



**Electrochemistry - CET** 1. What is the time taken in seconds required for depositing all the silver present in 125 ml of 1 M AgNO<sub>3</sub> solution by passing a current of 241.25A? (1F = 96500 C) C5H11 1) 10 3) 1000 4) 100 2) 50



### Ans: 2 50 Soln : For AgNO<sub>3</sub> solution 1 M = 1 NNo. of g.equivalents of silver in 125ml of **1N AgNO<sub>3</sub> solution** OH $\frac{125 \times 1}{1000} = 0.125$ g.equivalents C5H11 H<sub>3</sub>C



For the deposition of 1g equivalent of silver 96500C of electric current is required. .: For the deposition of 0.125 g.eq. of Ag current required is 96500×0.125 C **O** = I t 96500×0.125 = 241.25× t  $t = \frac{96500 \times 0.125}{241.25} = 50 \text{ seconds}$ 



H<sub>3</sub>C

2. The volume of H<sub>2</sub> obtained at STP when Mg obtained by passing a current of 0.5 amp through molten MgCl<sub>2</sub> for 32.2 minutes is treated with excess of dil.HCl is approximately 1) 56 ml 2) 5.6 ml 3) 28 ml 4) 112 ml C5H11



Ans: 4 112 ml **Solution: Coulombs of electricity** passed Q = It $= 0.5 \times 32.2 \times 60$ = 966 C 96500 C of electric current deposits 1g eq of magnesium which with dil HCI gives 1 g eq of  $H_2 = 11200$  ml H<sub>3</sub>C



### : 966 C of electric current gives

# $966 \times 11200$ 96500 = 112 ml



3. What is the ratio of weights of iron liberated at cathodes when the same current is passed through two solutions of ferric and ferrous salts arranged in series for a given time interval? 1) 3 : 2 2) 2 : 3 3) 1 : 3 4) 1 : 1



### Ans: 2 2:3 Solution: Let the at. Mass of iron be x Equivalent masses of Fe<sup>+3</sup> and Fe<sup>+2</sup> are CH<sub>3</sub> $\frac{x}{2}$ × 3 and H<sub>3</sub>C C5H11



### **On passing same current through both** the solutions the ratio of masses of iron deposited at cathode will be OH $\frac{\mathbf{X}}{\mathbf{3}}$ $\frac{x}{2}$ i.e, 2:3 HaC C5H11



4.1 mole of Al is deposited by x coulomb of electricity passing through molten aluminium nitrate. The number of moles of silver deposited by x coulomb of electricity from silver nitrate solution is 1) 3 2) 4 3) 2 4) 1



### Ans: 1 3

CH<sub>3</sub>

### x coulomb deposits 1 mole of $AI \equiv 3$ eq of AI

### :: Silver deposited = 3 eq = 3 mole

### (Since silver is monovalent no of moles = no of equivalent)



### 5. The specific conductance of 0.01 M NaCl solution is 0.12 Sm<sup>-1</sup>. Its molar conductance in Sm<sup>2</sup> mol<sup>-1</sup> is CH<sub>3</sub> 2) 1.2×10<sup>-3</sup> 1) 1.2×10<sup>-4</sup> OH H<sub>3</sub>C 3) 1.2×10<sup>-2</sup> 4) 120 C5H11



### Ans: 3 1.2×10<sup>-2</sup>

**Solution :** 

## $\mu = \frac{k}{1000C} = \frac{0.12}{1000 \times 0.01}$

## $= 1.2 \times 10^{-2} Sm^2 mol^{-1}$



### 6. The relationship between molar conductance ( $\mu$ ) and equivalent conductance ( $\lambda$ ) for Na<sub>2</sub>SO<sub>4</sub> is

1)  $\mu = 2\lambda$  2)  $\lambda = 2\mu$ 3)  $\lambda = \mu$  4)  $\lambda = 3\mu$ 

OH



### Ans: 1 $\mu = 2 \lambda$ **Solution**: For Na<sub>2</sub>SO<sub>4</sub> Mol. mass Eq mass : Total no. of + ve charges on the cation Mol.mass H<sub>3</sub>C H<sub>3</sub>C



## $\therefore \qquad n = \frac{\text{Mol.mass}}{\text{Eq.mass}} = 2$

## Equivalent conductance = $\frac{Molar conductance}{n}$

# $\lambda = \frac{\mu}{2} \text{ or } \mu = 2\lambda$ $H_{3}C$ $H_{3}C$



HaC

CHEMISTRY

7.  $\lambda_{\infty} NH_4 CI = 130 S cm^2 eq^{-1}$ ;  $\lambda_{\infty} NaOH =$ **220 S cm<sup>2</sup>eq<sup>-1</sup>**  $\lambda_{\infty}$  NaCl = 110.0 S cm<sup>2</sup> eq<sup>-1</sup> If  $\lambda_m$  of NH<sub>4</sub>OH at a given concentration is 12 S cm<sup>2</sup> eq<sup>-1</sup>, what is its percentage dissociation? 1) 1% 2) 2% 3) 3% 4) 5%

C5H11



### Ans:4 5%

### $\lambda_{\infty} \text{ NH}_4 \text{OH} = \lambda_{\infty} \text{ NH}_4 \text{CI} + \lambda_{\infty} \text{ NaOH} - \lambda_{\infty} \text{ NaCI}$ = 130+220-110 = 240S cm<sup>2</sup> eq<sup>-1</sup>





8. In the reaction  $NH_3+H_2O \implies NH_4^++OH^-$ Which of the following sets represents **Bronsted** acid? CH3 2) NH<sub>4</sub><sup>+</sup> and OH<sup>-</sup> 1) NH<sub>3</sub> and H<sub>2</sub>O 3) NH<sub>3</sub> and OH<sup>-</sup> 4)  $H_2O$  and  $NH_4^+$ Ans (4) C5H11



### 9. The conjugate base of $NH_2^-$ is 1) $NH_3$ 2) $NH^{-2}$ 3) $NH_4^+$ 4) $N_3^{-1}$



10. Which equilibrium can be described as Lewis acid base reaction but not Brownsted acid-base reaction ?

1)  $H_2O+CH_3COOH \implies H_3O^++CH_3COO^-$ 2)  $2NH_3+H_2SO_4 \implies 2NH_4^++SO_4^{-2}$ 3)  $NH_3+CH_3COOH \implies NH_4^++CH_3COO^-$ 4)  $[Cu(H_2O)_4]^{2+}+4NH_3 \implies [Cu(NH_3)_4]^{2+}+4H_2O$ Ans : 4



H<sub>3</sub>C

CH<sub>3</sub>

CHEMISTRY

## 11. The strongest Bronsted base among the following anion is

1)  $CIO_2^-$  2)  $CIO_4^-$  3)  $CIO^-$  4)  $CIO_3^-$ 

C5H11



**Ans:3** CIO-Solution: **Acid strength**  $HCIO < HCIO_2 < HCIO_3 < HCIO_4$ Strength of its conjugate base  $CIO^{-} > CIO_{2}^{-} > CIO_{3}^{-} > CIO_{4}^{-}$ C5H11 H<sub>3</sub>C



**12. Dissociation constants of HCOOH** and CH<sub>3</sub>COOH at certain temperature are 1.8×10<sup>-4</sup> and 1.8×10<sup>-5</sup> respectively. At what concentration would **CH<sub>3</sub>COOH** have the same [H<sup>+</sup>] concentration as 0.01M HCOOH 2) 1 ×10<sup>-5</sup> M 1) 1×10<sup>-4</sup> M 4) 0.01 M 3) 0.1 M



Ans: 3 0.1 M For weak acid [H+] =  $\sqrt{K_a C}$  $\left(\sqrt{K_aC}\right)_{CH_3COOH} = \left(\sqrt{K_aC}\right)_{HCOOH}$ CH3  $\sqrt{1.8 \times 10^{-5} \times C} = \sqrt{1.8 \times 10^{-4} \times 0.01}$  $C_{CH_3COOH} = \frac{1.8 \times 10^{-4} \times 0.01}{1.8 \times 10^{-5}} = 0.1M$ H<sub>3</sub>C

**13. Aqueous solution of CH<sub>3</sub>COOH** contains 1) CH<sub>3</sub>COOH; H<sup>+</sup> 2) CH<sub>3</sub>COO<sup>-</sup>, H<sub>3</sub>O<sup>+</sup>, CH<sub>3</sub>COOH 3) CH<sub>3</sub>COO<sup>-</sup>, H<sub>3</sub>O<sup>+</sup>, H<sup>+</sup> 4)  $CH_3COOH$ ,  $CH_3COO^-$ ,  $H^+$ H<sub>3</sub>C



H<sub>3</sub>C

CHEMISTRY

C5H11



H<sub>3</sub>C

CHEMISTRY

### Ans: 2 $CH_3COO^-$ , $H_3O^+$ , $CH_3COOH$

## CH<sub>3</sub>COOH is a weak acid that ionizes partially

C5H11

OH



H<sub>3</sub>C

CHEMISTRY

## 14. A monoprotonic acid in 0.1 M solution has $K_a = 1.0 \times 10^{-5}$ . The degree of dissociation of the acid is

1) 1% 2) 99.9% 3) 0.1% 4) 99%

C5H11

OH



### Ans:1 1%

 $K_a = C\alpha^2$ 

 $\alpha = \sqrt{\frac{K_a}{C}} \times 100 = \sqrt{\frac{1.0 \times 10^{-5}}{0.1}} \times 100 = 1\%$ 



15. At 25°C the dissociation constants of **CH<sub>3</sub>COOH and NH<sub>4</sub>OH are almost** same (10<sup>-5</sup>). If pH of some acetic acid is 3, the pH of the solution of NH<sub>4</sub>OH of same concentration at the same temperature would be 1) 3.0 2) 4.0 3) 10.0 4) 11.0



#### 11.0 Ans: 4 **Solution :** CH<sub>3</sub>COOH **NH**₄OH When conc. Of $K_a = K_b$ both solutions $[H^+] = [OH^-]$ are same OH $p^{H} = p^{OH} = 3$

 $\therefore p^{H} \text{ of } NH_{4}OH = 14 - p^{OH}$ = 14 - 3 = 11



### 16. 0.023 g of sodium metal is reacted with 100 cm<sup>3</sup> of water. The pH of the resulting solution is CH3 2) 10 3) 9 1) 8 4) 12 H<sub>3</sub>C C5H11



H<sub>3</sub>C

CHEMISTRY

### Ans: 4 12 Solution : $Na+H_2O \longrightarrow NaOH + \frac{1}{2}H_2$ 23g 40g 2 0.023g 0.04g No. of moles of NaOH produced =

# $\frac{\text{mass in g}}{\text{mol mass}} = \frac{0.04}{40} = 10^{-3}$

C5H11



H<sub>3</sub>C

**CHEMISTRY** 

 $[NaOH] = \frac{no \ of \ moles}{vol \ in \ lit} = \frac{10^{-3}}{0.1} = 10^{-2} = [OH^{-1}]$ 

### $pOH = -log_{10}[OH^{-}] = -log_{10}10^{-2} = 2$

C5H11

### $\therefore pH = 14 - pOH = 14 - 2 = 12$



17. Which one of the following is notan amphoteric substance?1)  $H_2O$ 2)  $HSO_4^-$ 3)  $H_2PO_4^-$ 4)  $SO_4^{-2}$ 

C5H11

Ans: 4



18. Hydrogen ion concentration of an aqueous solution is 1×10<sup>-4</sup> M. The solution is diluted with equal volume of water. Hydroxyl ion concentration of the resultant solution in mol dm<sup>-3</sup> is H C 1) 1 ×10-6 2) 1 ×10<sup>-8</sup> 3) 0.5 ×10<sup>-10</sup> CoH 4) 2 ×10-10


 $1 \times 10^{-4}$ 

2

#### Ans: 4 $2 \times 10^{-10}$ Solution: [H<sup>+</sup>] after dilution = $\frac{13}{-10}$





H<sub>3</sub>C

**CHEMISTRY** 

#### 19. The pH of HCl is 5. If 1 ml of this solution is diluted to 1000 ml, the pH of the resulting solution is 1) 8 2) -8 3) between 6-74) between 7 - 8



Ans: 3 between 6 – 7 Solution : pH of the given HCl is 5  $[H^{+}] = 10^{-5} M = [HCI]$ **Molarity of the diluted HCI**  $M_1V_1 = M_2V_2$  $1 \times 10^{-5} = M_2 \times 1000$  $\frac{10^{-5}}{1000} = 10^{-8} M_{\odot}$ H<sub>3</sub>C  $M_{2} =$ 



[H<sup>+</sup>] in such a solution = 10<sup>-8</sup> from HCI + 10<sup>-7</sup> from water  $= 10^{-8} + 10 \times 10^{-8} = 11 \times 10^{-8} = 1.1 \times 10^{-7}$ pH of the solution =  $-\log_{10}1.1 \times 10^{-7}$  $= 7 - \log 1.1$ H<sub>3</sub>C = 7 - 0.0414 = 6.96C5H11



20. What is the pH of the solution obtained by mixing 250 cm<sup>3</sup> of a solution of pH = 3 and 750cm<sup>3</sup> of the solution with pH = 5

1) 4.5 2) 4 3) 3.3 4) 3.6



## Ans: 4 3.6 Solution $pH = 3 [H^+] = 10^{-3} M$ pH = 5 [H<sup>+</sup>] = 10<sup>-5</sup> M CH3 When the two solutions are mixed in the said ratio $\left[\mathrm{H}^{+}\right] = \frac{250 \times 10^{-3} + 750 \times 10^{-5}}{1000}$ H<sub>3</sub>C C5H1



H<sub>3</sub>C

**CHEMISTRY** 

# $= \frac{25000 \times 10^{-5} + 750 \times 10^{-5}}{1000}$ $= \frac{25750 \times 10^{-5}}{1000} = 2.575 \times 10^{-4}$

 $pH = -\log_{10}2.575 \times 10^{-4} = 4 - \log 2.575 \approx 3.6$ 



21. pKa of two acids A and B are 4 and 5. The strength of these two acids are related as 1) Strength of A : Strength of B = 4 : 5 2) Acid A is 3.3 times stronger than HC acid B C5H11



# 3) Acid B is 10 times stronger than acid A 4) The strength of two acids cannot be compared H<sub>3</sub>C







22. A buffer solution is prepared by mixing 10 ml of 0.1 M acetic acid and 20 ml of 0.5 M sodium acetate and then diluted to 100 ml with distilled water. If the pKa of acetic acid is 4.76 what is the pH of the buffer solution prepared? C5H11 1) 4.76 2) 3.76 3) 5.76 4) 5.21



Ans: 3 5.76 Solution: [Acid] in the solution  $M_1V_1 = M_2V_2$ 

 $0.1 \times 10 = M_2 \times 100$ 

 $M_2 = \frac{10 \times 0.1}{100} = 0.01M$ 

 $^{C_{6}H_{1}}M_{2} = \frac{0.5 \times 20}{100} = 0.1M$ 

[Salt] in the solution  $M_1V_1 = M_2V_2$ 

 $0.5 \times 20 = M_2 \times 100$ 



 $pH = pKa + log \frac{[salt]}{[Acid]}$ 

 $= 4.76 + \log \frac{0.1}{0.01} = 4.76 + \log 10 = 5.76$ OH H<sub>3</sub>C C5H11



H<sub>3</sub>C

CHEMISTRY

23. A buffer solution prepared by mixing 0.1 M  $NH_4OH$  and 0.1 M  $NH_4Cl$  in equal volumes has a pH of 9.25.  $pK_b$ of  $NH_4OH$  is

1) 9.25 2) 4.75 3) 3.75 4) 8.25



Ans: 2 4.75 **Solution For a basic buffer**  $pOH = pK_b + log \frac{[salt]}{[Base]}$ pH = 9.25 ∴ pOH = 14 – 9.25 = 4.75  $\log \frac{[\text{salt}]}{[\text{Base}]} = \log 1 = 0$ H<sub>3</sub>C ∴ 4.75 = pK



24. What happens to the pH of a buffer solution of a mixture of NH<sub>4</sub>Cl and **NH**₄**OH** when a further quantity of **NH**<sub>4</sub>Cl is added 1) Decrease 2) Increases 3) Remains unchanged 4) May increase or decrease



H<sub>3</sub>C

CHEMISTRY

## Ans: 1 Decrease For a basic buffer

 $pOH = pK_b + log \frac{[salt]}{[Base]}$ 

If only [Salt] is increased, pOH increases and pH decreases



H<sub>3</sub>C

**CHEMISTRY** 

# 25. NH<sub>4</sub>OH is a weak base but it becomes still weaker in the aqueous solution of

1) 0.1 M HCl 2) 0.1 M  $NH_4Cl$ 3) 0.1 M  $H_2SO_4$  4) 0.1 M  $CH_3COOH$ 



## Ans: 2 0.1 M NH<sub>4</sub>Cl Due to common ion effect NH<sub>4</sub>Cl suppresses the degree of dissociation of NH<sub>4</sub>OH making it a still weaker base $NH_4OH \implies NH_4^+ + OH^ \rightarrow NH_4^+ + CI^-$ **NH**₄CI C5H11 HaC





26. The precipitate of  $CaF_2$  (K<sub>sp</sub> = 1.7×10<sup>-10</sup>) is obtained when equal volumes of the following are mixed 1) 10<sup>-4</sup> M Ca<sup>+2</sup> + 10<sup>-4</sup> M F<sup>-</sup> 2) 10<sup>-2</sup> M Ca<sup>+2</sup> + 10<sup>-3</sup> M F<sup>-</sup> 3) 10<sup>-5</sup> M Ca<sup>+2</sup> + 10<sup>-5</sup> M F<sup>-</sup> 4) 10<sup>-3</sup> M Ca<sup>+2</sup> + 10<sup>-5</sup> M F<sup>-</sup>



# Ans: 2 $10^{-2}$ M $Ca^{+2} + 10^{-3}$ M F-For precipitate to take place Ksp < I.P I.P $[Ca^{+2}][F^{-}]^{2} = \left(\frac{10^{-2} \times v}{2v}\right) \left(\frac{10^{-5} \times v}{2v}\right)^{2}$

=  $1.25 \times 10^{-9}$ Which is greater than  $K_{sp}$  of  $CaF_2(1.7 \times 10^{-10})$ Hence precipitation takes place.



**27. The solution of CuSO<sub>4</sub> in which** copper plate is immersed, is diluted to 10 times, the reduction electrode potential 1) Increased by 0.030V 2) Decreased by 0.030V H<sub>3</sub>C 3) Increased by 0.059V 4) Decreased by 0.059V



#### Ans: 2 Decreased by 0.030V

**Solution:**  $E_{Cu} = E_{Cu}^{\circ} + \frac{0.059}{2} \log[Cu^{+2}]$ If  $[Cu^{+2}] = \frac{1}{10}$ 

 $E_{Cu} = E_{Cu}^{o} + \frac{0.059}{2} \log \frac{1}{10}$ 

= E°<sub>Cu</sub> - 0.030V



28. The hydrogen electrode is dipped in a solution of pH 3 at 25°C. The potential would be 1) 0.087V 2) 0.177V 3) -0.177V 4) 0.059V H<sub>3</sub>C



#### Ans: 3 -0.177V

# $E_{H_2} = -0.059 \times pH = -0.059 \times 3 = -0.177V$





# 29. What is the EMF of the cell? $Zn_{(s)}/Zn^{2+}(0.1M) || Sn^{2+} (0.001M)/Sn_{(s)}$ Given E° Sn<sup>2+</sup>/ Sn = - 0.14V and E° Zn<sup>2+</sup>/Zn = -0.76V

1) 0.62V 2) 0.56V 3) 1.12V 4) 0.31V



# Ans: 2 0.56V Solution: EMF = $E_{right} - E_{left}$ = $E_{Sn^{2+}/Sn} - E_{Zn^{2+}/Zn}$

# Applying Nernst equation to each electrode

 $EMF = \left(E^{o}_{Sn^{2+}/Sn} + \frac{0.059}{2}\log_{10}\left[Sn^{2+}\right]\right) - \left(E^{o}_{Zn^{2+}/Zn} + \frac{0.059}{2}\log_{10}\left[Zn^{2+}\right]\right)$ 



 $= E^{o}_{Sn^{2+}/Sn} - E^{o}_{Zn^{+2}/Zn} + \frac{0.059}{2} \log_{10} \frac{[Sn^{2+}]}{[Zn^{2+}]}$ 

# $= -0.14 - (-0.76) + \frac{0.059}{2} \log_{10} \frac{0.001}{0.1}$

 $= +0.62 + \frac{0.059}{2} \log 10^{-2}$ = +0.62 - 0.059 = 0.56V



# 30. The equilibrium constant for the reaction $Cu + 2Ag^{+}(aq) \longrightarrow Cu^{2+}(aq) + 2Ag;$ $E^{\circ} = 0.46V$ at 298K is

OH

1) 2.0×10<sup>10</sup> 3) 4.0 ×10<sup>15</sup>

2) 4.0 ×10<sup>10</sup> 4) 2.4 ×10<sup>10</sup>



Ans: 3 4.0 ×10<sup>15</sup>  $E^o = \frac{0.059}{\log Kc}$ n  $0.46 = \frac{0.059}{2} \log Kc$  $\log Kc = \frac{0.46 \times 2}{0.059} = 15.59$ H<sub>3</sub>C Taking the antilog  $Kc = 3.9 \times 10^{15}$ 



H<sub>3</sub>C

CHEMISTRY

**31. The standard reduction electrode** potentials of three metals A, B and C are +0.5V, -3.0V and -1.2V respectively. The reducing power of these metals are 1) B > C > A2) A > B > C 3) C > B > A 4) A > C > BC5H11



#### Ans: 1 B > C > A

#### Smaller the SRP more is the reducing

C5H11

OH

### power

H<sub>3</sub>C



# 32. Which one of the following solutions when stirred with a copper spoon turns blue?

OH

1) Al(NO<sub>3</sub>)<sub>3</sub> 3) LiNO<sub>3</sub>

2) AgNO<sub>3</sub> 4) Zn(NO<sub>3</sub>)<sub>2</sub>





C5H11

**Ans: 2** AgNO<sub>3</sub> - 3.04V Li/Li<sup>+</sup> **AI/AI**<sup>3+</sup> - 1.66V Zn/Zn<sup>2+</sup> -0.76V Cu/Cu<sup>2+</sup> + 0.34V Ag/Ag<sup>+</sup> + 0.8V

H<sub>3</sub>C



**Only Ag is below copper in electrochemical** series but AI, Li & Zn are above copper. **Copper can displace only Ag from AgNO<sub>3</sub>** solution but not other metals AI, Li and Zn from their salt solution  $Cu + 2AgNO_3$  $\rightarrow$  Cu(NO<sub>3</sub>)<sub>2</sub>+2Ag C6H Blue



34. One molar aqueous solution of each  $Cu(NO_3)_2$ , AgNO<sub>3</sub>, Hg(NO<sub>3</sub>)<sub>2</sub> and Mg(NO<sub>3</sub>)<sub>2</sub> is being electrolysed by using inert electrodes. The values of standard electrode potentials are  $Ag/Ag^{+} = +0.80V; Hg/Hg^{2+} = +0.79V,$ Cu/Cu<sup>2+</sup> =+0.34V and Mg/Mg<sup>2+</sup> = -2.37V


CHEMISTRY

With increasing voltage, the sequence of
deposition of metals on the cathode will be
1) Ag, Hg, Cu and Mg 2) Mg, Cu, Hg and Ag
3) Ag, Hg and Cu 4) Cu Hg and Ag

C5H11

OH



Ans: 3 Ag Hg and Cu **Solution: Electrolysis of aqueous** solution of a metal salt above certain concentration will liberate metal at cathode if its reduction potential is more than - 0.83 the reduction potential water C5H11



Mg metal can not be deposited by electrolysing aqueous solution of  $Mg(NO_3)_2$ lons with higher values of SRP is discharged first at the cathode Ag; Hg; Cu H<sub>3</sub>C **Decreasing order of deposition** 



# 35. Which of the following salts when dissolved in water gives a pH of greater than 7?

C5H11

1)  $NH_4CI$ 3)  $CH_3COONH_4$ 

H<sub>3</sub>C

2) CH<sub>3</sub>COONa
 4) NaCI



Ans:2  $CH_3COONa$ 1) Salt of Strong acid & weak base  $NH_4CI + H_2O \implies NH_4OH + HCI$ weak base St acid Solution is acidicpH < 7

2) Salt of weak acid and strong base  $CH_3COONa + H_2O \Longrightarrow CH_3COOH + NaOH$ wk acid st base Soln is basic pH > 7



CHEMISTRY

3) Salt of weak acid and wk base  $CH_3COONH_4+H_2O \rightleftharpoons CH_3COOH+NH_4OH$ wk acid wk base Since Ka of  $CH_3COOH = Kb$  of  $NH_4OH$  the soln is neutral pH = 7

4) Salts of st.acid & st.base like NaCl, KNO<sub>3</sub> do not undergo hydrolysis and their solutions are neutral with pH = 7



36.Corrosion of iron is essentially an electrochemical phenomenon where the cell reactions are 1) Fe is oxidised to Fe<sup>+3</sup> and H<sub>2</sub>O is reduced to  $O_2^{-2}$ 2) Fe is oxidised toFe<sup>2+</sup> and dissolved oxygen in water is reduced to OH-3) Fe is oxidised to Fe<sup>2+</sup> and H<sub>2</sub>O is reduced to  $O_2^{-1}$ 4) Fe is oxidised to Fe<sup>+2</sup> and H<sub>2</sub>O is reduced to O<sub>2</sub>



### Ans:2 Solution $\xrightarrow{\text{oxdn}} \mathbf{Fe^{+2} + 2e}$ At anode Fe At cathode H<sub>2</sub>O+ $\frac{1}{2}$ O<sub>2</sub>+2 $e \longrightarrow 2OH^{-1}$ $Fe^{2+}+2OH^{-} \longrightarrow Fe(OH)_{2}$ $2Fe(OH)_2 + H_2O + \frac{1}{2}O_2 \longrightarrow 2Fe(OH)_3$ C5H11



H<sub>3</sub>C

CHEMISTRY

# $2Fe(OH)_{3} \longrightarrow Fe_{2}O_{3} + 3H_{2}O$ $Fe_{2}O_{3} + xH_{2}O \longrightarrow Fe_{2}O_{3} \cdot xH_{2}O$ Hydrated ferric oxide (Rust)

C5H11

OH



#### **37. The cell reaction for the given cell is** spontaneous if $Pt(H_2=P_1)/H+(1M) || H^+(1M) / Pt(H_2=P_2)$ CH3 1) $P_1 > P_2$ 2) $P_1 < P_2$ OH 3) $P_1 = P_2$ 4) $P_1 = 1$ atm H<sub>3</sub>C C5H11



## **Reduction reaction taking place at the** right side electrode is $2H^+ + 2e \longrightarrow H_2$ CH3 $E_{H_2(R)} = E_{H_2}^o + \frac{0.059}{2} \log_{10} \frac{\left[H^+\right]^2 1M}{H_2(P_2 atm)}$ Similarly $E_{H_2(L)} = E_{H_2}^o + \frac{0.059}{2} \log_{10} \frac{\left[H^+\right]^2 1M}{H_2(P_1 a t m)}$ HaC



**EMF of the cell = E**  $_{right} - E$   $_{left}$  $= \frac{0.059}{2} \log_{10} \frac{\left[H^{+}\right]^{2} 1M}{\left[H_{2}P_{2} \ atm\right]} \times \frac{\left[H_{2}P_{1} \ atm\right]}{\left[H^{+}\right]^{2} 1M}$  $=\frac{0.059}{2}\log_{10}\frac{P_1}{P_2}$ For a cell reaction to be spontaneous  $\Delta G^o = -ve$  or  $\mathbf{E}_{cell}$  is positive which is

possible only when  $P_1 > P_2$ 



38. The standard reduction potentials of Cu<sup>2+</sup>/ Cu and Cu<sup>2+</sup>/Cu<sup>+</sup> are 0.337 and 0.153v respectively. The standard electrode potential of Cu<sup>+</sup>/ Cu half cell is 1) 0.184v 2) 0.827v 3) 0.521v 4) 0.490v



Ans: 3 0.521V  $Cu^{2+}+2 \ e \longrightarrow Cu; E^{\circ} = 0.337V$  $\therefore \Delta G^{\circ} = -2 \times 0.337 \times F ----(1)$  $Cu^{2+} + e \longrightarrow Cu^+; E^\circ = 0.153V$  $\therefore \Delta G^{\circ} = -1 \times 0.153 \times F --- (2)$ Eqn(1) - (2) $Cu^+ + e \longrightarrow Cu \qquad \therefore \Delta G^\circ = -0.521F$ 



H<sub>3</sub>C

CHEMISTRY

C5H11

 $-\Delta G^{\circ} = nFE^{\circ}$  $0.521F = 1 \times F \times E$  $\therefore E = 0.521V$ 

OH



39.  $K_{sp}$  of CuS, Ag<sub>2</sub>S and HgS are 10<sup>-31</sup>, 10-44 and 10-54 respectively. Select the correct order for their solubility in water 1)  $Ag_2S > HgS > CuS$ 2) HgS > CuS >  $Ag_2S$ 3) HgS >  $Ag_2S$  > CuS 4)  $Ag_2S > CuS > AgS$ 





Ans: 4  $Ag_2S > CuS > AgS$ **For HgS & CuS**  $S = \sqrt{Ks}$ For HgS;  $S = \sqrt{Ks} = \sqrt{10^{-54}} = 10^{-27} \text{ M}$ **CuS**  $S = \sqrt{Ks} = \sqrt{10^{-31}} = \sqrt{10 \times 10^{-32}} = 3.3 \times 10^{-16} \text{M}$ **For Ag<sub>2</sub>S**  $S = 3\sqrt{\frac{Ks}{4}} = 3\sqrt{10^{-44}} = 3\sqrt{10 \times 10^{-45}}$ ≈ 2.15 ×10<sup>-15</sup> HaC



40. The pH at which Mg(OH)<sub>2</sub> begins to precipitate from a solution containing 0.10M Mg<sup>+2</sup> ions  $(K_{sp} \text{ of Mg(OH)}_2 = 1 \times 10^{-11})$  is 1) 5 3) 4 4) 10 2)9 C5H11 H<sub>3</sub>C



Ans: 2

CHEMISTRY

**Solution: When Mg(OH)**<sub>2</sub> starts precipitation then I.P [Mg<sup>2+</sup>][OH <sup>-</sup>] <sup>2</sup> > Ksp of Mg(OH)<sub>2</sub>  $(0.1)[OH -]^2 > 1 \times 10^{-11}$  $\left[OH^{-}\right]^{2} > \frac{10^{-11}}{0.1} = 10^{-10}$ [OH-] > 10<sup>-5</sup> C5H11

9



# Taking the -log10 of both sides pOH > 5 14- pOH > 14 – 5 pH > 9 OH H<sub>3</sub>C C5H11 H<sub>3</sub>C