} = 100$ \Rightarrow **100** $b^3 = a^2$ \therefore Answer is option (a)

15. If x , y and z are any three odd consecutive odd positive integers then log _e (xz +4) =

a)
$$\log_{e}^{2y}$$
 b) \log_{e}^{y}
c) $2\log_{e}^{y}$ d) $4\log_{e}^{y}$

Ans c.

Solution :

Take 3 consecutive odd positive integers as x = 1 y = 3 z = 5then xz + 4 = 9 $\therefore \log_{e} (xz + 4) = \log_{e} 9$ $= 2 \log_{e} 3$ = $2log_e^{y}$ (:: y = 3) ∴ Answer is option (c)

16. If
$$S_n = \frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$$
 to n
terms, then $S_n =$

a)
$$\frac{2n}{2n+1}$$
 b) $\frac{n}{2n+1}$
c) $\frac{n}{n+2}$ d) $\frac{2n}{n+5}$

Ans b.

Solution: By inspection method
a)
$$\frac{2n}{2n+1}$$
 b) $\frac{n}{2n+1}$ c) $\frac{n}{n+2}$ d) $\frac{2n}{n+5}$
Put n= 2, Then LHS= $S_2 = \frac{1}{3} + \frac{1}{15} = \frac{6}{15} = \frac{2}{5}$
 $\Rightarrow S_2 = \frac{2}{5}$
In options, $a \rightarrow \frac{4}{5}$ $b \rightarrow \frac{2}{5}$ $c \rightarrow \frac{1}{2}$ $d \rightarrow \frac{4}{7}$

- \therefore The value of S_2 matches with option (b).
- \therefore Answer is option (b).

Or
$$S_n = \frac{n}{a(a+nd)} = \frac{n}{1(1+2n)} = \frac{n}{2n+1}$$

17. The sum 1.3 + 3.5 + 5. 7 +.... up to n terms is

a)
$$\frac{n}{5}$$
 [3 n^2 + 7n + 5)
b) $\frac{n}{2}$ [2 n^2 + 3n + 1)
c) $\frac{n}{3}$ [4 n^2 + 6n - 1)
d) $\frac{n}{3}$ [5 n^2 + 3n + 1)

KEA MATHEMATICS

Solution: By inspection method:

instead of checking for n=1 or n=2, check for n=3 (fast) LHS = 1.3 + 3.5 + 5.7 = 53

When n= 3 the values of the options are

a) $\frac{n}{5}$ [3 n^2 + 7n + 5) b) $\frac{n}{2}$ [2 n^2 + 3n + 1)

c) $\frac{n}{3}$ [4 n^2 + 6n - 1) d) $\frac{n}{3}$ [5 n^2 + 3n + 1)

a) $\frac{3}{5}$. 53 b) $\frac{3}{2}$. 28 = 42 c) 53 d) 55 \therefore Answer is option (c).

18. The value of **1**+ $\frac{2}{5}$ + $\frac{3}{25}$ + ----- to ∞ is **b)** $\frac{16}{25}$ a) $\frac{1}{25}$ **c)** $\frac{25}{16}$ 5 4 **d)** Ans c.

Solution: Given is in AG series where a = 1, d = 1, r = $\frac{1}{5}$ $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} = \frac{1}{1-\frac{1}{5}} + \frac{\frac{1}{5}}{(1-\frac{1}{5})^2}$ $=\frac{5}{4}+\frac{5}{16}=\frac{25}{16}$

∴ Answer is option (c)

19. The 25^{th} term of the series 3 + 15 + 35 + 63 + is _

a) 2500 b) 2499

c) 2501 d) 1249

Ans b.

Solution:

summation by the method of differences. Here I differences : 12, 20, 28; II differences : 8,8,8,.... $\Delta = 12$ $\Delta^2 = 8$ $T_1 = 3$ $T_n = T_1 + (n-1) \Delta + \frac{1}{2} (n-1)(n-2) \Delta^2$ $T_{25} = 3 + 24.12 + \frac{1}{2} \cdot 24.23.8$ = 3 + 288 + 2208 = 2499 \therefore Answer is option (b) 39

KEA MATHEMATICS

Solution:

Inspection Method : 2^{3} + 4^{3} + 6^{3} +....+ $(2n)^{3}$ = k. n^{2} $(n + 1)^{2}$ Put n = 1RHS = k.4LHS = 8 ∴ 4k = 8 \Rightarrow k = 2 ∴ Answer is option (d)

21. If the sum of n terms of an AP is $nA + n^2 B$ where A and B are constants. Then its common difference is

KEA MATHEMATICS Solution: Given $S_n = nA + n^2 B$. Put n=1, 2 $\therefore T_1 = S_1 = A + B$ And $S_2 = 2A + 4B$ But $S_2 = T_1 + T_2$ $:: T_2 = S_2 - T_1 = (2A + 4B) - (A + B)$ =A + 3B. Now $T_1 = A + B$ and $T_2 = A + 3B$: Common difference = T_2 - T_1 = 2B ∴ Answer is option (d)

22. If the roots of the quadratic equation $x^2 + px + q = 0$ are tan30⁰ and tan15⁰, Then q=

c) p +1 d) $\sqrt{3}$ p

KEA MATHEMATICS Solution: Consider $x^2 + px + q = 0$ Let \propto = tan30⁰ and β = tan15⁰. The $\propto + \beta = -b/a = -p$ and $\propto \beta = c/a = q$. Now $\tan 45^0 = \tan (30^0 + 15^0)$ $\implies \mathbf{1} = \frac{tan30^0 + tan15^0}{1 - tan30^0 \cdot tan15^0} = \frac{\alpha + \beta}{1 - \alpha \beta} = \frac{-p}{1 - q}$ $\Rightarrow 1 = \frac{-p}{1-q} \Rightarrow 1-q = -p$ \Rightarrow q - p = 1 \Rightarrow q = 1 + p ∴ Answer is option (c)

23. The roots of the equation $x^3 - 12 x^2 + 39x - 28 = 0$ are in AP, then the roots are _____

a) 3, 4, 5 b) 2, 4, 6

c) 1, 4, 7 d) -1, -4, -7

Ans c.

KEA MATHEMATICS Solution: $x^3 - 12 x^2 + 39x - 28 = 0$ The sum of the roots = -b/a = 12. \rightarrow (m) Now product of the roots=-d/a = $28 \rightarrow (n)$ (a) 3, 4, 5 (b) 2, 4, 6 (c) 1, 4, 7 (d) -1, -4, -7 (m) and (n) matches with option (c) only. ∴ Answer is option (c) 47

MATHEMATICS KEA 24. If two roots of $x^3 + p x^2 + qx + r = 0$ are connected by the relation $\propto \beta$ + 1 =0, then the condition is ____ a) r^2 - pr + q + 1 = 0 b) r^2 + pr + q + 1 = 0 c) p^2 + pr + q + 1 = 0 d) q^2 + pr + q + 1 = 0 Ans c.

MATHEMATICS

K.

Solution: Consider $x^3 + p x^2 + qx + r = 0$ Let the roots be \propto,β and γ . Now by data $\propto \beta = -1$ Then the sum = $\propto + \beta + \gamma$ = -b/a = -p; product = $\propto \beta \gamma$ = -d/a = -r Now $\propto \beta \gamma = -r \implies (-1) \gamma = -r \implies \gamma = r$ Now $\gamma = r$ satisfies $x^3 + p x^2 + qx + r = 0$ $\Rightarrow r^3 + p r^2 + qr + r = 0$ \Rightarrow r[r^2 + p r + q + 1]=0 \Rightarrow r^2 + p r + q + 1 =0 .: Answer is option (c)

25. If the roots of the equation $3x^3 - kx^2 + 52x - 24 = 0$ are in GP, then k=

Solution: Since the roots are in GP ,

$$x = \sqrt[3]{\frac{-d}{a}} = \sqrt[3]{\frac{24}{3}} = \sqrt[3]{8} = 2$$
 is a root.

Put x = 2 in $3x^3$ - k x^2 + 52x - 24 = 0

we have 24 - 4k + 104 - 24 = 0

$$\Rightarrow$$
 4k = 104 \Rightarrow k = 26

∴ Answer is option (d)

26. Two roots of the equation $x^3 - 7 x^2 + kx + m = 0$ are related by $\beta = 2 \propto$ and the third root being -2, then k and m are respectively,

a) 1 and 36 b) -1 and-36

c) 0 and 36 d) 36 and 0

Ans c.

K MATHEMATICS Solution: $x^3 - 7x^2 + kx + m = 0 \rightarrow (*)$ Let the roots be \propto , β and γ . Then by data $\gamma = -2$ and $\beta = 2 \propto$ Sum of the roots = $\propto + \beta + \gamma = - b/a = 7$ $\Rightarrow \propto + 2 \propto + (-2) = 7 \Rightarrow 3 \propto = 9 \Rightarrow \propto = 3$ Now $\propto = 3$ satisfies (*) $\therefore 27 - 63 + 3k + m = 0$ \Rightarrow 3k + m = 36 which is satisfied by option (c) only, i.e. (c) 0 and 36 where k = 0 and m = 36, by inspection.

Answer is option (c)

KEA MATHEMATICS

27. If the equation $x^3 + ax + 1 = 0$ and $x^4 + a x^2 + 1 = 0$ have a root in common, then a =

a) 2 b) -2 c) 1 d) -1

Ans b.

KEA MATHEMATICS Solution: Given $x^3 + ax + 1 = 0 \Rightarrow x^3 + ax = -1$ multiply by x, $x^4 + a x^2 = -x$ Now given eq2 ($x^4 + a x^2$) + 1 =0 \Rightarrow -x + 1 = 0 \Rightarrow x = 1 Put x = 1 in x^3 + ax + 1 = 0 \Rightarrow |a = -2 | Given options (a) 2 (b) -2 (c) 1 (d) -1 ∴ Answer is option (b) 55

28. If α , β , γ and δ are the roots of the equation $x^4 - 3x^2 + 7 = 0$, then $\sum \frac{1}{\alpha\beta} =$ ______ $a) \frac{3}{7}$ $b) \frac{7}{3}$

c) $-\frac{7}{3}$ d) $-\frac{3}{7}$

KEA MATHEMATICS

Solution:

Consider $x^4 - 3x^2 + 7 = 0$ here a = 1, b = 0, c = -3, d = 0, e = 7 $\sum \alpha = -b/a = 0$, $\sum \alpha \beta = c/a = -3$ product = $\alpha\beta\gamma\delta$ = e/a = 7 Now $\sum \frac{1}{\alpha\beta} = \frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\delta} + \frac{1}{\delta\alpha}$ $=\frac{\alpha\beta+\beta\gamma+\gamma\delta+\delta\alpha}{\alpha\beta\gamma\delta} =\frac{\sum\alpha\beta}{\alpha\beta\gamma\delta} =\frac{-3}{7}$ ∴ Answer is option (d)

29. The number of solutions of the equation $x^2 + 3 |x| + 2 = 0$ is _

K MATHEMATICS Solution: Let y = |x| then $y^2 = x^2$ then y^2 + 3y + 2 = 0 \Rightarrow (y + 2) (y + 1) =0 \Rightarrow y = -2, -1 \Rightarrow | x | = -2, -1, not possible as $|x| \ge 0$ Hence no solution. .: Number of solutions =0 Hence Answer is option (d)

30. If 1 - p is a root of the equation

$$x^{2} + px + (1 - p) = 0$$
,

then the roots are

c) 0, -1 d) -1, 1 Ans c.

ΚΕΔ MATHEMATICS Solution: Since 1 – p is a root of $x^{2} + px + (1 - p) = 0$, we have $(1-p)^2 + p(1-p) + (1-p) = 0$. ⇒(1–p)[1–p+p+1]=0 \Rightarrow 2(1-p) =0 \Rightarrow p=1 \therefore when p= 1, the equation becomes $x^2 + x = 0 \implies x(x + 1) = 0 \implies x = 0,-1$ ∴ Answer is option (c)

31. The contrapositive of the inverse of $p \rightarrow \sim q$ is _____

Ans b.

KEA MATHEMATICS

Solution:

We know that the inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$ and contrapositive is $\sim q \rightarrow \sim p$ \therefore The inverse of $p \rightarrow \sim q$ is $\sim p \rightarrow q$. Its contrapositive is $\sim q \rightarrow p$ \therefore Answer is option (b)

KEA MATHEMATICS

32. The proposition ($p \land \neg q$) \rightarrow ($r \lor \neg s$) is known to be false. Then the truth values of p, q, r & s are respectively,

> a) T, F, T, T b) T, T, T, F c) T, F, F, T d) T, T, F, F

> > Ans c.

KEA
Solution: We know that
$$p \rightarrow q$$
 is false
when $p: T$ and $q: F$
Given $(p \land \neg q) \rightarrow (r \lor \neg s)$ is false
 $\therefore p \land \neg q: T$ and $r \lor \neg s: F$
 $\Rightarrow p: T$ and $\neg q: T; r: F$ and $\neg s: F$
 $\Rightarrow p:T, q:F; r:F; s: T$
Given options a) T, F, T, T b) T, T, T, F
 $c)$ T, F, F, T d) T, T, F, F

∴ Answer is option (c)

33. The negation of statement "If x = 4 and y = 6 then x + y = 10" is a) "if $x \neq 4$ and $y \neq 6$ then $x + y \neq 10$ " b) "if $x \neq 4$ or $y \neq 6$ then $x + y \neq 10$ " c) "if x = 4 and y = 6 then $x + y \neq 10$ " d) "x = 4 and y = 6 and $x + y \neq 10$ " Ans d. 66

Solution:

Let p: (x = 4 and y = 6) & q: (x + y = 10)Then given statement is $p \rightarrow q$. Now $\sim (p \rightarrow q) \equiv p^{\wedge} \sim q$ The negation of the given statement is "x = 4 and y = 6 and $x + y \neq 10$ " \therefore Answer is option (d)

$$(x + 1)^2 = A(x^2 + 1) + (Bx + c)x$$

 $x^2 + 2x + 1 = A(x^2 + 1) + (Bx^2 + cx)$
Put x = 0 $\therefore A = 1$

Compare coefficient of x, we have C = 2 $\therefore \sin^{-1} \left[\frac{A}{C}\right] = \sin^{-1} \left[\frac{1}{2}\right] = 30^{0} = \frac{\pi}{6}$ $\therefore \text{ Answer is option (a)}$

35.
$$\frac{3x-1}{(x+2)(1-x+x^2)}$$
 is resolved into

partial fractions, then it is equal to ____?

a)
$$\frac{1}{x+2}$$
 + $\frac{x}{(1-x+x^2)}$ b) $\frac{1}{x+2}$ + $\frac{x-1}{(1-x+x^2)}$
c) $\frac{-1}{x+2}$ + $\frac{x}{(1-x+x^2)}$ d) $\frac{-1}{x+2}$ + $\frac{x-1}{(1-x+x^2)}$

Ans c.

$$\frac{1}{(x+2)(1-x+x^2)} = \frac{1}{x+2} + \frac{1}{(1-x+x^2)}$$

Put x= -2 except at x+2 on LHS: A = $\frac{-7}{7}$ = -1

Hence answer is either option (c) or (d)

c)
$$\frac{-1}{x+2}$$
 + $\frac{x}{(1-x+x^2)}$ d) $\frac{-1}{x+2}$ + $\frac{x-1}{(1-x+x^2)}$

But after comparing the constant,

$$2C + A = -1 \implies C=0$$
 (:: $A = -1$)

C=0 holds good in option (c) only.

∴ Answer is option (c)

36. The greatest coefficient in the expansion of $[1 + x]^{10}$ is

10 !	-l\	10!
c) $\frac{10}{5!7!}$	d)	5 !4!

Ans b.

KEA MATHEMATICS

Solution:

The greatest coefficient is the coefficient of the middle term.

- In $(x + a)^n = [1 + x]^{10}$, there are 11 terms.
 - $:T_6$ is the middle term.
 - $n=10, \ r=5, \ x \to 1, \ a \to x$
 - $T_6 = {}^n C_r x^{n-r} a^r = {}^{10} C_5 .1 .x^5$.
 - : The coefficient is ${}^{10}C_5 = \frac{10!}{[5!][5!]} = \frac{10!}{[5!]^2}$

Hence Answer is option (b)

37. In the expansion of $\left[x^2 - \frac{1}{x}\right]^{18}$, the constant term is _____

a)
$${}^{18}C_4$$
 b) ${}^{18}C_6$

c) ${}^{18}C_5$ d) ${}^{18}C_7$

Ans b.

7

$$T_{r+1} = {}^{n}C_{r}x^{n-r}a^{r}$$

= ${}^{18}C_{r}[x^{2}]^{18-r}\left[\frac{-1}{x}\right]^{r}$
= ${}^{18}C_{r}[x^{36-3r}](-1^{r})$
For constant term $36 - 3r = 0 \implies r = 12$
 $T_{13} = {}^{18}C_{12}[x^{0}](-1^{12}) = {}^{18}C_{12} = {}^{18}C_{6}$
which is option (b).
Hence Answer is option (b)

38. The sum of the coefficients in the expansion of $[1 + 2x - 4x^2]^{173}$ is _____

c) -1 d) 2

Consider $[1 + 2x - 4x^2]^{173}$ To find the sum of the coefficients, Put x= 1 Sum of the coefficients is -1

∴Answer is option (c)

KEA MATHEMATICS 39. In the expansion of $[1 + x]^n [1 + \frac{1}{r}]^n$, the term independent of x is _ a) $C_0^2 + 2 C_1^2 + 3 C_2^2 + \dots + (n+1) C_n^2$ **b)** $(C_0 + C_1 + C_2 + \dots + C_n)^2$ c) $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2$ d) $C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n$ Ans c. 78

$$[1+x]^{n} [1+\frac{1}{x}]^{n} = [C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{n}x^{n}].$$
$$[C_{0} + C_{1}\frac{1}{x} + C_{2}\frac{1}{x^{2}} + \dots + C_{n}\frac{1}{x^{n}}]$$

MATHEMATICS

. The term independent of x in RHS is

$$= C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2$$

which is option (c)

∴ Answer is option (c)

40. In the expansion of $[1 + x]^{50}$, the sum of the coefficients of odd powers of x is _____

a) 0 b) 2⁴⁹

c) 2^{50} d) 2^{51}

The sum of the coefficients of odd powers of x in $[1+x]^n$ is 2^{n-1} Hence required sum in $[1 + x]^{50}$ is $2^{50-1} = 2^{49}$ **c)** 2⁵⁰ **b**) 2⁴⁹ d) 2^{51} options a) 0 \therefore answer is option (b)

41. If $[1 + x]^n = a_0 + a_1 x + a_2 x^2 + ...$+ $a_n x^n$ then the values of $a_1 + 2 a_2 + 3a_3 + 4 a_4$=

a) 0 b) 2^n

c) n.2ⁿ⁻¹ d) 2ⁿ⁻¹

Ans c.

KEA

 $[1 + x]^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ **Differentiating w.r.t. x**, n $[1 + x]^{n-1} = a_1 + a_2 2x + \dots + a_n n x^{n-1}$ Put x= 1, we have $a_1+2 a_2 + 3a_3 + 4 a_4 + \dots + na_n = n \cdot 2^{n-1}$ Hence answer is option (c).

MATHEMATICS

42. If $[1 + x - 2x^2]^6$ = 1 + a₁ x + a₂x² +..... + a₁₂x¹², then the value of a₂ + a₄++ a₁₂ is

a) 31 b) 32

c) 64 d) 1024

Ans a.

 $[1 + x - 2x^2]^6 = 1 + a_1 x + a_2 x^2 + \dots + a_{12} x^{12}$ put x = 1, $1 + a_1 + a_2 + a_3 + \dots + a_{12} = 0. \rightarrow (1)$ $put \ x = -1$, $1 - a_1 + a_2 - a_3 + \dots + a_{12} = 2^6 = 64. \rightarrow (2)$ $(1) + (2) \implies 2 [1 + a_2 + a_4 + \dots + a_{12}] = 64$ \Rightarrow 1+ a_2 + a_4 ++ a_{12} = 64/2 = 32 $\Rightarrow a_2 + a_4 + \dots + a_{12} = 32 - 1 = 31$ Hence Answer is option (a)

43. The resolution of
$$\frac{3x-7}{x^3-x}$$
 into partial fractions yields

a)
$$\frac{2}{x} - \frac{7}{(x-1)} - \frac{5}{(x+1)}$$

b) $\frac{7}{x} - \frac{2}{(x-1)} - \frac{5}{(x+1)}$
c) $\frac{7}{x} + \frac{2}{(x-1)} - \frac{5}{(x+1)}$
d) $\frac{7}{x} - \frac{5}{(x-1)} - \frac{2}{(x+1)}$
Ans b.

 $\frac{3x-7}{x^3-x} = \frac{3x-7}{x(x^2-1)} = \frac{3x-7}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}$

To find A, B, C put x= 0, 1, -1 on LHS except at x, x - 1 and x+1 resp.

Then A = 7, B = -4/2 = -2, C = -10/2 = -5which matches with option b

∴ Answer is option (b)

44. The domain of the function

$$\sqrt{x-2} + \sqrt{1-x}$$
 is _____

a) $x \ge 2$ b) set of real numbers

c) $x \le 2$ d) { $x \setminus x \in N : x^2 < 1$ }

Ans: d.

 $\sqrt{x-2}$ is defined when $x \ge 2$.

but not defined when $x \le 1$

$$\sqrt{1-x}$$
 is defined when $x \le 1$.

but not defined when $x \ge 2$

Hence options a, b, c are rejected as the domain is an empty set, which matches with option (d). Hence Answer is option (d)

KEA MATHEMATICS

45. The correct statement of the following is

a) The relation " is less than " on Z is antisymmetric

- b) The relation " is sister of " on the members of the family is transitive
- c) The relation " is relatively prime " on N is reflexive.
- d) The relation " is perpendicular " on the set of lines in a plane is transitive.

Ans: b.

 a) on Z, a< b and b< a ⇒ a = b hence R is not antisymmetric

b) If A is a sister of B and B is a sister of C, then clearly A is a sister of C. Hence relation is transitive. Hence (b) is true.

KEA MATHEMATICS

c) since GCD of 2, $2 = (2, 2) = 2 \neq 1$

∴The relation " is relatively prime " is not reflexive [for a, $b \in Z$ if (a, b) = 1 then a and b are relatively prime.]

d) On L, the set of lines if L1 ⊥ L2 and L2 ⊥ L3 then L1 ⊥ L3 is wrong.
Hence only option (b) is true.
∴ Answer is option (b)

EXAMPLATE ITEMPARTIES
46. If
$$t_n = \frac{1}{4} (n+1) (n+2)$$
 for
 $n = 1,2,3,.....then$
 $\frac{1}{t_1} + \frac{1}{t_2} + + \frac{1}{t_{100}} =$
a) $\frac{51}{100}$ **b)** $\frac{51}{50}$
c) $\frac{100}{51}$ **d)** $\frac{50}{51}$
Ans c.

KEA MATHEMATICS

Solution:

$$\frac{1}{t_n} = \frac{4}{(n+1)(n+2)} = 4 \left[\frac{1}{(n+1)(n+2)} \right]$$

$$\therefore \sum_{n=1}^{100} \frac{1}{t_n} = 4 \sum_{n=1}^{100} \frac{1}{(n+1)(n+2)}$$

$$= 4 \left[\frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{101.102} \right]$$

$$= 4 \left[\frac{n}{a(a+nd)} \right] = 4 \left[\frac{100}{2(2+100)} \right] = \frac{4.100}{4.51}$$

$$= \frac{100}{51} \text{ which is option (c)}$$

Hence Answer is option (c)

47. If 1, a_1 , a_2 , a_3 , a_{n-1} are the nth roots of unity, then $(1 - a_1) (1 - a_2) (1 - a_3) \dots (1 - a_{n-1}) =$ a) 0 b) 1 d) n^2 **c)** n

Ans c.

Let n= 3. then we know that cube roots of unity are 1, ω and ω^2

Then

$$\begin{array}{l} (1 - a_1) \left(1 - a_2 \right) \left(1 - a_3 \right) \dots \left(1 - a_{n-1} \right) \\ = (1 - a_1) \left(1 - a_2 \right) \\ = (1 - \omega) \left(1 - \omega^2 \right) \\ = 1 - (\omega + \omega^2) + \omega^3 \\ = 1 - (-1) + 1 = 3 = n \\ (\because \omega^3 = 1 \text{ and } 1 + \omega + \omega^2 = 0) \\ \therefore \text{ Answer is option (c) .} \end{array}$$

48. If two roots of the equation $x^4 + x^3 - 25 x^2 + 41x + 66 = 0$ are $3 \pm i \sqrt{2}$, then the other two roots satisfies the equation

a)
$$x^2$$
+ 7x + 6 = 0 b) x^2 - 7x + 6 = 0

c)
$$x^2$$
 + 7x - 6 = 0 d) x^2 - 7x - 6 = 0

Ans a.

MATHEMATICS

Solution: Let the roots be \propto , β , γ and δ Let \propto , $\beta = 3 \pm i\sqrt{2}$ then $\propto + \beta = 6$ and $\propto \beta = (3 + i\sqrt{2})(3 - i\sqrt{2}) = 11$ sum of the roots=($\propto + \beta$)+ $\gamma + \delta = -b/a = -1$ \Rightarrow 6 + (γ + δ) = -1 \Rightarrow (γ + δ) = -7 product of the roots = $\propto \beta \gamma \delta$ = e/a = 66 $\Rightarrow \gamma \delta = 66 / \propto \beta = 66 / 11 = 6$ Now $(\gamma + \delta) = -7$ and $\gamma \delta = 6$ satisfies option a only. \therefore Answer is option (a)

49. The coefficient of x in the expansion of $\left[x^2 + \frac{c}{x}\right]^5$ is _____

a) 20c b) 10c

c) 10 c^3 d) 20 c^2

Ans c.

KEA MATHEMATICS Solution: Consider $\left[x^2 + \frac{c}{r}\right]^5$ compare with $[x + a]^n$ Here $\mathbf{x} \to x^2$, $\mathbf{n} \to \mathbf{5}$, $\mathbf{a} \to \frac{c}{r}$, $\therefore \mathbf{r} = \mathbf{3}$ $T_{r+1} = {}^{n}C_{r}x^{n-r}a^{r} = {}^{5}C_{r}(x^{2})^{5-r}(\frac{c}{r})^{r}$ $={}^{5}C_{r}x^{10-3r}$. $c^{r}={}^{5}C_{r}$. $c^{r}x^{10-3r}$ -(*) For coefficient of x, $10-3r = 1 \Rightarrow r=3$ (*) ⇒ $T_4 = T_{3+1} = {}^5C_3$. c^3 .x = 10 c^3 x \therefore The coefficient of x is $10c^3$ ∴ Answer is option (c)

50. The number of solutions of $log_4^{(x-1)} - log_2^{(x-3)} = 0$ is _

a) 3
b) 1
c) 2
d) 0

$$log_{4}^{(x-1)} = log_{2}^{(x-3)}$$

$$\Rightarrow \frac{1}{2} log_{2}^{(x-1)} = log_{2}^{(x-3)}$$

$$\Rightarrow log_{2}^{(x-1)} = 2log_{2}^{(x-3)}$$

$$\Rightarrow log_{2}^{(x-1)} = log_{2}^{(x-3)^{2}}$$

$$\Rightarrow x - 1 = (x - 3)^{2}$$

$$\Rightarrow x - 1 = x^2 - 6x + 9$$

$$\Rightarrow x^2 - 7x + 10 = 0$$

$$\Rightarrow (x - 5) (x - 2) = 0$$

$$\Rightarrow x = 5, 2$$

but x = 2 is not a solution

since $log_2^{(x-3)}$ is not defined when x = 2

 \therefore x= 5 is the only solution.

: Answer is option (b)

Shri Lakshminarayana K.S. **Dept. of Mathematics** Shri Bhuvanendra College, Karkala, Udupi Dist KARNATAKA.