## CALCULUS

## LIMITS, CONTINUITY,

 DIFFERENTIABILITYBLUE PRINT

1. Limits - 1 question
2. Continuity - 1 question

The function $f(x)$ is called an even function if $f(-x)=f(x)$ for all $x$ ．
The function $f(x)$ is called an odd function if $f(-x)=-f(x)$ for all $x$ ．

The function $f(x)$ is neither even nor odd if $f(-x) \neq f(x)$ and $f(-x) \neq-f(x)$ for all $x$ ．

## Definition of Limit

The function $f(x)$ is said to tends to a limit I as $x$ tends to $a$, if for any arbitrary $\varepsilon>0$ and there exists a corresponding number $\delta>0$ such that $|f(x)-| |<\varepsilon$ when ever $| x-a \mid<\delta$.

It is denoted by $\lim _{x \rightarrow a} f(x)=l$

## $K_{\mathbf{A}}$



The left hand limit of $f(x)$ as $x \rightarrow a$ is denoted by $\lim _{x \rightarrow a^{-}} f(x) \&$ is defined by

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{h \rightarrow 0} f(a-h)
$$

## $K_{\mathbf{A}}$

The right hand limit of $f(x)$ as $x \rightarrow a$ is denoted by $\lim _{x \rightarrow a^{+}} f(x) \&$ is defined by $\lim _{x \rightarrow a^{+}} f(x)=\lim _{h \rightarrow 0} f(a+h)$

## $K_{\mathbf{A}}$



When $\mathrm{LHL}=\mathrm{RHL}$, then we say $\lim _{x \rightarrow a} f(x)$ exists

The function $f(x)$ is said to be continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)$ exists (i.e., LHL $=\mathrm{RHL}$ ) \& $\lim _{x \rightarrow a} f(x)=f(a)$

## $K_{\mathbf{A}}$

The function $f(x)$ is said to be discontinuous at $x=a$ if $\lim _{x \rightarrow a} f(x) \neq f(a)$ The function $f(x)$ is said to be differentiable at $x=a$ if $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists \& is denoted by $f^{\prime}(x)$.

## $K_{\mathbf{A}}$

Result: Every differentiable function is continuous, but the converse i.e., every continuous function is need not be differentiable. We can prove this by the example, $f(x)=|x|$ at $x=0$

L' Hospitals Rule : Let $f(x) \& g(x)$ are
the two real valued functions \& if
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)} \ldots \&$ so
on, if it is in $\frac{0}{0}$ form.

Results:

1) $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$
2) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0} \frac{\tan x}{x}=1 \quad \&$

$$
\lim _{x \rightarrow 0} \frac{\cos x}{x}=\frac{1}{0}=\infty
$$

3) $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e$
4) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$
5) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$


## Examples:

1) $\lim _{x \rightarrow 5} \frac{x^{K}-5^{K}}{x-5}=500$,
then the positive value of $k$ is
2) 3
3) 4
4) 5
5) 6


Solution:

$$
\begin{gathered}
\lim _{x \rightarrow 5}\left(\frac{x^{K}-5^{K}}{x-5}\right)=500 \\
K .5^{K-1}=500 \\
=4 X 125 \\
=4 X 5^{3} \\
=4 X 5^{4-1} \\
\therefore K=4 \\
\text { Answer: } 2
\end{gathered}
$$


2) $\lim _{x \rightarrow 0} \frac{\sin n x\{a-n) n x-\tan x\}}{x^{2}}=500$
where n is a non zero positive integer, then a is equal to .

$$
\begin{array}{llll}
\text { 1) } \frac{n+1}{2} & \text { 2) } n^{2}+1 & \text { 3) } \frac{1}{n+1} & \text { 4) } n+1 / n
\end{array}
$$

Solution: $\lim _{x \rightarrow 0} \frac{\sin n x}{x}\left\{\frac{(a-n) n x-\tan x}{x}\right\}=0$

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin n x}{n x} \cdot n\left\{\frac{(a-n) n x}{x}-\frac{\tan x}{x}\right\}=0 \\
\ln n\{(a-n) n-1\}=0
\end{gathered}
$$

$$
a n-n^{2}-1=\frac{0}{n}
$$

$$
a n=n^{2}+1 \quad \therefore a=\frac{n^{2}+1}{n}
$$

Answer: 4

$$
\mathrm{a}=\boldsymbol{n}+\frac{1}{\boldsymbol{n}}
$$

3) The function $f(x)=\log \left(\sqrt{1+x^{2}}+x\right)$ is
4) odd function
5) Even Function
6) Neither Even nor odd function 4) Periodic function

Solution：$f(x)=\log \left(\sqrt{1+x^{2}}+x\right)$

$$
\begin{aligned}
& f(-x)=\log \left(\sqrt{1+x^{2}}-x\right) \\
& f(-x)=\log \left(\frac{\left(\sqrt{1+x^{2}}-x\right)\left(\sqrt{1+x^{2}}+x\right)}{\sqrt{1+x^{2}}+x}\right) \\
& f(-x)=\log \left(\frac{1+x^{2}-x^{2}}{\sqrt{1+x^{2}}+x}\right) \\
& f(-x)=\log 1-\log \left(\sqrt{1+x^{2}}+x\right) \\
& f(-x)=-f(x)
\end{aligned}
$$

Answer： 1

4) If $f: R \rightarrow R$ is continuous function such that

$$
\begin{aligned}
& f(x+y)=f(x)+f(y) \vee x, y \varepsilon R \\
& \& f(1)=2 \text { then the value of } f(100)=
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 1) } 0 & \text { 2) } 100 \\
\text { 3) } 200 & \text { 4) } 400
\end{array}
$$

## $K_{\mathbf{A}}$



Solution:

$$
\begin{aligned}
& f(x+y)=f(x)+f(y) \\
& \text { put } y=1, \quad f(x+1)=f(x)+f(1) \\
& \text { put } x=1, \quad f(2)=f(1)+f(1)=2 f(1) \\
& \text { put } x=2, \quad f(3)=f(2)+f(1)=2 f(1)+f(1) \\
& f(3)=3 f(1)
\end{aligned}
$$

similarly $f(4)=4 f(1)$
$\therefore f(100)=100 f(1)=100 \times 2$
$=200$
Answer: 2

## $K_{\mathbf{A}}$


5) If $f(2)=4$ and $f^{\prime}(2)=4$

$$
\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}=
$$

1) 2
2) -2
3) -4
4) 3


## Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}, \quad \frac{0}{0}, \text { By L L H rule } \\
& =\lim _{x \rightarrow 2} \frac{f(2)-2 f^{\prime}(x)}{1-0} \\
& =f(2)-2 f^{\prime}(2) \\
& =4-2(4) \\
& =-4
\end{aligned}
$$

Answer: 3

6) $\lim _{x \rightarrow \infty}\left(\frac{x+a}{x+b}\right)^{x+b}=$

$$
\begin{array}{ll}
\text { 1) } 1 & \text { 2) } e^{b-a} \\
\text { 3) } e^{a-b} & \text { 4) } e^{b}
\end{array}
$$



## Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{x+a}{x+b}\right)^{x+b}=\lim _{x \rightarrow \infty}\left(\frac{x+b+a-b}{x+b}\right)^{x+b} \\
& =\lim _{x \rightarrow \infty}\left[\left(1+\frac{a-b}{x+b}\right)^{\frac{x+b}{a-b}}\right]^{a-b} \\
& =e^{a-b}
\end{aligned}
$$

Answer: 3

7) $\lim _{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}=$

$$
\begin{array}{ll}
\text { 1) } e^{5} & \text { 2) } e^{6} \\
\text { 3) } e^{10} & \text { 4) } e^{-5}
\end{array}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}=\lim _{x \rightarrow \infty}\left(\frac{x+1+5}{x+1}\right)^{x+4} \\
& =\lim _{x \rightarrow \infty}\left(1+\frac{5}{x+1}\right)^{x+1+3}
\end{aligned}
$$

$$
=\lim _{x \rightarrow \infty}\left(1+\frac{5}{x+1}\right)^{x+1}-\left(1+\frac{5}{x+1}\right)^{3}
$$

$$
=\lim _{x \rightarrow \infty}\left[\left(1+\frac{5}{x+1}\right)^{\frac{x+1}{5}}\right]^{5}\left(1+\frac{5}{\infty}\right)^{3}
$$

$$
=e^{5} \cdot(1+0)^{3}=e^{5}
$$

Answer: 1

8) The $f$ unction $f(x)=|x|+\frac{|x|}{x}$ is

1) Continuous at the origin
2) Discontinuous at the origin because $|x|$ is discontinuous there.
3) Discontinuous at the origin because $|x| \& \frac{|x|}{x}$ is discontinuous there.
4) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there.

## Solution:

$$
\begin{aligned}
& \text { LHL }=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0} \frac{-x}{x}=-1 \\
& \text { RHL }=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0} \frac{x}{x}=1
\end{aligned}
$$

$L H L \neq R H L$, limit does not exists $\therefore \frac{|x|}{x}$ is not continuous at the origin

Answer: 4

9) If $f(x)=\frac{\sin [x]}{[x]}$, when $[x] \neq 0$ and
$f(x)=0$, when $[x]=0$ then $\lim _{x \rightarrow 0} f(x)=$
$\begin{array}{ll}\text { 1) } 1 & \text { 2) } 0\end{array}$
3) -1
4) limit does not exists

$$
\begin{aligned}
& \text { For }-1<x<0, \quad[x]=-1 \\
& \text { And for } 0<x<1,[x]=0 \\
& \text { When }[x] \neq 0, f(x)=\frac{\sin [x]}{[x]} \\
& \qquad \begin{array}{l}
L H L=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin [x]}{[x]} \\
=\lim _{x \rightarrow 0} \frac{\sin (-1)}{-1}=\sin 1
\end{array} \\
& \begin{aligned}
\text { RHL }=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin [x]}{[x]} \\
=\lim _{x \rightarrow 0} \frac{\sin 0}{0}=0 \quad \therefore L H L \neq R H L
\end{aligned}
\end{aligned}
$$

$\therefore$ limit does not exists.

10) $\lim _{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{x}=$

$$
\begin{array}{ll}
\text { 1) } a+b & \text { 2) } a-b \\
\text { 3) } c^{a b} & \text { 4) } 1
\end{array}
$$

## $K_{\mathbf{A}}$



## Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{x}, \frac{0}{0}, b y \text { LH Rule } \\
& =\lim _{x \rightarrow 0} \frac{e^{a x} \cdot a-e^{b x} b}{1} \\
& =1 \cdot a-1 . b=a-b
\end{aligned}
$$

Answer: 2
11) $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{2 x^{2}}=$

$$
\begin{array}{ll}
\frac{9}{4} & \text { 2) } \\
\text { 1) } & \frac{9}{4} \\
\text { 3) } \frac{4}{9} & \text { 4) } \\
\hline \frac{4}{9}
\end{array}
$$



## Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos 3 x}{2 x^{2}}, \frac{0}{0}, \text { by LH Rule } \\
= & \lim _{x \rightarrow 0} \frac{0-(-\sin 3 x) \cdot 3}{4 x} \\
= & \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \cdot \frac{3}{4} \cdot 3=\frac{9}{4}
\end{aligned}
$$

Answer: 1


$$
\text { 12) } \lim _{x \rightarrow \infty} \frac{(2+x)^{40}(4+x)^{5}}{(2-x)^{5}} \text { is }
$$

$$
\begin{array}{ll}
\text { 1) }-1 & \text { 2) } 1 \\
\text { 3) } 16 & \text { 4)32 }
\end{array}
$$



## Solution:

$$
=\lim _{x \rightarrow \infty} \frac{x^{40}\left(\frac{2}{x}+1\right)^{40} x^{5}\left(\frac{4}{x}+1\right)^{5}}{x^{45}\left(\frac{2}{x}-1\right)^{45}}
$$

$$
=\frac{(1+0)(0+1)}{(0-1)^{45}}=-1
$$

Answer: 1

13) $\lim _{n \rightarrow \infty} \frac{\sqrt{4 n^{2}-3 n+5}+4 n}{4 n+3}=$

$$
\begin{array}{ll}
\text { 1) } \frac{3}{2} & \text { 2) } \frac{2}{3} \\
\text { 3) }-\frac{3}{2} & \text { 4) }-\frac{2}{3}
\end{array}
$$

## Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\sqrt{4 n^{2}-3 n+5}+4 n}{4 n+3} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n \sqrt{4-\frac{3}{n}+\frac{5}{n^{2}}}+4 n}{4 n+3}\right) \\
& =\lim _{n \rightarrow \infty} \frac{n\left(\sqrt{4-\frac{3}{n}+\frac{5}{n^{2}}}+4\right)}{n\left(4+\frac{3}{n}\right)} \\
& =\frac{\sqrt{4-0+0}+4}{4+0}=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

14) $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}}{(3 n+1)(1-2 n)(10-n)}=$

$$
\begin{array}{ll}
\text { 1) }-\frac{1}{18} & \text { 2) } \frac{1}{18} \\
\text { 3) } 18 & \text { 4) }-18
\end{array}
$$

## Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}}{(3 n+1)(1-2 n)(10-n)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n(n+1)(2 n+1)}{6(3 n+1)(1-2 n)(10-n)}\right)
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{n n\left(1+\frac{1}{n}\right) n\left(2+\frac{1}{n}\right)}{6 n\left(3+\frac{1}{n}\right) n\left(\frac{1}{n}-2\right) n\left(\frac{10}{n}-1\right)}
$$

Answer: 2

$$
=\frac{(1+0)(2+0)}{6(3+0)(0-2)(0-1)}=\frac{1}{18}
$$

## $1-\cos m x$ <br> 15) $\lim _{x \rightarrow 0} \frac{1-\cos m x}{1-\cos x}=$

$$
\begin{array}{ll}
\text { 1) } \frac{m}{n} & \text { 2) } \frac{n}{m} \\
\text { 3) } \frac{m^{2}}{n^{2}} & \text { 4) } \frac{n^{2}}{m^{2}}
\end{array}
$$

## Solution:

$$
\begin{array}{r}
\lim _{x \rightarrow 0} \frac{1-\cos m x}{1-\cos n x}, \frac{0}{0}, \text { by LH rule } \\
= \\
\lim _{x \rightarrow 0} \frac{0-(-\sin m x) m}{0-(-\sin n x) n}, \frac{0}{0} \\
\text { Again by LH Rule } \\
= \\
\lim _{x \rightarrow 0} \frac{m \cos m x \cdot m}{n \cos n x-n}=\frac{m^{2} X 1}{n^{2} X 1}=\frac{m^{2}}{n^{2}}
\end{array}
$$

Answer: 3
16) $f(x)=\cos (\log x)$ then $f(x) f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x)\right]$
has the value

$$
\begin{array}{ll}
\text { 1) }-1 & \text { 2) } \frac{1}{2} \\
\text { 3) }-2 & \text { 4) } 0
\end{array}
$$

## $K_{\mathbf{A}}$



## Solution:

$$
\begin{aligned}
& f(x)=\cos (\log x) \\
& f(x y)=\cos (\log (x y)) \\
&=\cos (\log x+\log y) \\
& f\left(\frac{x}{y}\right)=\cos \left(\log \left(\frac{x}{y}\right)\right) \\
&=\cos (\log x-\log y)
\end{aligned}
$$

## $K_{\mathbf{E}}^{\mathbf{A}}$

$f\left(\frac{x}{y}\right)+f(x y)=\cos (\log x-\log y)+\cos (\log x+\log y)$

$$
\begin{gathered}
=2 \cos (\log x) \cos (\log y) \\
=2 f(x) f(y) \\
\therefore f(x) f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x)\right]=0
\end{gathered}
$$

Answer: 4

17) $\lim _{x \rightarrow 0} \frac{\sin (2+x)-\sin (2-x)}{x}=$

1) $2 \sin 2$
2) 0
3) $2 \cos 2$
4) 1


## Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (2+x)-\sin (2-x)}{x}, \frac{0}{0}, \text { by LH rule }
$$

$$
=\lim _{x \rightarrow 0} \frac{\cos (2+x)(0+1)-\cos (2-x)(0-1)}{1},
$$

$=\cos 2+\cos 2=2 \cos 2$

Answer: 3


## 18) $\lim _{x \rightarrow 0}(1+a x)^{\frac{b}{x}}=$

$$
\begin{array}{ll}
\text { 1) } e^{a b} & \text { 2) } e^{a+b} \\
\text { 3) } e^{\left(a^{b}\right)} & \text { 4) } e
\end{array}
$$

## $\mathbf{K E}_{\mathbf{A}}$



## Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(1+a x)^{\frac{b}{x}} \\
& =\lim _{x \rightarrow 0}\left[(1+a x)^{\frac{1}{a x}}\right]^{a b} \\
& =e^{a b}
\end{aligned}
$$

Answer: 1
19) If $f(x)=\left\{\begin{array}{l}\frac{x^{5}-32}{x-2} \text { when } x \neq 2 \\ k \text { when } x=2\end{array}\right.$ and
hence $f(x)$ is contimuous at $x=2$, if $k=$

$$
\begin{array}{ll}
\text { 1) } 16 & \text { 2) } 80 \\
\text { 3) } 32 & \text { 4) } 8
\end{array}
$$



Solution: Since $f(x)$ is continuous at $x=2$,

$$
\begin{aligned}
f(2) & =\lim _{x \rightarrow 2} f(x) \\
K & =\lim _{x \rightarrow 2} \frac{x^{5}-32}{x-2}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 2} \frac{x^{5}-2^{5}}{x-2}
$$

$$
\therefore K=5(2)^{5-1}
$$

Answer: 2

$$
K=80
$$


20) The function $f(x)=\frac{\log (1+a x)-\log (1+b x)}{x}$
is not defined at $x=0$. The value which should be assigned to $f$ at $x=0$ so that it is continuous at $\mathrm{x}=0$ is

1) $\log a+\log b$
2) 2
3) $a-b$
4) $a+b$

Solution: Since $f(x)$ is continuous at $x=0$

$$
f(0)=\lim _{x \rightarrow 0} f(x)
$$

$$
f(0)=\lim _{x \rightarrow 0} \frac{\log (1+a x)-\log (1+b x)}{x}, \frac{0}{0} \text { By LH Rule }
$$

$$
f(0)=\lim _{x \rightarrow 0} \frac{\frac{1}{(1+a x)}(0+a)-\frac{1}{(1+b x)}(0+b)}{1}
$$

$$
f(0)=\frac{\frac{a}{1+0}-\frac{b}{1+0}}{1}
$$

$$
f(0)=a-b
$$

Answer: 3

21)

## $\tan ^{2} x-2 \tan x-3$ <br> $x \rightarrow \tan ^{-1} 3 \tan ^{2} x-4 \tan x+3$

$$
\begin{array}{ll}
\text { 1) } 1 & \text { 2)0 } \\
\text { 3) } \frac{1}{2} & \text { 4)2 }
\end{array}
$$

## Solution:

$\lim _{x \rightarrow \tan ^{-1} 3} \frac{\tan ^{2} x-2 \tan x-3}{\tan ^{2} x-4 \tan x+3} \cdot \frac{0}{0}$ by LH Rule $2 \tan x \sec ^{2} x-2 \sec ^{2} x-0$ $=\lim _{\tan x \rightarrow 3} \frac{2 \tan x \sec ^{2} x-2 \sec ^{2} x-0}{2 \tan x \sec ^{2} x-4 \sec ^{2} x+0}$ $=\lim _{\tan x \rightarrow 3} \frac{2 \sec ^{2} x[\tan x-1]}{2 \sec ^{2} x[\tan x-2)}$ $=\frac{3-1}{3-2}=\frac{2}{1}=2$
Answer: 4
22) If the function $f(x)=\left\{\begin{array}{cc}\frac{1-\cos x}{x^{2}} & \text { if } x \neq 0 \\ k & \text { if } x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$ then the value of $k$ is

$$
\begin{array}{ll}
\text { 1) } 1 & \text { 2)0 } \\
\text { 3) } \frac{1}{2} & \text { 4) }-1
\end{array}
$$

## $K_{\mathbf{A}}$

## Solution:

Since $f(x)$ is continuous at $x=0$

$$
\begin{aligned}
& \therefore f(0)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}\left(\frac{0}{0}\right) \text { by LH Rale } \\
& K=\lim _{x \rightarrow 0} \frac{0-(-\sin x)}{2 x}=\lim _{x \rightarrow 0} \frac{1}{2} \cdot \frac{\sin x}{x}=\frac{1}{2}
\end{aligned}
$$

Answer: 3

23) If $f(x)=\left\{\begin{array}{l}\frac{\sin 5 x}{x^{2}+2 x} \text { when } x \neq 0 \\ k+\frac{1}{2} \text { when } x=0\end{array}\right.$
is continuous at $x=0$ then the value of $K$ is

$$
\begin{array}{ll}
\text { 1) } \frac{1}{2} & \text { 2) } 2 \\
\text { 3) }-2 & \text { 4) } 1
\end{array}
$$

$$
f(0)=\lim _{x \rightarrow 0} f(x)
$$

$$
K+\frac{1}{2}=\lim _{x \rightarrow 0} \frac{\sin 5 x}{x^{2}+2 x}, \frac{0}{0} \text { by LH Rule }
$$

$$
=\lim _{x \rightarrow 0} \frac{\cos 5 x .5}{2 x+2}
$$

$$
K+\frac{1}{2}=\frac{1 \times 5}{0+2} \quad \therefore K=\frac{5}{2}-\frac{1}{2}
$$

Answer: 2

$$
K=2
$$


24) If $f(x)=\left\{\begin{array}{l}\frac{\log (1+\Delta x)-\log (1-\operatorname{Lin})}{} \text { when } x \neq 0 \\ k \quad \text { when } x=0\end{array}\right.$
and $f(x)$ is continuous at $x=$ 0 , then the value of $K$ is

$$
\begin{array}{ll}
\text { 1) } a-b & \text { 2) } a+b
\end{array}
$$

3) $\log a+\log b$
4) $\log a-\log b$

$$
f(0)=\lim _{x \rightarrow 0} f(x)
$$

$$
K=\lim _{x \rightarrow 0} \frac{\log (1+a x)-\log (1-b x)}{x}, \frac{0}{0} \text { by LH Rule }
$$

$$
\begin{array}{r}
K=\lim _{x \rightarrow 0} \frac{\frac{1}{(1+a x)}(0+a)-\frac{1}{(1-b x)}(0-b)}{1} \\
K=\frac{\frac{a}{1+0}+\frac{b}{1-0}}{1} \quad \therefore K=a+b
\end{array}
$$

Answer: 2

25) If $f(x)=\left\{\begin{array}{l}\frac{1-\cos 4 x}{x^{2}} \text { for } x<0 \\ \frac{K}{\sqrt{x}} \text { for } x=0 \\ \frac{\sqrt{16-\sqrt{x}-4}}{} \text { for } x>0\end{array}\right.$
then the value of $K$ for which $f(x)$ is continuous at $x=0$ is

$$
\begin{array}{ll}
\text { 1) } 5 & \text { 2) } 8 \\
\text { 3) } 4 & \text { 4) } 3
\end{array}
$$

Solution: Since $f(x)$ is continuous at $x=0$,

$$
\begin{aligned}
& L H L=R H L=f(0) \\
& \therefore f(0)=L H L \\
& K=\lim _{x \rightarrow 0} \frac{1-\cos 4 x}{x^{2}}, \frac{0}{0^{\prime}} \text {, by LH rule } \\
& =\lim _{x \rightarrow 0} \frac{0-(-\sin 4 x) \cdot 4}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x} \times 4 \times \frac{4}{2} \\
& \quad=1 \times 4 \times 2=8
\end{aligned}
$$

Answer: 2
26) The function $f(x)=\frac{\left(2^{x}-1\right)^{2}}{\sin x \cdot \log (1+x)}$ is not def ined at $x=0$ what value should be assigned to $f(0)$ so that $f(x)$ becomes continuous at $x=0$

$$
\begin{array}{ll}
\text { 1) } \log 4 & \text { 2) } 2 \\
\text { 3) } 1 & \text { 4) }(\log 2)^{2}
\end{array}
$$

## Solution:

Since $f(x)$ is continuous at $x=0$,

$$
\therefore f(0)=\lim _{x \neq 0} f(x)=\lim _{x \ngtr 0} \frac{\left(2^{x}-1\right)^{2}}{\sin x \cdot \log (1+x)}
$$

$$
=\lim _{x \rightarrow 0} \frac{\left(2^{x}-1\right)^{2}}{x \cdot \frac{\sin x}{x} \cdot \log (1+x)}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\left(2^{x}-1\right)^{2}}{x^{2} \cdot 1 \cdot \frac{1}{x} \log (1+x)} \\
& =\lim _{x \rightarrow 1}\left(\frac{2^{x}-1}{x}\right)^{2}, \frac{1}{\log (1+x)^{\frac{1}{x}}} \\
& =(\log 2)^{2} \cdot \frac{1}{\log _{e} e} \\
& =(\log 2)^{2}
\end{aligned}
$$

Answer: 4


$$
\text { 27) } \lim _{x \rightarrow 0} \frac{6^{x}-3^{x}-2^{x}+1}{x^{2}}=
$$

## 1) $\log \left(\frac{2}{3}\right)$ <br> 2) $\log 2+\log 3$

3) $(\log 2)(\log 3)$ 4) $\frac{\log 2}{\log 3}$

## Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{6^{x}-3^{x}-2^{x}+1}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{(3 \times 2)^{x}-3^{x}-2^{x}+1}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{3^{x} \cdot 2^{x}-3^{x}-1\left(2^{x}-1\right)}{x \cdot x} \\
& =\lim _{x \rightarrow 0} \frac{3^{x}\left(2^{x}-1\right)-1\left(2^{x}-1\right)}{x \cdot x} \\
& =\lim _{x \rightarrow 0}\left(\frac{2^{x}-1}{x}\right)\left(\frac{3^{x}-1}{x}\right) \\
& \quad=(\log 2) \cdot(\log 3)
\end{aligned}
$$



## 28) $2 x^{2}-5 x+2$ <br> $\lim _{x \rightarrow 2} \frac{2 x^{2}-5 x+2}{x^{2}-3 x+2}=$

$$
\begin{array}{ll}
1) 1 & 2) 2 \\
3) 3 & 4) 8
\end{array}
$$



## Solution:

$$
\begin{gathered}
\lim _{x \rightarrow 2} \frac{2 x^{2}-5 x+2}{x^{2}-3 x+2}, \frac{0}{0}, \text { by L H Rule } \\
=\lim _{x \rightarrow 2} \frac{4 x-5}{2 x-3} \\
=\frac{8-5}{4-3} \\
=3
\end{gathered}
$$

Answer: 3
29)

## $\sin 2 \theta \cdot \sin 3 \theta$

## $\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta \cdot \tan 4 \theta}{3 \theta \cdot}=$

$$
\begin{array}{ll}
\text { 1) } \frac{2}{3} & \text { 2) } \frac{3}{2} \\
\text { 3) } 2 & \text { 4) } \frac{1}{2}
\end{array}
$$



## Solution:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\sin 2 \theta \cdot \sin 3 \theta}{3 \theta \cdot \tan 4 \theta} \\
& =\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta}{2 \theta} \cdot 2 \theta \cdot \frac{\sin 3 \theta}{3 \theta} \cdot \frac{4 \theta}{\tan 4 \theta} \times \frac{1}{4 \theta} \\
& =1 \times 2 \times 1 \times 1 \times \frac{1}{4}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Answer: 4

30) If $f(x)$ is an even function \& $f^{\prime}(x)$ exists then $f^{\prime}(e)+f^{\prime}(-e)$ is

$$
\begin{array}{ll}
\text { 1) }>0 & \text { 2) }=0 \\
\text { 3) } \geq 0 & \text { 4) }<0
\end{array}
$$

## $K_{\mathbf{A}}$



## Solution:

$$
\begin{aligned}
& f(x) \text { is an even function } \\
& \therefore f(-x)=f(x) \\
& f^{\prime}(-x)(-1)=f^{\prime}(x) \\
& \therefore f^{\prime}(x)+f^{\prime}(-x)=0 \\
& \therefore f^{\prime}(e)+f^{\prime}(-e)=0
\end{aligned}
$$

Answer: 2

31) If $f(x)$ is a function such that $f(x)+f^{\prime \prime}(x)=0$ and $g(x)=[f(x)]^{2}+\left[f^{\prime}(x)\right]^{2}$ \& $g(3)=8 \quad$ then $g(8)=$

$$
\begin{array}{ll}
\text { 1) } 0 & \text { 2) } 5 \\
\text { 3) } 8 & \text { 4) } 3
\end{array}
$$

Solution: $g(x)=[f(x)]^{2}+\left[f^{\prime}(x)\right]^{2}$

$$
g^{\prime}(x)=2[f(x)] f^{\prime}(x)+2\left[f^{\prime}(x)\right] f^{\prime \prime}(x)
$$

$$
=2 f^{\prime}(x)\left[f(x)+f^{\prime \prime}(x)\right]
$$

$$
=2 f^{\prime}(x) .0
$$

$$
g^{\prime}(x)=0
$$

$\therefore g(x)$ is constant

$$
\therefore g(x)=8, \quad g(3)=8,
$$

Answer: 3
Thus $g(8)=8$,

32) Let $f(x+y)=f(x) f(y)$
for all $x$ and $y$. Suppose
$f(5)=2, f^{\prime}(0)=3$ then $f^{\prime}(5)$ is

$$
\begin{array}{ll}
\text { 1) } 4 & \text { 2) } 3 \\
\text { 3) } 8 & \text { 4) } 6
\end{array}
$$

## $K_{\mathbf{A}}$



Solution:

$$
f(x+y)=f(x) f(y)
$$

$$
\text { Put } y=5, f(x+5)=f(x) f(5)
$$

$$
f^{\prime}(x+5)(1+0)=f^{\prime}(x) f(5)
$$

$$
\text { Put } x=0, f^{\prime}(0+5)=f^{\prime}(0) f(5)
$$

$$
f^{\prime}(5)=3 \times 2
$$

$$
=6
$$


33) $\lim _{n \rightarrow \infty}\left(3^{n}+4^{n}\right)^{\frac{1}{n}}=$

1) 4
2)3
2) e
3) $\infty$


Solution: $\lim _{n \rightarrow \infty}\left(3^{n}+4^{n}\right)^{1 / n}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(4^{n}\left(\frac{3^{n}}{4^{n}}+1\right)\right)^{1 / n} \\
= & \lim _{n \rightarrow \infty} 4\left(\left(\frac{3}{4}\right)^{n}+1\right)^{\frac{1}{n}} \\
= & 4(0+1)^{0}=4
\end{aligned}
$$

Answer: 1

34) If $f(1)=1 \& f(n+1)=2 f(n)+1$ for $n \geq 1$ then $f(n)=$

$$
\begin{array}{ll}
\text { 1) } 3^{n}-2 & \text { 2) } 2^{n}-1 \\
\text { 3) } \frac{1}{2}\left(2^{n}+1\right) & \text { 4) } 2 n-1
\end{array}
$$



## Solution:

$$
\begin{aligned}
& f(1)=1, \quad f(n+1)=2 f(n)+1 \\
& f(1+1)=2 f(1)+1 \\
& f(2)=2+1=3=2^{2}-1 \\
& \text { Similarly } f(3)=2^{3}-1 \\
& \therefore f(n)=2^{n}-1
\end{aligned}
$$

Answer: 2

## $K^{\prime}{ }_{\mathbf{A}}$


35) If $f(9)=9$ and $f^{\prime}(9)=4$
then $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}=$

$$
\begin{array}{ll}
\text { 1) } 2 & \text { 2) } 3 \\
\text { 3) } 4 & \text { 4) } \frac{1}{2}
\end{array}
$$

## $\mathbf{K}_{\mathbf{A}}$



Solution: $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}, \frac{0}{0} \quad$ By LH Rule
$=\lim _{x \rightarrow 0} \frac{\frac{1}{2 \sqrt{f(x)}} f^{\prime}(x)-0}{\frac{1}{2 \sqrt{x}}-0}$

$$
=\frac{f^{\prime}(9)}{2 \sqrt{f(9)}} \times \frac{2 \sqrt{9}}{1}
$$

Answer: 3

$$
\frac{4}{\sqrt{9}} \times 3=\frac{4 \times 3}{3}=4
$$


36) $\lim _{n \rightarrow \infty}\left(\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}} \cdots \cdots \frac{1}{4^{n}}\right)=$

$$
\begin{array}{ll}
\text { 1) } \frac{1}{3} & \text { 2) } \frac{1}{2} \\
\text { 3) } 2 & \text { 4) } \frac{1}{4}
\end{array}
$$



## Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}} \cdots \cdots \frac{1}{4^{n}}\right) \text { is in G.P } \\
& \quad a=\frac{1}{4} \quad r=\frac{1}{4} \\
& =s_{\infty}=\frac{a}{1-r}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{\frac{1}{4}}{\frac{4}{4}}=\frac{1}{3}
\end{aligned}
$$

Answer: 1

37) $\lim _{n \rightarrow \infty}\left(1-\frac{1}{x}+\frac{1}{x^{2}}+\ldots .\right.$. to $n$ terms $)=$

$$
\begin{array}{ll}
\text { 1) } \frac{1}{1-x} & \text { 2) } \frac{1}{1+x} \\
\text { 3) } \frac{x}{1+x} & \text { 4) } \frac{x}{1-x}
\end{array}
$$



## Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(1-\frac{1}{x}+\frac{1}{x^{2}}+\ldots \text { to } n \text { terms }\right) \\
& =\lim _{x \rightarrow \infty}\left(1+\left(\frac{-1}{x}\right)+\left(\frac{-1}{x}\right)^{2}+\ldots \ldots \text { to } n \text { terms }\right) \\
& \text { Is in G P, } a=1, r=\frac{-1}{x} \\
& \qquad=S_{\infty}=\frac{a}{1-r}=\frac{1}{1-\left(-\frac{1}{x}\right)}=\frac{1}{1+\frac{1}{x}} \\
& \quad=\frac{x}{1+x}
\end{aligned}
$$

Answer: 3

38) $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{4^{x}+4^{-x}-2}=$

1) $\frac{1}{\log 16}$
2) $-2 \log 4$
3) $(\log 4)^{-2}$
4) $2 \log 4$

## $K_{\mathbf{E}}^{\mathbf{A}}$

## Solution:

$\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{4^{x}+4^{-x}-2}, \frac{0}{0}$ by LH rule
$=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}(-1)}{4^{x} \log 4+4^{-x} \cdot \log 4(-1)}, \quad \frac{0}{0}$
Again by L H Rule
$=\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}(-1)}{4^{x} \log 4 \cdot \log 4-4^{-x} \log 4 \cdot \log 4(-1)}$

$$
=\frac{1+1}{(\log 4)^{2}+(\log 4)^{2}}
$$

$$
=\frac{2}{2(\log 4)^{2}}=(\log 4)^{-2}
$$

Answer: 3

39)

$$
\lim _{n \rightarrow \infty} \frac{3.2^{n+1}-4.5^{n+1}}{5 \cdot 2^{n}+7.5^{n}}=
$$

$$
\begin{array}{ll}
\text { 1) } \frac{3}{5} & \text { 2) }-\frac{4}{5}
\end{array}
$$

$$
\text { 3) }-\frac{20}{7}
$$

$$
\text { 4) } \frac{20}{7}
$$

## Solution:

Answer: 3

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{5 \cdot 2^{n}+4.5^{n}}{5.2^{n}+7.5^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{3.2^{n} \cdot 2^{1}-4.5^{n} \cdot 5}{5^{n}\left(5 \cdot \frac{2^{n}}{5^{n}}+7\right)} \\
& =\lim _{n \rightarrow \infty} \frac{5^{n}\left(6 \cdot \frac{2^{n}}{5^{n}}-20\right)}{5^{n}\left(5 \cdot \frac{2^{n}}{5^{n}}+7\right)} \\
& =\frac{6 \times 0-20}{0+7}=-\frac{20}{7}
\end{aligned}
$$


40) If $f(a)=2, f^{\prime}(a)=1$,

$$
\begin{aligned}
& g(a)=-3, g^{\prime}(a)=-1 \text { then } \\
& \lim _{x \rightarrow a} \frac{f(a) g(x)-f(x) g(a)}{x-a}=
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 1) } 6 & \text { 2)1 } \\
\text { 3) }-1 & \text { 4) }-5
\end{array}
$$

## Solution:

$$
\lim _{x \rightarrow a} \frac{f(a) g(x)-f(x) g(a)}{x-a}, \frac{0}{0}
$$

By LH rule

$$
\begin{aligned}
& =\lim _{x \rightarrow a} \frac{f(a) g^{\prime}(x)-f^{\prime}(x) g(a)}{1-0} \\
& =f(a) g^{\prime}(a)-f^{\prime}(a) g(a) \\
& =2(-1)-1(-3)=-2+3=1
\end{aligned}
$$

Answer: 2

