## Electrochemistry - CET

1. What is the time taken in seconds
required for depositing all the silver present in 125 ml of $1 \mathrm{M} \mathrm{AgNO}_{3}$ solution by passing a current of 241.25A ? ( $1 \mathrm{~F}=96500 \mathrm{C}$ )

## Ans: $2 \quad 50$

Soln : For $\mathrm{AgNO}_{3}$ solution $1 \mathrm{M}=1 \mathrm{~N}$
No. of g.equivalents of silver in 125 ml of
$1 \mathrm{~N} \mathrm{AgNO}_{3}$ solution
$125 \times 1$

$$
=0.125 \text { g.equivalents }
$$

## $\mathbf{K}_{\mathbf{A}}$

For the deposition of 1 g equivalent of silver 96500 C of electric current is required.
$\therefore$ For the deposition of 0.125 g.eq. of $\mathbf{A g}$

## current required is $96500 \times 0.125 \mathrm{C}$

$$
\begin{aligned}
& Q=\text { It } 96500 \times 0.125=241.25 \times t \\
& t=\frac{96500 \times 0.125}{241.25}=50 \text { second }
\end{aligned}
$$

2. The volume of $\mathrm{H}_{2}$ obtained at STP when Mg obtained by passing a current of 0.5 amp through molten $\mathbf{M g C l}_{\mathbf{2}}$ for
32.2 minutes is treated with excess of dil.HCI is approximately
1) $56 \mathrm{ml} \quad$ 2) $5.6 \mathrm{ml} \quad$ 3) $28 \mathrm{ml} \mathrm{4)} 112 \mathrm{ml}$

## $\mathbf{K}_{\mathbf{A}}$

## Ans: 412 ml

Solution: Coulombs of electricity passed $Q=1$ t
$=0.5 \times 32.2 \times 60$
$=966 \mathrm{C}$
96500 C of electric current deposits 1 g
eq of magnesium which with dil HCl
gives 1 g eq of $\mathrm{H}_{2}=11200 \mathrm{ml}$

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

$\therefore 966 \mathrm{C}$ of electric current gives
$966 \times 11200$ $=112 \mathrm{ml}$ 96500

## $\mathbf{K}_{\mathbf{A}}$

## 3. What is the ratio of weights of iron

liberated at cathodes when the same
current is passed through two
solutions of ferric and ferrous salts
arranged in series for a given time
interval?
$\begin{array}{llll}\text { 1) } 3: 2 & \text { 2) } 2: 3 & \text { 3) } 1: 3 & \text { 4) } 1: 1\end{array}$

Ans: 2 2:3

## Solution: Let the at. Mass of iron be $x$

 Equivalent masses of $\mathrm{Fe}^{+3}$ and $\mathrm{Fe}^{+2}$ are
## $\mathbf{K E}_{\mathbf{A}}$

On passing same current through both
the solutions the ratio of masses of iron deposited at cathode will be

$$
\text { i.e, } 2: 3
$$

4. 1 mole of $A I$ is deposited by $x$ coulomb of electricity passing through molten aluminium nitrate. The number of moles of silver deposited by $x$ coulomb of electricity from silver nitrate solution is 1) 3
2) 4
3) 2
4) 1

## Ans: 1 3

x coulomb deposits 1 mole
of $A I \equiv 3$ eq of $A I$
$\therefore$ Silver deposited $=3$ eq $=3$ mole
(Since silver is monovalent
no of moles = no of equivalent)

## $\mathbf{K}_{\mathbf{E}}^{\mathbf{A}}$

5. The specific conductance of 0.01 M

NaCl solution is $0.12 \mathrm{Sm}^{-1}$. Its molar conductance in $\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$ is

1) $1.2 \times 10^{-4}$

$$
\text { 2) } 1.2 \times 10^{-3}
$$

3) $1.2 \times 10^{-2}$
4) 120

## $\mathbf{K}_{\mathbf{A}}$

CHEMISTRY

Ans: $3 \quad 1.2 \times 10^{-2}$

## Solution :

$$
\mu=\frac{\mathrm{k}}{1000 \mathrm{C}}=\frac{0.12}{1000 \times 0.01}
$$

$$
=1.2 \times 10^{-2} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}
$$

6. The relationship between molar
conductance ( $\mu$ ) and equivalent
conductance ( $\lambda$ ) for $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is

$$
\begin{array}{ll}
\text { 1) } \mu=2 \lambda & \text { 2) } \lambda=2 \mu \\
\text { 3) } \lambda=\mu & \text { 4) } \lambda=3 \mu
\end{array}
$$

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

## Ans: 1 <br> $$
\mu=2 \lambda
$$

## Solution:

## For $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Mol. mass

## Eq mass =

Total no. of + ve charges on the cation
Mol.mass
2

## . Mol.mass <br> $n=\frac{\text { Mass }}{\text { Eqass }}=2$ Eq.mass

## Equivalent conductance $=\frac{\text { Molar conductance }}{n}$ <br> n

## 7. $\lambda_{\infty} \mathrm{NH}_{4} \mathrm{Cl}=130 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1} ; \lambda_{\infty} \mathrm{NaOH}=$

$220 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1} \quad \lambda_{\infty} \mathrm{NaCl}=110.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$ If $\lambda_{m}$ of $\mathrm{NH}_{4} \mathrm{OH}$ at a given concentration is $12 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$, what is its percentage dissociation?

1) $1 \%$
2) $2 \%$
3) $3 \%$
4) $5 \%$

## $\mathbf{K}_{\mathbf{A}}$

Ans: 4 5\%
$\lambda_{\infty} \mathrm{NH}_{4} \mathrm{OH}=\lambda_{\infty} \mathrm{NH}_{4} \mathrm{Cl}+\lambda_{\infty} \mathrm{NaOH}-\lambda_{\infty} \mathrm{NaCl}$ $=130+220-110=240 \mathrm{Sm}^{2} \mathrm{eq}^{-1}$

$$
\alpha \%=\frac{\lambda_{c}}{\lambda_{\infty}} \times 100=\frac{12}{240} \times 100=5 \%
$$

## $K_{\mathbf{K}}$

8. In the reaction $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }^{+} \mathrm{OH}^{-}$ Which of the following sets represents Bronsted acid?
1) $\mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O} \quad$ 2) $\mathrm{NH}_{4}^{+}$and $\mathrm{OH}^{-}$
2) $\mathrm{NH}_{3}$ and OH 4) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4}{ }^{+}$

Ans (4)
9. The conjugate base of $\mathrm{NH}_{2}$ - is
$\begin{array}{ll}\text { 1) } \mathrm{NH}_{3} & \text { 2) } \mathrm{NH}^{-2}\end{array}$
3) $\mathrm{NH}_{4}{ }^{+}$4) $\mathrm{N}_{3}{ }^{-1}$

Ans: $\mathbf{2} \mathbf{N H}^{-2}$


## $K_{\mathbf{A}}^{\mathbf{A}}$

10. Which equilibrium can be described as Lewis acid base reaction but not Brownsted acid-base reaction?
1) $\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$ 2) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{NH}_{4}{ }^{+}+\mathrm{SO}_{4}{ }^{-2}$ 3) $\mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
2) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ Ans: 4

## $K_{\mathbf{A}}$

11. The strongest Bronsted base among
the following anion is
1) $\mathrm{ClO}_{2}^{-}$2) $\mathrm{ClO}_{4}^{-}$3) $\mathrm{ClO}^{-}$4) $\mathrm{ClO}_{3}^{-}$

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

Ans: 3 ClO-

## Solution:

Acid strength
$\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
Strength of its conjugate base
$\mathrm{ClO}>\mathrm{ClO}_{2}^{-}>\mathrm{ClO}_{3}^{-}>\mathrm{ClO}_{4}^{-}$

## $\mathbf{K}_{\mathbf{A}}$

12. Dissociation constants of HCOOH and $\mathrm{CH}_{3} \mathrm{COOH}$ at certain temperature are $1.8 \times 10^{-4}$ and $1.8 \times 10^{-5}$ respectively.

## At what concentration would

 $\mathrm{CH}_{3} \mathrm{COOH}$ have the same $\left[\mathrm{H}^{+}\right]$ concentration as 0.01 M HCOOH 1) $1 \times 10^{-4} \mathrm{M} \quad$ 2) $1 \times 10^{-5} \mathrm{M}$3) 0.1 M
4) 0.01 M

## $K_{\mathbf{A}}$

## Ans: $3 \quad 0.1 \mathrm{M}$

For weak acid $[\mathrm{H}+]=\sqrt{K_{a} C}$

$$
\begin{gathered}
\left(\sqrt{K_{a} C}\right)_{\mathrm{CH}_{3} \mathrm{COOH}}=\left(\sqrt{K_{a} C}\right)_{\mathrm{HCOOH}} \\
\sqrt{1.8 \times 10^{-5} \times C}=\sqrt{1.8 \times 10^{-4} \times 0.01} \\
C_{\mathrm{CH}_{3} \mathrm{COOH}}=\frac{1.8 \times 10^{-4} \times 0.01}{1.8 \times 10^{-5}}=0.1 \mathrm{M}
\end{gathered}
$$

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

13. Aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$ contains
1) $\mathrm{CH}_{3} \mathrm{COOH} ; \mathrm{H}^{+}$
2) $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{CH}_{3} \mathrm{COOH}$
3) $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}^{+}$
4) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}^{+}$

## $\mathbf{K}_{\mathbf{A}}$

Ans: $2 \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid that ionizes partially

## $K_{\mathbf{A}}$

14. A monoprotonic acid in 0.1 M solution has $K_{a}=1.0 \times 10^{-5}$. The degree of dissociation of the acid is
$\begin{array}{llll}\text { 1) } 1 \% & \text { 2) } 99.9 \% & \text { 3) } 0.1 \% & \text { 4) } 99 \%\end{array}$

## $\mathbf{K}_{\mathbf{A}}$

## Ans: 1 1\% $\mathrm{K}_{\mathrm{a}}=\mathbf{C} \boldsymbol{\alpha}^{2}$

$$
\alpha=\sqrt{\frac{K_{a}}{C}} \times 100=\sqrt{\frac{1.0 \times 10^{-5}}{0.1}} \times 100=1 \%
$$

## $\mathbf{K}_{\mathbf{A}}$

15. At $25^{\circ} \mathrm{C}$ the dissociation constants of
$\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NH}_{4} \mathrm{OH}$ are almost
same ( $10^{-5}$ ). If pH of some acetic acid
is 3 , the pH of the solution of $\mathrm{NH}_{4} \mathrm{OH}$
of same concentration at the same
temperature would be
$\begin{array}{llll}\text { 1) } 3.0 & \text { 2) } 4.0 & \text { 3) } 10.0 & \text { 4) } 11.0\end{array}$

## $\mathbf{K}_{\mathbf{A}}$

## Ans: 4 11.0 Solution :

## $\mathrm{CH}_{3} \mathrm{COOH} \quad \mathrm{NH}_{4} \mathrm{OH}$

When conc. Of both solutions are same

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\mathrm{K}_{\mathrm{b}} \\
{\left[\mathrm{H}^{+}\right] } & =\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

$$
p^{H}=p^{O H}=3
$$

$\therefore \mathrm{p}^{\mathrm{H}}$ of $\mathrm{NH}_{4} \mathrm{OH}=14-\mathrm{p}^{\mathrm{OH}}$

$$
=14-3=11
$$

## $\mathbf{K}_{\mathbf{E}}^{\mathbf{A}}$

## 16. 0.023 g of sodium metal is reacted

with $100 \mathrm{~cm}^{3}$ of water. The pH of
the resulting solution is

## $\begin{array}{llll}\text { 1) } 8 & \text { 2) } 10 & \text { 3) } 9 & \text { 4) } 12\end{array}$

## $\mathbf{K}_{\mathbf{A}}$

## Ans: 412 <br> $$
\text { Solution: } \underset{23 \mathrm{~g}}{\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \longrightarrow} \xrightarrow{\mathbf{A l n g}} \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2}
$$ <br> $$
0.023 \mathrm{~g} \quad 0.04 \mathrm{~g}
$$ <br> $$
\text { No. of moles of } \mathrm{NaOH} \text { produced }=
$$

$\frac{\operatorname{mass} \text { in } \mathrm{g}}{\text { mol mass }}=\frac{0.04}{40}=10^{-3}$

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

$$
\begin{aligned}
& {[\mathrm{NaOH}]=\frac{\text { no of moles }}{\text { vol in lit }}=\frac{10^{-3}}{0.1}=10^{-2}=\left[\mathrm{OH}^{-}\right] } \\
& \mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=-\log _{10} 1^{-2}=\mathbf{2} \\
& \therefore \mathrm{pH}=14-\mathbf{p O H}=\mathbf{1 4}-\mathbf{2}=\mathbf{1 2}
\end{aligned}
$$

## $\mathbf{K}_{\mathbf{A}}$

17. Which one of the following is not an amphoteric substance?
1) $\mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{HSO}_{4}^{-}$
3) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
4) $\mathrm{SO}_{4}{ }^{-2}$

Ans: 4

## $\mathbf{K}_{\mathbf{A}}$

18. Hydrogen ion concentration of an aqueous solution is $1 \times 10^{-4} \mathrm{M}$. The solution is diluted with equal volume of water. Hydroxyl ion concentration of the resultant solution in $\mathrm{mol} \mathrm{dm}^{-3}$ is
1) $1 \times 10^{-6}$
2) $1 \times 10^{-8}$
3) $0.5 \times 10^{-10}$ 4) $2 \times 10^{-10}$

## $\mathbf{K E}_{\mathbf{A}}$

## Ans: $4 \quad 2 \times 10^{-10}$ <br> Solution: $\left[\mathrm{H}^{+}\right]$after dilution $=$ $\frac{1 \times 10^{-4}}{2}$

$\left[\mathrm{OH}^{-}\right]=\frac{1 \times 10^{-14}}{\left[\mathrm{H}^{+}\right]}=\frac{1 \times 10^{-14}}{1 \times 10^{-4}} \times 2=2 \times 10^{-10} \mathrm{M}$
19. The pH of HCl is 5 . If 1 ml of this
solution is diluted to 1000 ml , the pH of the resulting solution is

1) 8
$\begin{array}{ll}\text { 3) between 6-7 } & \text { 4) between } 7-8\end{array}$

Ans: 3 between 6-7
Solution : pH of the given HCl is 5
$\left[\mathrm{H}^{+}\right]=10^{-5} \mathrm{M}=[\mathrm{HCl}]$
Molarity of the diluted HCl
$M_{1} V_{1}=M_{2} V_{2}$
$1 \times 10^{-5}=M_{2} \times 1000$
$M_{2}=$
$\frac{10^{-5}}{1000}=10^{-8} \mathrm{M}$

## $\mathbf{K}_{\mathbf{A}}$

[ $\mathrm{H}^{+}$] in such a solution
$=10^{-8}$ from $\mathrm{HCl}+10^{-7}$ from water
$=10^{-8}+10 \times 10^{-8}=11 \times 10^{-8}=1.1 \times 10^{-7}$
pH of the solution $=-\log _{10} 1.1 \times 10^{-7}$
$=7-\log 1.1$
$=7-0.0414=6.96$
20. What is the pH of the solution obtained by mixing $250 \mathrm{~cm}^{3}$ of a solution of $\mathrm{pH}=3$ and $750 \mathrm{~cm}^{3}$ of the solution with $\mathrm{pH}=5$

$$
\begin{array}{llll}
\text { 1) } 4.5 & \text { 2) } 4 & \text { 3) } 3.3 & \text { 4) } 3.6
\end{array}
$$

## $\mathbf{K}_{\mathbf{A}}$

Ans: 4.6
Solution $\mathrm{pH}=3 \quad\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M}$

$$
\mathrm{pH}=5 \quad\left[\mathrm{H}^{+}\right]=10^{-5} \mathrm{M}
$$

When the two solutions are mixed in the said ratio

$$
\left[\mathrm{H}^{+}\right]=\frac{250 \times 10^{-3}+750 \times 10^{-5}}{1000}
$$

$$
\begin{aligned}
& =\frac{25000 \times 10^{-5}+750 \times 10^{-5}}{1000} \\
& =\frac{25750 \times 10^{-5}}{1000}=2.575 \times 10^{-4}
\end{aligned}
$$

$\mathrm{pH}=-\log _{10} 2.575 \times 10^{-4}=4-\log 2.575 \approx 3.6$

## 21. pKa of two acids $A$ and $B$ are 4 and 5 .

## The strength of these two acids are

 related as1) Strength of $A$ : Strength of $B=4: 5$
2) Acid $\mathbf{A}$ is 3.3 times stronger than acid B
3) Acid $B$ is 10 times stronger than acid A
4) The strength of two acids cannot be compared

## $\mathbf{K}_{\mathbf{A}}$

Ans: 2
Solution:
Acid $A \mathrm{pK}_{\mathrm{a}}=4 \quad \therefore \mathrm{~K}_{\mathrm{a}}=10^{-4}$
Acid $B \quad \mathrm{pK}_{\mathrm{a}}=5 \quad \mathrm{~K}_{\mathrm{a}}=10^{-5}$
$\frac{\text { Strength of Acid A }}{\text { Strength of Acid B }}=\sqrt{\frac{K_{a} \text { for } \operatorname{acid} A}{K_{a} \text { for } \operatorname{acid} B}}$

$$
=\sqrt{\frac{10^{-4}}{10^{-5}}}=\sqrt{10}=3.3
$$

## $\mathbf{K}_{\mathbf{A}}$

22. A buffer solution is prepared by mixing 10 ml of 0.1 M acetic acid and 20 ml of 0.5 M sodium acetate and then diluted to 100 ml with distilled water. If the pKa of acetic acid is 4.76 what is the pH of the buffer solution prepared?
$\begin{array}{llll}\text { 1) } 4.76 & \text { 2) } 3.76 & \text { 3) } 5.76 & \text { 4) } 5.21\end{array}$

## $\mathbf{K}_{\mathbf{A}}$

Ans: 3.76
Solution: [Acid] in the solution $M_{1} V_{1}=M_{2} V_{2}$

$$
0.1 \times 10=M_{2} \times 100 \quad M_{2}=\frac{10 \times 0.1}{100}=0.01 \mathrm{M}
$$

[Salt] in the solution

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$0.5 \times 20=M_{2} \times 100$

$$
\mathrm{M}_{2}=\frac{0.5 \times 20}{100}=0.1 \mathrm{M}
$$

$K_{\mathbf{K}}$

$$
\mathrm{pH}=\mathrm{pKa}+\log \frac{[\text { salt }]}{[\text { Acid }]}
$$

$$
=4.76+\log \frac{0.1}{0.01}=4.76+\log 10=5.76
$$

## $\mathbf{K}_{\mathbf{A}}$

23. A buffer solution prepared by mixing $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ in equal volumes has a pH of 9.25 . $\mathrm{pK}_{\mathrm{b}}$ of $\mathrm{NH}_{4} \mathrm{OH}$ is
$\begin{array}{llll}\text { 1) } 9.25 & \text { 2) } 4.75 & \text { 3) } 3.75 & \text { 4) } 8.25\end{array}$

## $\mathbf{K}_{\mathbf{A}}$

## Ans: 24.75

## Solution For a basic buffer

$$
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { salt }]}{[\text { Base }]}
$$

$\mathrm{pH}=9.25 \quad \therefore \mathrm{pOH}=14-9.25=4.75$

$$
\log \frac{[\text { salt }]}{[\text { Base }]}=\log 1=0
$$

$$
\therefore 4.75=\mathrm{pK}_{\mathrm{b}}
$$

## $\mathbf{K}_{\mathbf{A}}$

24. What happens to the pH of a buffer solution of a mixture of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ when a further quantity of $\mathrm{NH}_{4} \mathrm{Cl}$ is added
1) Decrease
2) Increases
3) Remains unchanged
4) May increase or decrease

## Ans: 1 Decrease

## For a basic buffer

$$
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { salt }]}{[\text { Base }]}
$$

## If only [Salt] is increased, pOH

increases and pH decreases

## 25. $\mathrm{NH}_{4} \mathrm{OH}$ is a weak base but it becomes

still weaker in the aqueous solution of
$\begin{array}{ll}\text { 1) } 0.1 \mathrm{M} \mathrm{HCl} & \text { 2) } 0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}\end{array}$
3) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ 4) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$

## Ans: $2 \quad 0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$

Due to common ion effect $\mathrm{NH}_{4} \mathrm{Cl}$
suppresses the degree of dissociation
of $\mathrm{NH}_{4} \mathrm{OH}$ making it a still weaker base
$\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$

## $\mathbf{K}_{\mathbf{A}}$

26. The precipitate of $\mathrm{CaF}_{2}\left(\mathrm{~K}_{\mathrm{sp}}=\right.$
$1.7 \times 10^{-10}$ ) is obtained when equal
volumes of the following are mixed
1) $10^{-4} \mathrm{M} \mathrm{Ca}^{+2}+10^{-4} \mathrm{M} \mathrm{F}^{-}$
2) $10^{-2} \mathrm{M} \mathrm{Ca}^{+2}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
3) $10^{-5} \mathrm{M} \mathrm{Ca}^{+2}+10^{-5} \mathrm{M} \mathrm{F}^{-}$
4) $10^{-3} \mathrm{M} \mathrm{Ca}^{+2}+10^{-5} \mathrm{M} \mathrm{F}^{-}$

## $\mathbf{K}_{\mathbf{A}}$

Ans: $2 \quad 10^{-2} \mathrm{M} \mathrm{Ca}^{+2}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
For precipitate to take place Ksp < I.P
I.P $\begin{aligned} {\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{F}^{-}\right]^{2} } & =\left(\frac{10^{-2} \times \mathrm{v}}{2 \mathrm{v}}\right)\left(\frac{10^{-5} \times \mathrm{v}}{2 \mathrm{v}}\right)^{2} \\ & =1.25 \times 10^{-9}\end{aligned}$

Which is greater than $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{CaF}_{2}\left(1.7 \times 10^{-10}\right)$ Hence precipitation takes place.

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

27. The solution of $\mathrm{CuSO}_{4}$ in which copper plate is immersed, is diluted to 10 times, the reduction electrode potential
1) Increased by 0.030 V
2) Decreased by 0.030 V
3) Increased by 0.059 V
4) Decreased by 0.059 V

## $K_{\mathbf{A}}$

## Ans: 2 Decreased by 0.030 V

Solution: $\mathrm{E}_{\mathrm{Cu}}=\mathrm{E}_{\mathrm{Cu}}^{\mathrm{o}}+\frac{0.059}{2} \log \left[\mathrm{Cu}^{+2}\right]$
If $\left[\mathrm{Cu}^{+2}\right]=\frac{1}{10}$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{Cu}} & =\mathrm{E}^{\mathrm{o}}{ }_{\mathrm{Cu}}+\frac{0.059}{2} \log \frac{1}{10} \\
& =\mathrm{E}^{\circ}{ }_{\mathrm{Cu}}-0.030 \mathrm{~V}
\end{aligned}
$$

## $\mathbf{K}_{\mathbf{A}}$

28. The hydrogen electrode is dipped in a solution of pH 3 at $25^{\circ} \mathrm{C}$. The potential would be
1) 0.087 V
2) 0.177 V
3) -0.177 V
4) 0.059 V

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

## Ans: $3 \quad-0.177 \mathrm{~V}$

## $\mathrm{E}_{\mathrm{H}_{2}}=-0.059 \times \mathrm{pH}=-0.059 \times 3=-0.177 \mathrm{~V}$

## $\mathbf{K}_{\mathbf{A}}$

## 29. What is the EMF of the cell?

## $\mathrm{Zn}{ }_{(\mathrm{s})} / \mathrm{Zn}^{2+}(0.1 \mathrm{M}) \| \mathrm{Sn}^{2+}(0.001 \mathrm{M}) / \mathrm{Sn}_{(\mathrm{s})}$

Given $\mathrm{E}^{\circ} \mathrm{Sn}^{2+} / \mathrm{Sn}=-0.14 \mathrm{~V}$ and $E^{\circ} \mathbf{Z n}^{2+} / \mathbf{Z n}=-0.76 \mathrm{~V}$
$\begin{array}{llll}\text { 1) } 0.62 \mathrm{~V} & \text { 2) } 0.56 \mathrm{~V} & \text { 3) } 1.12 \mathrm{~V} & \text { 4) } 0.31 \mathrm{~V}\end{array}$

## $\mathbf{K}_{\mathbf{A}}$

Ans: 20.56 V
Solution: EMF $=\mathrm{E}_{\text {right }}-\mathrm{E}_{\text {left }}$

$$
=\mathrm{E}_{\mathrm{Sn}^{2+} / \mathrm{Sn}}-\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}
$$

Applying Nernst equation to each electrode

$$
E M F=\left(E_{S n^{2+} / S n}^{o}+\frac{0.059}{2} \log _{10}\left[S n^{2+}\right]\right)-\left(E_{Z n^{2+} / Z n}^{o}+\frac{0.059}{2} \log _{10}\left[Z n^{2+}\right]\right)
$$

$$
\begin{aligned}
& =E_{S n^{2+} / S n}^{o}-E_{Z n^{+2} / Z n}^{o}+\frac{0.059}{2} \log _{10}\left[S^{2+}\right] \\
& \left.\quad=-0.14-(-0.76)+\frac{0.059}{2} \log _{10} \frac{0.001}{0.1}\right] \\
& \quad=+0.62+\frac{0.059}{2} \log 10^{-2} \\
& =+0.62-0.059=0.56 \mathrm{~V}
\end{aligned}
$$

## $K_{\mathbf{A}}$

30. The equilibrium constant for the reaction

$$
\mathrm{Cu}+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag} \text {; }
$$

$E^{\circ}=0.46 \mathrm{~V}$ at 298 K is

1) $2.0 \times 10^{10}$
2) $4.0 \times 10^{15}$
3) $4.0 \times 10^{10}$
4) $2.4 \times 10^{10}$

## $K_{\mathbf{A}}$

Ans: $3 \quad 4.0 \times 10^{15}$

$$
\begin{aligned}
E^{o} & =\frac{0.059}{n} \log K c \\
0.46 & =\frac{0.059}{2} \log K c
\end{aligned}
$$

$$
\log K c=\frac{0.46 \times 2}{0.059}=15.59
$$

Taking the antilog $K c=3.9 \times 10^{15}$

## $\mathbf{K}_{\mathbf{A}}$

31. The standard reduction electrode potentials of three metals $A, B$ and $C$ are $+0.5 \mathrm{~V},-3.0 \mathrm{~V}$ and -1.2 V respectively.

The reducing power of these metals are

1) $B>C>A$
2) $A>B>C$
3) $C>B>A$
4) $A>C>B$

Ans: $1 \quad B>C>A$ Smaller the SRP more is the reducing
power

## $\mathbf{K}_{\mathbf{A}}$

32. Which one of the following solutions when stirred with a copper spoon turns blue?
1) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
2) $\mathrm{AgNO}_{3}$
3) $\mathrm{LiNO}_{3}$
4) $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$

## $\mathbf{K}_{\mathbf{E}}^{\mathbf{A}}$

Ans: $2 \quad \mathrm{AgNO}_{3}$ Li/Li ${ }^{+} \quad-3.04 \mathrm{~V}$
$\mathrm{Al} / \mathrm{Al}^{3+} \quad-1.66 \mathrm{~V}$
$\mathbf{Z n} / \mathbf{Z n}^{2+} \quad-0.76 \mathrm{~V}$
$\mathrm{Cu} / \mathrm{Cu}^{2+}+0.34 \mathrm{~V}$
$\mathrm{Ag} / \mathrm{Ag}^{+}+0.8 \mathrm{~V}$

Only Ag is below copper in electrochemical series but $\mathrm{Al}, \mathrm{Li} \& \mathrm{Zn}$ are above copper. Copper can displace only Ag from $\mathrm{AgNO}_{3}$ solution but not other metals $\mathrm{Al}, \mathrm{Li}$ and $\mathbf{Z n}$
from their salt solution

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}
$$

## $\mathbf{K}_{\mathbf{A}}$

34. One molar aqueous solution of each
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{AgNO}_{3}, \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ and
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is being electrolysed by using
inert electrodes. The values of standard electrode potentials are
$\mathrm{Ag} / \mathrm{Ag}^{+}=+0.80 \mathrm{~V} ; \mathrm{Hg} / \mathrm{Hg}^{2+}=+0.79 \mathrm{~V}$,
$\mathrm{Cu} / \mathrm{Cu}^{2+}=+0.34 \mathrm{~V}$ and $\mathrm{Mg} / \mathrm{Mg}^{2+}=-2.37 \mathrm{~V}$

## $\mathbf{K}_{\mathbf{A}}$

With increasing voltage, the sequence of deposition of metals on the cathode will be 1) $\mathrm{Ag}, \mathrm{Hg}, \mathrm{Cu}$ and Mg 2) $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Hg}$ and Ag 3) $\mathrm{Ag}, \mathrm{Hg}$ and Cu 4) Cu Hg and Ag

Ans: 3 Ag Hg and Cu
Solution: Electrolysis of aqueous
solution of a metal salt above certain
concentration will liberate metal at
cathode if its reduction potential is more
than -0.83 the reduction potential water

Mg metal can not be deposited by
electrolysing aqueous solution of
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
lons with higher values of SRP is
discharged first at the cathode
$\mathrm{Ag} ; \mathrm{Hg} ; \mathrm{Cu}$
Decreasing order of deposition

## $\mathbf{K}_{\mathbf{A}}$

## 35. Which of the following salts when

dissolved in water gives a pH of greater than 7 ?

1) $\mathrm{NH}_{4} \mathrm{Cl}$
2) $\mathrm{CH}_{3} \mathrm{COONa}$
3) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
4) NaCl

Ans: $2 \quad \mathrm{CH}_{3} \mathrm{COONa}$

1) Salt of Strong acid \& weak base
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$ weak base St acid Solution is acidicpH < 7
2) Salt of weak acid and strong base $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$ wk acid st base
Soln is basic $\mathrm{pH}>7$

## $\mathbf{K}_{\mathbf{A}}$

3) Salt of weak acid and wk base $\mathrm{CH}_{3} \mathrm{COONH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$ wk acid wk base
Since Ka of $\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{Kb}$ of $\mathrm{NH}_{4} \mathrm{OH}$ the soln is neutral $\mathrm{pH}=7$
4) Salts of st.acid \& st.base like NaCl , $\mathrm{KNO}_{3}$ do not undergo hydrolysis and their solutions are neutral with $\mathrm{pH}=7$
36.Corrosion of iron is essentially an electrochemical phenomenon where the
cell reactions are
5) Fe is oxidised to $\mathrm{Fe}^{+3}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}{ }^{-2}$
6) Fe is oxidised to $\mathrm{Fe}^{2+}$ and dissolved oxygen in water is reduced to $\mathrm{OH}^{-}$
7) Fe is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}-$
8) Fe is oxidised to $\mathrm{Fe}^{+2}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}$

## $\mathbf{K}_{\mathbf{A}}$

## Ans:2 <br> Solution

At anode $\mathrm{Fe} \xrightarrow{\text { oxdn }} \mathrm{Fe}^{+2}+2 \bar{e}$
At cathode $\mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}+2 \bar{e} \longrightarrow \mathbf{2 O H ^ { - }}$
$\mathrm{Fe}^{2+}+2 \mathrm{OH}^{-}$
$\longrightarrow \mathrm{Fe}(\mathrm{OH})_{2}$
$2 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}$

## $K_{\mathbf{K}}$

$2 \mathrm{Fe}(\mathrm{OH})_{3} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{xH}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$
Hydrated ferric oxide (Rust)

## $K_{\mathbf{A}}$

## 37. The cell reaction for the given cell is

 spontaneous if$\operatorname{Pt}\left(\mathrm{H}_{2}=\mathrm{P}_{1}\right) / \mathrm{H}+(1 \mathrm{M}) \| \mathrm{H}^{+}(1 \mathrm{M}) / \operatorname{Pt}\left(\mathrm{H}_{2}=\mathrm{P}_{2}\right)$

1) $P_{1}>P_{2}$, 3) $P_{1}=P_{2}$
2) $P_{1}<P_{2}$
3) $P_{1}=1 \mathrm{~atm}$

## $\mathbf{K}_{\mathbf{A}}$

## Reduction reaction taking place at the

right side electrode is
$2 \mathrm{H}^{+}+2 \bar{e} \longrightarrow \mathrm{H}_{2}$

$$
E_{H_{2}(R)}=E_{H_{2}}^{o}+\frac{0.059}{2} \log _{10} \frac{\left[H^{+}\right]^{2} 1 \mathrm{M}}{H_{2}\left(P_{2} \mathrm{~atm}\right)}
$$

## Similarly

$$
E_{H_{2}(L)}=E_{H_{2}}^{o}+\frac{0.059}{2} \log _{10} \frac{\left[H^{+}\right]^{2} 1 \mathrm{M}}{H_{2}\left(P_{1} \text { atm }\right)}
$$

## $\mathbf{K}_{\mathbf{A}}$

## EMF of the cell $=\mathrm{E}_{\text {right }}-\mathrm{E}_{\text {left }}$

$$
\begin{aligned}
& =\frac{0.059}{2} \log _{10} \frac{\left[\mathrm{H}^{+}\right]^{2} 1 \mathrm{M}}{\left[\mathrm{H}_{2} P_{2} \mathrm{~atm}\right]} \times \frac{\left[\mathrm{H}_{2} P_{1} \mathrm{~atm}\right]}{\left[\mathrm{H}^{+}\right]^{2} 1 \mathrm{M}} \\
& =\frac{0.059}{2} \log _{10} \frac{P_{1}}{P_{2}}
\end{aligned}
$$

For a cell reaction to be spontaneous
$\Delta G^{o}=-v e$ or $\mathrm{E}_{\text {cell }}$ is positive which is possible only when $P_{1}>P_{2}$

## $\mathbf{K}_{\mathbf{A}}$

38. The standard reduction potentials of
$\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$are 0.337 and
0.153 v respectively. The standard
electrode potential of $\mathrm{Cu}^{+} / \mathrm{Cu}$ half cell
is
1) $0.184 v$ 2) $0.827 v$
2) 0.521 v 4) 0.490 v

## ${ }_{K} \mathbf{E}_{\mathbf{A}}$

Ans: 3 0.521V
$\mathrm{Cu}^{2+}+2 \mathrm{C} \longrightarrow \mathrm{Cu} ; \mathrm{E}^{\circ}=0.337 \mathrm{~V}$
$\therefore \Delta G^{0}=-2 \times 0.337 \times F--(1)$
$\mathrm{Cu}^{2+}+e \longrightarrow \mathrm{Cu}^{+} ; \mathrm{E}^{\circ}=0.153 \mathrm{~V}$
$\therefore \Delta G^{\circ}=-1 \times 0.153 \times F-(2)$
Eqn (1) - (2)
$\mathrm{Cu}^{+}+e \longrightarrow \mathrm{Cu} \quad \therefore \Delta \mathrm{G}^{\circ}=-0.521 \mathrm{~F}$

## $K_{\mathbf{A}}$

$-\Delta \mathbf{G}^{\circ}=n F E^{\circ}$
$0.521 F=1 \times F \times E$
$\therefore E=0.521 V$

## $\mathbf{K}_{\mathbf{A}}$

39. $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{CuS}, \mathrm{Ag}_{2} \mathrm{~S}$ and HgS are 10-31, $10^{-44}$ and $10^{-54}$ respectively. Select the correct order for their solubility in water
1) $\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{HgS}>\mathrm{CuS}$
2) $\mathrm{HgS}>\mathrm{CuS}>\mathrm{Ag}_{2} \mathrm{~S}$
3) $\mathrm{HgS}>\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}$
4) $\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}>\mathrm{AgS}$

## $\mathbf{K}_{\mathbf{A}}$

## Ans: $4 \mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}>\mathrm{AgS}$ <br> For HgS \& CuS $\quad S=\sqrt{K s}$

For HgS; $S=\sqrt{K s}=\sqrt{10^{-54}}=10^{-27} \mathrm{M}$
Cus $S=\sqrt{K s}=\sqrt{10^{-31}}=\sqrt{10 \times 10^{-32}}=3.3 \times 10^{-16} \mathrm{M}$
For $\mathrm{Ag}_{2} \mathrm{~S} \quad s=3 \sqrt{\frac{K s}{4}}=3 \sqrt{10^{-44}}=3 \sqrt{10 \times 10^{-15}}$
$\approx 2.15 \times 10^{-15}$

## $\mathbf{K}_{\mathbf{A}}$

## 40. The pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begins to

## precipitate from a solution containing

## $0.10 \mathrm{M} \mathrm{Mg}^{+2}$ ions

$\left(\mathrm{K}_{\mathrm{sp}}\right.$ of $\left.\mathrm{Mg}(\mathrm{OH})_{2}=1 \times 10^{-11}\right)$ is

1) 5
2) $9 \quad 3) 4$
3) 10

## Ans: 2 9

Solution: When $\mathrm{Mg}(\mathrm{OH})_{2}$ starts precipitation then I.P
$\left[\mathrm{Mg}^{2+}\right][\mathrm{OH}-]^{2}>\mathrm{Ksp}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$
(0.1) $[\mathrm{OH}-]^{2}>1 \times 10^{-11}$
$\left[\mathrm{OH}^{-}\right]^{2}>\frac{10^{-11}}{0.1}=10^{-10}$
$\left[\mathrm{OH}^{-}\right]>10^{-5}$

## $K_{\mathbf{K}}^{\mathbf{A}}$

Taking the -log10 of both sides $\mathrm{pOH}>5$

14- $\mathrm{pOH}>14-5$ pH > 9
$\mathrm{C}_{5} \mathrm{H}_{11}$

