QUESTIONS

\rightarrow	\rightarrow	\rightarrow	
1) If a = i+j-2k,	, b = -i +2j+k a →	and c = i-2j+2 \rightarrow \rightarrow	k, then a unit?
vector para	llel to a + b	+ c is	
1) (2i+j+k)/√6		2) (i+j+k)/√3	
3) (i-2j+k)/√6		4) (i-j+k)/√3	
2) The volume	of the parall	elopiped whe	ose co-
terminus e	dges are 2i –	3j + 5k, i+2j	– 2k and
6i + j – k in	cubic units i	is	
1) 44	2) 33	3) 11	4) 22
3) The cosine	of the angle	between the	vectors
2i –3j + 6k a	nd 4i + 8j –8k	k is	
1) 16/21	2) –16/21	3) 15/28	4) –15/28
4) The value o	f [i-j, j-k, k-i]	is equal to	
1) 2(i+j+k)	2) 0	3) 1	4) -1
$\rightarrow \qquad -$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$
5) II a = 1∓2j, b	- j + 2k, c - 2	$21^{-}R, \text{ then a } $	
1) Z	2) -4	3) 7	4) 6
6) The unit ve	ctor is		
1) cos α i+	COSβ j	2) $\cos \alpha$ i+ s	sin α j + k
3) cos $lpha$ co $ ightarrow$	$ \mathbf{s}_{\beta} \mathbf{i} + \mathbf{cos}_{\alpha} \mathbf{s} $ \rightarrow	$\sin \beta$ j + sin α k $ ightarrow$	4) i + j
7) If a = 6i +2j-	+k , b = i-j+2k	and c = 5i +	3j-k which
one of the f	ollowing is a	null vector?	
$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow \rightarrow$
1) a + D - C	2) D + C- A	э) с + а - b	4) a + D + C

 $\rightarrow \rightarrow \rightarrow$ 8) If a, b, c are the position vectors of the vertices $\rightarrow \rightarrow \rightarrow$ of triangle ABC, then AB + BC + CA = \rightarrow \rightarrow \rightarrow 2) 2 a 3) 2 b 4) 3 c 1) 0 9) If the dot product of (3, a, -1) and (1,2,1) is 6, then a is 1) 1 $\begin{array}{ccc} \textbf{2) 2} & \textbf{3) -2} \\ \rightarrow & & \rightarrow \end{array}$ 4) 3 10) If a = 2i - j + 3k, b = i + 2j + k and c = 2i + j + k then $\rightarrow \rightarrow \rightarrow$ a.(b+c)is 1) 12 2) 9 3) 14 4) 10 11) The direction cosines of the line joining (1, 3,-5) and (4,7,7) are 1) 1, 3, -5 2) 4, 7, 7 3)3, 4, 12 4) 3/13, 4/13, 12/13 **12)** If α , β , γ are the angles made by a line with coordinate axes then, $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ is equal to 2) -2 3)1 4) -1 1) 2 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 13) The angle between a and b when |a| = 2, |b| = 1, $\rightarrow \rightarrow$ a.b=1 is **2)** π/**4 3)** π/**3 4)** π/**2 1)** π/6 $\rightarrow \rightarrow$ 14) If a and b are unit vectors, which of the following is correct?

 $\rightarrow \rightarrow$ 1) a + b may be a unit vector $\rightarrow \rightarrow$ $\rightarrow \rightarrow$ 2) a + b is a unit vector if a and b are \perp vectors $\rightarrow \rightarrow$ \rightarrow \rightarrow 3) a + b is a unit vector if a and b are parallel Vectors $\rightarrow \rightarrow$ 4) a + b is not at all a unit vector $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow$ 15) If a and b are any two vectors, $(2a + b) \times (a + 2b)$ is equal to 1) 6(a x b) 2) 3(a x b) 3) 2(a x b) 4) 3(b x a) **16) The value [i + j j + k k + i] is** 1) 0 2) 2 3) 1 4) 3 $\rightarrow \rightarrow$ \rightarrow 17) If a = (1,-2), b = (2,1), c = (3, -1), then a vector of $\rightarrow \rightarrow \rightarrow$ length 15 units in the direction of 2a + 3b - c is 2) 15(1,-1) 3) 15(1,0) 4) 15(0,1) 1) 15(1,1) \rightarrow 18) Given a = 2i – 3j + 6k, b = -2i + 2j – k and \rightarrow $\rightarrow \rightarrow$ \rightarrow c = <u>projection of b on a</u>, then the value of c is, $\rightarrow \rightarrow$ projection of a on b 2) 7 3) 3/7 4) 7/3 1) 3 19) The value of λ for which the vector λ (i + j + k) is a unit vector is **3) 1 4)** √3 **1) 1/3 2) 1/√3**

 \rightarrow $\rightarrow \rightarrow$ 20) If OA = i+xj+k, OB = 2i+k, OC = -i+j+k and AB is \rightarrow perpendicular to BC, x is 2) 3 1) 0 3) -3 4) 2 21) A vector of magnitude 10 units perpendicular to \rightarrow \rightarrow a = i+j-k and coplanar with the vectors b = 2i-j-k \rightarrow and c = i+2j-k is 1) 3i-4j-k 2) 10(3i-4j-k) 3) 10(3i-4j-k)/ √26 4) 4i-3j-k/10 \rightarrow \rightarrow \rightarrow

22) When a, b, c are three non-coplanar vectors, the value of

23) Modulus of sum of three mutually perpendicular unit vectors is

1) $\sqrt{3}$ 2) 3 3) 0 4) none $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 24) If a . b = a . c and a x b = a x c, a \neq 0, then $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 1) b = c 2) b = 0 3) b + c = 0 4) none

25) If the vectors a, b, c form the sides BC, CA and AB respectively of a triangle ABC, Then

3) a. b= b. c = c. a 4) a x b + b x c + c x a = 0 $\rightarrow \rightarrow$ 26) If θ is the angle between two unit vectors a and b then $\sin\theta$ is equal to $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow$ 1) a + b = 2) a - b = 3) $a \cdot b = 4$) | axb| \rightarrow \rightarrow 27) If θ is the angle between two vectors a and b, $\rightarrow \rightarrow$ then a. b > o only if **1) 0≤** θ ≤ π **2)** π/**2** ≤ θ ≤ π **4) 0 ≤** θ < π/**2 3) 0 ≤ θ ≤ π/2** \rightarrow 28) The vector b which is collinear with vector $\rightarrow \rightarrow$ \rightarrow a = (1, 2, -1) and satisfies $a \cdot b = 5$, is 1) 1/3(5, 10, -5) 2) 1/6(5,10,-5) 3)(5,10,-5)4) 6(5,10,-5) \rightarrow \rightarrow 29) For any two vectors a and b $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ **1)** | **a** . **b** | > |**a**||**b**| 2) | a . b | < |a||b| $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ **3)** $|a \cdot b| \ge |a||b|$ **4)** $|a \cdot b| \le |a||b|$ $\rightarrow \rightarrow$ $\rightarrow \rightarrow$ 30) If a and b are two vectors such that a . b = 0 and $\rightarrow \rightarrow$ $a \times b = 0$ then $\rightarrow \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow$ 1) either a = 0 or b = 0 2) $a \parallel b$

 $\rightarrow \rightarrow$ 3) a ⊥ b 4) none 31) Four points with the position vectors 7i-4j+7k, i-6j+10k,-i-3j+4k and 5i-j+k form a 1) rhombus 2) rectangle 3) square 4) parallelogram but not rhombus $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ \rightarrow 32) If p.a=p.b=p.c= 0 for some non-zero vector p then $\rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow \rightarrow$ 1) [a, b, c] = 02) [a, b, c]≠ 0 $\rightarrow \rightarrow \rightarrow$ 3) a, b, c, are non coplanar 4) none $\rightarrow \rightarrow$ 33) If a and b are two unit vectors inclined at an $\rightarrow \rightarrow$ angle θ to each other, then | a + b | < 1 if **1**) $\theta = \pi/6$ **2**) $\theta = \pi/2$ **3**) $\theta = \pi/3$ **4**) $2\pi/3 < \theta < \pi$ $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 34) a . [(b + c) x (a + b + c)] = $\rightarrow \qquad \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 1) 0 2) [a,b,c][b,c,a] 3) [a,b,c] 4) none $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 35) If |a + b| = |a - b|, then $\begin{array}{cccc} \rightarrow \rightarrow & \rightarrow & \rightarrow & \rightarrow \\ \textbf{1)} \textbf{a} \perp \textbf{b} & \textbf{2)} \textbf{a} \parallel \textbf{b} & \textbf{3)} \textbf{a=0} & \textbf{4)} \textbf{b} = \textbf{0} \end{array}$ $\rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow \rightarrow$ **36) If a x b = c x b \neq 0, then** $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 1) $a = \lambda b$ 2) $a - c = \lambda c$ 3) $a - c = \lambda b$ 4) none 37) Which of the following expressions are meaningful? $\rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow$

1) u . (v x w) 2) (u . v) . w $\rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow$ 3) (u . v) x w 4) u x (v . w) 38) Which of the following is a true statement? $\rightarrow \rightarrow \rightarrow$ \rightarrow 1) (a x b) x c is coplanar with c $\rightarrow \rightarrow$ \rightarrow 2) (a x b) x c is perpendicular with a $\rightarrow \rightarrow \rightarrow$ \rightarrow 3) (a x b) x c is perpendicular with b $\rightarrow \rightarrow \rightarrow$ \rightarrow 4) (a x b) x c is perpendicular with c $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 39) If $a \times b = c$, $b \times c = a$ and a, b, c are moduli of $\rightarrow \rightarrow \rightarrow$ vectors a, b, c respectively, then 2) c=1, a = 1 1) a = 1, b = 1 $\rightarrow \rightarrow \rightarrow$ 3) $a \cdot (b \times c) = -1$ 4) b = 1, c = a $\rightarrow \rightarrow \rightarrow$ 40) If e_1' , e_2' , e_3' are reciprocal to the non-coplanar vectors e_1, e_2, e_3 , then $[e_1', e_2', e_3'][e_1, e_2, e_3] =$ $\begin{array}{ccc} \textbf{2) 1} & \textbf{3} \\ \rightarrow \rightarrow & \rightarrow \rightarrow & \rightarrow \rightarrow \end{array}$ 1) -1/2 3) 0 4) 4 41) Value of (a – b). [(b-c) x (c-a)] = 1) 0 **42) Direction of zero vector** 1) does not exist 2) is towards origin 3) is indetminate 4) none of these \rightarrow \rightarrow 43) If a is a unit vector perpendicular to b and

 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ \rightarrow $(a + 3b) \cdot (2a-b) = -10$, then |b| =2) 2 3) 3 1) 5 4) 4 44) The volume of the tetrahedron whose vertices are A(3,7,4) B(5,-2,3), C(-4,5,6) and D(1,2,3) is 1) 44/3 c.c 2) 46/3 c.c 3) 47/3 c.c 4) none 45) If a line makes angles of 60° and 120° with the positive directions of x-axis and y-axis respectively, then the acute angle made by the line with the +ve direction of z - axis is 2) 30[°] 1) 45[°] **3)** 60° 4) none 46) Let the vectors 2i+3j-4k and ai+bj+ck be perpendicular. Then 1) a = 2, b = 3, c = -4 2) a = 4, b = 4, c = 53) a = 4, b = 4, c = -5 4) none 47) The sum of two unit vectors is a unit vector. The magnitude of their difference is **2)** √**3** 3) √2 4) 1 1) 2 $\rightarrow \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 48) If a.b = b.c = c.a = 0, then $a \cdot (b \times c)$ is equal to 1) a non zero vector 2) 1 $\rightarrow\rightarrow\rightarrow\rightarrow$ 3) -1 4) |a||b||c| $\rightarrow \rightarrow \rightarrow$

49) Let a , b, c be the position vectors of three vertices A, B, C of a triangle respectively. Then the area of this triangle is given by

 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow$ 1) a x b + b x c + c x a 2) (½)(a x b) . c $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 3) (1/2) | a x b + b x c + c x a | 4) none $\rightarrow \rightarrow \rightarrow$ 50) The vector a x (b x a) is 1) a null vector $\rightarrow \rightarrow$ 2) perpendicular to both a and b \rightarrow 3) perpendicular to a \rightarrow 4) perpendicular to b $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 51) If $|a + b|^2 = |a|^2 + |b|^2$, then $\rightarrow \rightarrow$ 1) a is parallel to b \rightarrow \rightarrow 2) a is perpendicular to b $\rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 4) | a + b | = | a| + | b| 3) a = b $\rightarrow \rightarrow$ 52) If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$, then a value of λ for which $\rightarrow \rightarrow$ $\rightarrow \rightarrow$ a + λ b is perpendicular to a - λ b is 2) ³/₄ 3) 3/2 1) 9/16 4) 4/3 $\rightarrow \rightarrow \rightarrow$ 53) If a, b, c are non-coplanar unit vectors such that $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ a x (b x c) = (b + c)/ $\sqrt{2}$, then the angle between $\rightarrow \rightarrow$ a and b is **1)** $3\pi/4$ **2)** $\pi/4$ **3)** $\pi/2$ **4)** π

 \rightarrow \rightarrow \rightarrow 54) Let v = 2i + j - k and w = i + 3k. If u is a unit vector, then the maximum value of the scalar $\rightarrow \rightarrow \rightarrow$ triple product [u, v, w] is **2)** $\sqrt{10} + \sqrt{6}$ **3)** $\sqrt{59}$ **4**) √6 1) -1 $\rightarrow \rightarrow$ $\rightarrow \rightarrow$ 55) If a and b are two unit vectors such that a + 2b $\rightarrow \rightarrow$ and 5a – 4b are perpendicular to each other, then $\rightarrow \rightarrow$ the angle between a and b is 2) 60° 3) $\cos^{-1}(1/3)$ 4) $\cos^{-1}(2/7)$ 1) 45[°] \rightarrow \rightarrow \rightarrow 56) If a = 3i - 5j and b = 6i + 3j are two vectors and c $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ is a vector such that $c = a \times b$, then |a| : |b| : |c| =2) √34 : √45 : 39 **1**) √34 : √45 : √39 3) 34 : 39 : 45 4) 39 : 35 : 34 $\rightarrow \rightarrow$ $\rightarrow \rightarrow$ 57) If a and b are unit vectors such that a . b = $\cos\theta$, $\rightarrow \rightarrow$ then the value of | a + b | is **1)** $2\sin(\theta/2)$ **2)** $2\sin\theta$ **3)** $2\cos(\theta/2)$ **4)** $2\cos\theta$ 58) The value of a so that the volume of parallelepiped formed by the vectors i + aj + k, i + ak, ai + k becomes minimum is **1)** √3 3) 1/√3 4) 3 2) 2 59) The centroid of i, 2j, k is 2) (1/3, -2/3, -1/3) 1) (1/3, 2/3, 1/3)

3) (1/3, -2/3, 1/3)4) (1/3, 2/3, -1/3)60) If the position vectors of the points A and B are
 \rightarrow 5i-3j+4k and -3i + λ j + 3k and | AB | = 9, then the
value of λ is1) 1 or -72) -1 or 73) -1 or -74) 1 or 7