QUESTIONS
 $\rightarrow \quad \rightarrow \quad \rightarrow$

1) If $a=i+j-2 k, b=-i+2 j+k$ and $c=i-2 j+2 k$, then a unit vector parallel to $a+b+c$ is
2) $(2 i+j+k) / \sqrt{ } 6$
3) $(i+j+k) / \sqrt{3}$
4) $(i-2 j+k) / \sqrt{ } 6$
5) $(i-j+k) / \sqrt{ } 3$
6) The volume of the parallelopiped whose coterminus edges are $\mathbf{2 i} \mathbf{- 3 j} \mathbf{+} \mathbf{5 k}, \mathbf{i}+2 \mathbf{j}-\mathbf{2 k}$ and $6 i+j-k$ in cubic units is
7) 44
8) 33
9) 11
10) 22
11) The cosine of the angle between the vectors $2 i-3 j+6 k$ and $4 i+8 j-8 k$ is
12) $16 / 21$
13) $-16 / 21$
14) $15 / 28$
15) $-15 / 28$
16) The value of $[i-j, j-k, k-i]$ is equal to
17) $\mathbf{2 (i + j + k)}$
18) 0
19) 1
20) -1
21) If $a=i+2 j, b=j+2 k, c=2 i-k$, then $a \cdot(b \times c)$ is
22) 2
23) -4
24) 7
25) 6
26) The unit vector is
27) $\boldsymbol{\operatorname { c o s }} \alpha \mathbf{i}+\boldsymbol{\operatorname { c o s }} \beta \mathbf{j}$
28) $\boldsymbol{\operatorname { c o s }} \alpha \mathbf{i}+\boldsymbol{\operatorname { s i n }} \alpha \mathbf{j}+\mathbf{k}$
29) $\boldsymbol{\operatorname { c o s }} \alpha \boldsymbol{\operatorname { c o s }} \beta \mathbf{i}+\boldsymbol{\operatorname { c o s }} \alpha \boldsymbol{\operatorname { s i n }} \beta \mathbf{j}+\boldsymbol{\operatorname { s i n }} \alpha \mathbf{k}$
30) $\mathbf{i}+\mathbf{j}$
\rightarrow
31) If $\mathbf{a}=\mathbf{6 i}+\mathbf{2 j}+k, b=i-j+2 k$ and $c=5 i+3 j-k$ which one of the following is a null vector?
$\rightarrow \longrightarrow \rightarrow$
$\rightarrow \rightarrow \rightarrow$

32) $\mathbf{a}+\mathbf{b}-\mathbf{c}$
33) $\mathbf{b}+\mathbf{c}-\mathbf{a}$
34) $\mathbf{c}+\mathbf{a}-\boldsymbol{b}$
35) $\mathbf{a}+\mathbf{b}+\mathbf{c}$
36) If a, b, c are the position vectors of the vertices $\rightarrow \quad \rightarrow \quad \rightarrow$ of triangle $A B C$, then $A B+B C+C A=$

37) 0
38) 2 a
39) 2 b
40) 3 c
41) If the dot product of $(3, a,-1)$ and $(1,2,1)$ is 6 , then a is
$\xrightarrow{\text { 1) } 1}$
42) 2
43) $\mathbf{- 2}$
44) 3
45) If $\mathbf{a}=\mathbf{2 i}-\mathbf{j}+\mathbf{3 k}, \mathbf{b}=\mathbf{i}+\mathbf{2 j}+k$ and $c=2 \mathbf{i}+\mathbf{j}+k$ then $\rightarrow \rightarrow \rightarrow$
a. $(b+c)$ is
46) 12
47) 9
48) 14
49) 10
50) The direction cosines of the line joining ($1,3,-5$) and $(4,7,7)$ are
51) $1,3,-5$
52) $4,7,7$
3)3, 4, 12
53) $3 / 13,4 / 13,12 / 13$
54) If α, β, γ are the angles made by a line with coordinate axes then, $\boldsymbol{\operatorname { s i n }}^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is equal to
55) 2
56) $\mathbf{- 2}$
3)1
57) -1
$\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$
58) The angle between a and b when $|a|=2,|b|=1$, $\rightarrow \rightarrow$ a.b = 1 is
59) $\pi / 6$
60) $\pi / 4$
61) $\pi / 3$
62) $\pi / 2$
63) If a and b are unit vectors, which of the following is correct?
$\rightarrow \longrightarrow$
64) $\mathbf{a}+\mathbf{b}$ may be a unit vector

65) $\mathbf{a}+\boldsymbol{b}$ is a unit vector if \mathbf{a} and \mathbf{b} are \perp vectors $\rightarrow \rightarrow \quad \rightarrow \quad \rightarrow$
66) $\mathbf{a}+\boldsymbol{b}$ is \mathbf{a} unit vector if \mathbf{a} and \mathbf{b} are parallel Vectors
$\rightarrow \rightarrow$
67) $\mathbf{a}+\mathbf{b}$ is not at all a unit vector

68) If a and b are any two vectors, $(2 a+b) \times(a+2 b)$ is equal to
69) $\mathbf{6 (a \times b)}$
70) 3(a x
71) 2 ($\mathbf{a} \times \mathrm{b}$)
72) 3(b \times a)
73) The value $[i+j \quad j+k \quad k+i]$ is
74) 0
75) 2
76) 1
77) 3
78) If $a=(1,-2), b=(2,1), c=(3,-1)$, then a vector of $\rightarrow \quad \rightarrow$ length 15 units in the direction of $\mathbf{2 a}+\mathbf{3 b} \mathbf{- c}$ is
79) $\mathbf{1 5 (1 , 1)}$
80) $15(1,-1)$
81) $\mathbf{1 5 (1 , 0)}$
4)15(0,1)
82) Given $a=2 i-3 j+6 k, b=-2 i+2 j-k$ and $\rightarrow \quad \rightarrow \quad \rightarrow$
\rightarrow
$c=$ projection of b on a, then the value of c is, projection of a on b
83) 3
84) 7
85) $3 / 7$
86) $7 / 3$
87) The value of λ for which the vector $\lambda(i+j+k)$ is a unit vector is
88) $1 / 3$
89) $1 / \sqrt{3}$
90) 1
91) $\sqrt{ } 3$
92) If $O A=i+x j+k, O B=2 i+k, O C=-i+j+k$ and $A B$ is perpendicular to $B C, x$ is
93) 0
94) 3
95) -3
96) 2
97) A vector of magnitude 10 units perpendicular to \rightarrow
$a=i+j-k$ and coplanar with the vectors $b=2 i-j-k$ \rightarrow
and $c=i+2 j-k$ is
98) $3 i-4 j-k$
99) $\mathbf{1 0 (3 i - 4 j - k)}$
100) $\mathbf{1 0 (3 i - 4 j - k)} / \sqrt{ } \mathbf{2 6}$
101) $\mathbf{4 i}-3 j-k / 10$

$$
\rightarrow \rightarrow
$$

22) When a, b, c are three non-coplanar vectors, the value of

$\overrightarrow{a \cdot(b \times c)}$	$\vec{b} \cdot(\vec{a} \times c)$
$\xrightarrow{\text { a. }} \rightarrow \rightarrow \rightarrow \mathrm{c}$ (${ }^{\text {a }}$	$\xrightarrow{\text { b. }(a)}$
c. (axb)	c. ($\mathrm{a} \times \mathrm{b}$)

1)1
2) 0
3) $\left[\begin{array}{lll}a & b & \text {] }\end{array}\right.$
4) -1
23) Modulus of sum of three mutually perpendicular unit vectors is

1) $\sqrt{ } 3$
2) 3
3) 0
4) none
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
5) If $a \cdot b=a \cdot c$ and $a \times b=a \times c, a \neq 0$, then
6) $\mathbf{b}=\mathbf{c} \quad \xrightarrow{\text { 2) } b=0}$
7) $\mathbf{b}+\mathbf{c}=0$ 4) none
8) If the vectors a, b, c form the sides $B C, C A$ and $A B$ respectively of a triangle ABC, Then

$$
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \quad \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
$$

1) $a \cdot b+b \cdot c+c . a=0$ 2) $a \times b=b \times c=c \times a$

2) $a . b=b . c=c . a$
3) $a \times b+b \times c+c \times a=0$

4) If θ is the angle between two unit vectors a and b then $\boldsymbol{\operatorname { s i n }} \theta$ is equal to
$\xrightarrow[\text { 1) } a+b]{\rightarrow}$

5) abb
6) | axb|

7) If θ is the angle between two vectors a and b, $\rightarrow \rightarrow$ then \mathbf{a}. boo only if
8) $\mathbf{0} \leq \theta \leq \pi$
9) $\pi / 2 \leq \theta \leq \pi$
10) $\mathbf{0} \leq \theta \leq \pi / 2$
11) $\mathbf{0} \leq \theta<\pi / 2$
12) The vector b which is collinear with vector \rightarrow $\rightarrow \rightarrow$ $a=(1,2,-1)$ and satisfies $a . b=5$, is
13) $1 / 3(5,10,-5)$
14) $1 / 6(5,10,-5)$
3)(5,10,-5)
15) $\mathbf{6}(5,10,-5)$
16) For any two vectors a and b
$\rightarrow \rightarrow$

$\rightarrow \rightarrow \quad \rightarrow$
17) $|a \cdot b|>|a||b|$
$\rightarrow \rightarrow \quad \rightarrow \rightarrow$
18) $\underset{\rightarrow}{|\mathbf{a} \cdot \mathbf{b}| \geq|a||b|}$
19) \mid an $|<|a|| b \mid$

20) |an| $\leq|a||b|$
21) If a and b are two vectors such that $a \cdot b=0$ and $\rightarrow \rightarrow$
$\mathbf{a} \times \mathbf{b}=0$ then
22) either $\mathbf{a}=\overrightarrow{0}$ or $b=0 \quad l \quad$ 2) $\mathbf{a}|\mid \vec{b}$
$\rightarrow \rightarrow$
23) $a \perp b$
24) none
25) Four points with the position vectors $7 i-4 j+7 k$, i-6j+10k,-i-3j+4k and 5i-j+k form a
26) rhombus
27) rectangle
28) square
29) parallelogram but not rhombus $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
\rightarrow
30) If $p . a=p . b=p . c=0$ for some non-zero vector p then
$\rightarrow \rightarrow \rightarrow$
$\rightarrow \rightarrow \rightarrow$
31) $[a, b, c]=0$
$\rightarrow \rightarrow \rightarrow$
32) $[a, b, c] \neq 0$
33) a, b, c, are non coplanar
34) none
35) If a and b are two unit vectors inclined at an

$$
\rightarrow \rightarrow
$$

angle θ to each other, then $|\mathbf{a}+\mathbf{b}|<1$ if

1) $\theta=\pi / 6$
2) $\theta=\pi / 2$
3) $\theta=\pi / 3$
4) $2 \pi / 3<\theta<\pi$
5) $a \cdot[(b+c) \times(a+b+c)]=$

6) 0
7) $[a, b, c][b, c, a]$
8) $[a, b, c]$
9) none

10) If $|\mathbf{a}+\mathbf{b}|=|\mathbf{a}-\mathbf{b}|$, then
$\rightarrow \rightarrow$

11) $a \perp b$
12) $\mathbf{a} \| \mathrm{b}$
13) $\mathbf{a}=0$
14) $b=0$
$\rightarrow \rightarrow \rightarrow \rightarrow$
15) If $\mathbf{a} \times \mathbf{b}=\mathbf{c} \times b \neq 0$, then

16) $\mathbf{a}=\lambda b$
17) $\mathbf{a - c}=\lambda c$
18) $a-c=\lambda b$
19) none
20) Which of the following expressions are meaningful?

$$
\rightarrow \rightarrow \rightarrow
$$

1) $u \cdot(v \times w)$
2) $(u, v), w$
$\rightarrow \rightarrow \rightarrow$
$\rightarrow \quad \rightarrow \rightarrow$
3) $(u, v) \times w$
4) $u \times(v . w)$
5) Which of the following is a true statement?

6) ($\mathbf{a} \times \mathrm{b}$) $\times \mathrm{c}$ is coplanar with c $\rightarrow \rightarrow$
7) ($\mathbf{a} \times \mathrm{b}$) $\times \mathbf{c}$ is perpendicular with a $\rightarrow \rightarrow \rightarrow$
8) ($\mathbf{a} \times \mathrm{b}$) $\times \mathbf{c}$ is perpendicular with b $\rightarrow \rightarrow \quad \rightarrow \quad \rightarrow$
9) ($\mathbf{a} \times \mathrm{b}$) $\times \mathbf{c}$ is perpendicular with c
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
10) If $a \times b=c, b \times c=a$ and a, b, c are moduli of $\rightarrow \rightarrow \rightarrow$
vectors a, b, c respectively, then
11) $a=1, b=1$
12) $c=1, a=1$
$\rightarrow \rightarrow \rightarrow$
13) $b=1, c=a$
14) $a \cdot(b \times c)=-1$
$\rightarrow \quad \rightarrow \quad \rightarrow$
15) If $\mathbf{e}^{\prime}, \mathbf{e}_{\mathbf{2}}{ }^{\prime}, \mathbf{e}_{\mathbf{3}}{ }^{\prime}$ are reciprocal to the non-coplanar

$$
\rightarrow \rightarrow \rightarrow \quad \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
$$

vectors e_{1}, e_{2}, e_{3}, then $\left[e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, e_{3}{ }^{\prime}\right]\left[e_{1}, e_{2}, e_{3}\right]=$

1) $-1 / 2$

2) 4
3) Value of $(a-b)$. [(b-c) $x(c-a)]=$

$$
\rightarrow \longrightarrow \rightarrow
$$

$$
\rightarrow \rightarrow \longrightarrow
$$

1) 0
2) $2[a, b, c]$
3) $3[a, b, c]$
4) none
5) Direction of zero vector
6) does not exist
7) is indetminate \rightarrow
8) is towards origin
9) none of these \rightarrow
10) If a is a unit vector perpendicular to b and
$\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$
($a+3 b) \cdot(2 a-b)=-10$, then $|b|=$
11) 5
12) 2
13) 3
14) 4
15) The volume of the tetrahedron whose vertices are $A(3,7,4) B(5,-2,3), C(-4,5,6)$ and $D(1,2,3)$ is
16) $44 / 3 \mathrm{c.c}$
17) $46 / 3 \mathrm{c} . \mathrm{c}$
18) $47 / 3 \mathrm{c} . \mathrm{c}$
19) none
20) If a line makes angles of 60° and 120° with the positive directions of x-axis and y - axis respectively, then the acute angle made by the line with the +ve direction of z - axis is
21) 45°
22) 30°
23) 60°
24) none
25) Let the vectors $2 \mathbf{i}+3 j-4 k$ and $a i+b j+c k$ be perpendicular. Then
26) $\mathbf{a}=2, b=3, c=-4$
27) $a=4, b=4, c=5$
28) $a=4, b=4, c=-5$
29) none
30) The sum of two unit vectors is a unit vector. The magnitude of their difference is
$\xrightarrow[\rightarrow]{\text { 1) } 2}$
31) $\sqrt{ } 3$

32) 1
33) If $a . b=b . c=c . a=0$, then $a \cdot(b \times c)$ is equal to
34) a non zero vector
35) -1
$\rightarrow \rightarrow \rightarrow$
36) Let a, b, c be the position vectors of three vertices A, B, C of a triangle respectively. Then the area of this triangle is given by
$\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow$
37) $\mathbf{a} \times \mathrm{b}+\mathrm{b} \times \mathbf{c}+\mathbf{c} \times \mathrm{a}$
38) $(1 / 2)(a \times b) . c$

$$
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
$$

3) $(1 / 2)|a \times b+b \times c+c \times a|$

$$
\rightarrow \quad \rightarrow \quad \rightarrow
$$

4) none
5) The vector $a \times(b \times a)$ is
6) a null vector

$$
\rightarrow \quad \rightarrow
$$

2) perpendicular to both a and b
3) perpendicular to a
4) perpendicular to b

$\rightarrow \rightarrow \quad \rightarrow \quad \rightarrow$

51) If $|a+b|^{2}=|a|^{2}+|b|^{2}$, then \rightarrow
52) \mathbf{a} is parallel to \mathbf{b}

53) \mathbf{a} is perpendicular to \mathbf{b}
54) $\mathbf{a}=\mathbf{b}$
$\rightarrow \quad \rightarrow$
55) $|a+b|=|a|+|b|$
56) If $|a|=3,|b|=4$, then a value of λ for which $\rightarrow \rightarrow \quad \rightarrow \quad \rightarrow$
$\mathbf{a}+\lambda \mathbf{b}$ is perpendicular to $\mathbf{a}-\lambda \mathbf{b}$ is
57) $9 / 16$
58) $3 / 4$
59) $3 / 2$
60) $4 / 3$
$\rightarrow \rightarrow \rightarrow$
61) If a, b, c are non-coplanar unit vectors such that $\rightarrow \rightarrow \rightarrow \rightarrow$
$a \times(b \times c)=(b+c) / \sqrt{2}$, then the angle between $\rightarrow \quad \rightarrow$
a and b is
62) $3 \pi / 4$
63) $\pi / 4$
64) $\pi / 2$
65) π
```
\longrightarrow}\quad\longrightarrow\quad
```

54) Let $v=2 i+j-k$ and $w=i+3 k$. If u is a unit vector, then the maximum value of the scalar

$$
\rightarrow \longrightarrow \rightarrow
$$

triple product [$u, v, w]$ is

1) -1
2) $\sqrt{ } 10+\sqrt{ } 6$
3) $\sqrt{ } 59$
4) $\xrightarrow{\sqrt{ } 6}$
5) If a and b are two unit vectors such that $a+2 b$ $\rightarrow \quad \rightarrow$
and 5a-4b are perpendicular to each other, then the angle between a and b is
6) 45°
\rightarrow
7) 60°
8) $\cos ^{-1}(1 / 3)$
9) $\cos ^{-1}(2 / 7)$
10) If $a=3 i-5 j$ and $b=6 i+3 j$ are two vectors and c

$$
\rightarrow \rightarrow \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow
$$

is a vector such that $c=a \times b$, then $|a|:|b|:|c|=$

1) $\sqrt{ } 34: \sqrt{ } 45: \sqrt{ } 39$
2) $\sqrt{ } 34: \sqrt{ } 45: 39$
3) $34: 39: 45$
4) $39: 35: 34$
5) If a and b are unit vectors such that $a, b=\cos \theta$,

$$
\rightarrow \rightarrow
$$

then the value of $|a+b|$ is

1) $2 \sin (\theta / 2)$
2) $2 \sin \theta$
3) $2 \cos (\theta / 2)$
4) $2 \boldsymbol{c o s} \theta$
5) The value of a so that the volume of parallelepiped formed by the vectors $\mathbf{i}+\mathbf{a j}+\mathbf{k}$, j + ak, ai + k becomes minimum is
6) $\sqrt{ } 3$
7) 2
8) $1 / \sqrt{ } 3$
9) 3
10) The centroid of $i, 2 j, k$ is
11) $(1 / 3,2 / 3,1 / 3)$
12) $(1 / 3,-2 / 3,-1 / 3)$
13) ($1 / 3,-2 / 3,1 / 3$)
14) $(1 / 3,2 / 3,-1 / 3)$
15) If the position vectors of the points A and B are $5 i-3 j+4 k$ and $-3 i+\lambda j+3 k$ and $|A B|=9$, then the value of λ is
16) 1 or -7
17) -1 or 7
18) -1 or -7
19) 1 or 7
