KEA -VIKASANA PROGRAMME

CHEMISTRY

By
Ravishankar \mathbf{N}

d-block elements

-Electronic configuration-3d series
-Periodic properties - variation of atomic
size, ionic size and electronegativity.

- Variable oxidation state.
-Formation of colored compounds.
-Magnetic property.

$\mathbf{K E}_{\mathbf{A}}$

Electronic
Configuration and properties

Formation of colored compound

Calculation of magnetic moment

ions or atoms of d -block

paramagnetic character

Diamagnetic character

Which one of the following is NOT TRUE about transition metals?
ANSWER transitional elements are predominantly metallic
(b) In aqueous solution many of their simple ions are coloured
(c) Mnct of tho trancitional olomontc chow Show variable oxidation state or valence
(d) Most of the transitional elements show only one oxidation state

An element in +3 oxidation state has the electronic configuration [Ar]3d ${ }^{3}$. It's atomic number is
a ANSWER
b) 23
c) 22
d) 21

$$
\text { Ar- } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}+3 d^{3}=18+3+3=24
$$

Which of the following compound is

 NOT colored ?a) co ANSWER Iphate
b) Zinc(II)Chloride
c) Chromium (III) sulphate
d) Manganese(II) oxalate

Hence no d-d transition is possible in Zn (II) ion

Cu (II)	[Ar] 3d ${ }^{9}$
Zn(II)	[Ar] 3d ${ }^{10}$
Cr(III)	[Ar] 3d ${ }^{3}$
Mn (II)	[Ar] 3d ${ }^{5}$

The configuration of transition element, which shows highest magnetic moment
is
a) $3 d^{8}$
k ANSWER
c) $3 d^{7}$
d) $3 d^{9}$
ion with higher no. of unpaired electrons exhibits maximum magnetic moment

Which of the following is diamagnetic?

a) Fe^{2+}
b) Cr^{3+}

ANSWER
d) Cu^{2+}

ELECTRONIC CONFIGURATION OF IRON IS

 [Ar] 3d ${ }^{6} 4 s^{2}$ELECTRONIC CONFIGURATION OF Fe ${ }^{2+}$ IS [Arl2d6 ANSWER

CONTAINS 4 UNPAIRED ELECTRONS.
$\mathbf{\mu}=\mathbf{V} \mathbf{n}(\mathbf{n}+2)$
V24 $=4.89 \mathrm{BM}$

EC

Un paired electrons

$$
\begin{array}{lll}
\mathrm{Cu}^{2+} & {[\mathrm{Ar}] 3 \mathrm{~d}^{9} 4 \mathrm{~s}^{0}} & 1 \\
\mathbf{V}^{2+} & {[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0}} & \mathbf{3} \\
\mathrm{Cr}^{2+} & {[\mathrm{Ar}] 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{0}} & \mathbf{4} \\
\mathrm{Mn} & \text { ANSWER } & \text { Ar] 3d5} 4 \mathrm{~s}^{0}
\end{array}
$$

With increase in no. of unpaired electrons paramagnetic property increases.

ELEMENT OS ELECTRONIC CONFIGURATION

NO. OF
UNPAIRED
d - \mathbf{e}^{-}
$\mathrm{Ti} \mathrm{Cl}_{4} \quad+4 \quad[\mathrm{Ar}] 3 \mathrm{~d}^{\mathbf{2}} \mathbf{4} \mathbf{s}^{\mathbf{2}}$
[Ar] 3d ${ }^{0} 4 s^{0}$
[Ar] 3d ${ }^{3} 4 s^{2}$
[Ar] 3d ${ }^{2} 4 s^{0}$
[Ar] 3d $d^{6} 4 s^{2}$
[Ar] 3d ${ }^{6} 4 s^{0}$
4
[Ar] 3d ${ }^{10} 4 s^{2}$
0
$[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{0}$

Which statement about d-block elements is true as you move from left to right in the periodic table?

ELEMENT ELECTRONIC CONFIGURATION

NO. OF UNPAIRED ELECTRONS

$$
\begin{array}{cl}
\mathrm{Ti} & {[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}} \\
\mathrm{~V} & {[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}}
\end{array}
$$

2

$$
3
$$

[Ar] 3d $d^{5} 4 s^{1}$
ANSWER

$$
[A r] 3 d^{7} 4 s^{2}
$$

6

3

Coordination compounds
-Molecular compounds-complexes and double salts
-Ligands and its classification
-Central metal atom , oxidation state, coordination number

- Ionisation and coordination sphere
-Werner's theory
-Sidgwick theory and EAN
-VBT and structure of complexes
-Isomerism
-IUPAC nomenclature.
$\mathbf{K E}_{\mathbf{A}}$

IUPAC

nomenclature
CN and OS of central metal atom

Reaction data Identification of formula
magnetic character and Calculation of magnetic moment
$\mathbf{K}_{\mathbf{A}}$
Which of the following pair contains complex salt and double salt respectively?
a) $\mathrm{FeSO}_{4}, \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
b) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3} \text { ANSWER }\right)_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right.$
c) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{SO}_{4} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuSO}_{4}$
$K_{\mathbf{A}}$
In the following reaction
$\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})$,
Cu^{2+} is acting as $\mathrm{a}(\mathrm{n})$
a) oxidizing agent
b) ANSWER
c) solvent
d) ligand

CHEMISTRY

$\mu=2.82$ BM means vanadium has two unpaired electrons with an oxidation state of +3 [Ar] 3d²
let the charge on the complex ion be X Then $X=1(+3)+(-2) 3=+3-6=-3$ To balan $\mathrm{K}_{3}\left[\mathrm{~V}(\mathrm{OX})_{3}\right]$ put $3 \mathrm{~K}^{+}$ions Hence $\boldsymbol{n}=3$

$$
K_{3}\left[\mathrm{~V}(\mathrm{OX})_{3}\right]
$$

$\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$

Oxidation state of cobalt in this complex is +3

ANSWER configuration of
to is [AH] 3d ${ }^{7} 4 \mathrm{~s}^{2}$

Electronic configuration of Co ${ }^{3+}$ [Ar] 3d ${ }^{6}$

$\left[\mathrm{Cr}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}_{3}$

$\left[\mathrm{Cr}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+3}+3 \mathrm{Cl}^{-}$

ANSWER

$$
x+0(2)+(0)(2)=+3
$$

$$
x=+3
$$

$\left[\mathrm{Cu}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}_{2}$
 $\left[\mathrm{Cu}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}_{2}$

$\left[\mathrm{Cu}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+2}+2 \mathrm{Cl}^{-}$
$\mathrm{X}+0(1)+(0)(2)=+2$
(ethylene diammine bidentate ligand + two monodentate ligands)

$$
x=+2
$$

ANSWER

$$
C O=2+2=4
$$

CHEMISTRY

$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}_{3} \rightarrow\left[\mathrm{Co} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+2}+2 \mathrm{Cl}^{-}$

$$
\begin{aligned}
& \left(3 \text { moles }^{2}\right) \\
& 2 \mathrm{AgNO}_{3}
\end{aligned}
$$

$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}_{3}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}$
(2 moles)

CHEMISTRY
 The IUPAC name of $\left[\mathrm{CoCl}\left(\mathrm{NO}_{2}\right)(\mathrm{en})_{2}\right] \mathrm{Cl}$ is

a)Chloronitrobis(othulanodiamine) cobaltic(III) chloride
b)chloronitrobis(ANSWER ne)cobalt(II) chloride
c)chlorobis(ethylenediamine)nitrocobalt(III) chloride d)bis(ethylenediamine)Chloronitrocobalt (III) chloride

The formula of
potassium trioxalatoaluminate(III) is
a) ANSWER $)_{3}$]
b) $\mathrm{K}_{2}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
c) $\mathrm{Al}\left[\mathrm{K}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
d) $\mathrm{K}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

CHEMISTRY

pentamminesulphatocobalt(III) bromide

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}
$$

pentamminechlorocobalt(III) sulphate
ANSWER $\left.\xrightarrow{R} \operatorname{Cl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$

$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

CENTRAL METAL ION IS Fe OS IS +2 ELECTRONIC CONFIGURATION OF IRON IS
[Ar] 3d ${ }^{6} 4 \mathrm{~s}^{2}$
ELECTRONIC CONFIGURATION OF Fe ${ }^{2+}$ IS [Ar] 3d ${ }^{6}$

ANSWER

CONTAINS 4 UNPAIRED ELECTRONS.
$\boldsymbol{\mu}=\operatorname{Vn}(\mathrm{n}+2)=\mathrm{V} 24=4.89 \mathrm{BM}$
$\mathrm{PtCl}_{2} 4 \mathrm{NH}_{3}+\mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}$
Hence the formula of the complex is $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$
Sec. valency $=$ coordination number $=4$ ANSWER
$\mathrm{CoCl}_{3} 4 \mathrm{NH}_{3}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}$
Hence the formula of the complex is $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$
Sec. valency = coordination number = 6

CHEMISTRY

$\left[\mathrm{Co} \mathrm{SO}_{4}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Br}$ (0.02 mole)/2L $=0.01 \mathrm{~mol} / \mathrm{L}$

1 litre of above

I ANSWER cess $\mathrm{AgNO}_{3} \rightarrow 0.01 \mathrm{~mol} / \mathrm{L}$ of $\operatorname{AgBr}(\mathrm{Y})$
$\left[\mathrm{Co} \mathrm{Br}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$ (0.02 mole)/2L $=0.01 \mathrm{~mol} / \mathrm{L}$

1 litre of above mixture +excess BaCl_{2} $\rightarrow 0.01 \mathrm{~mol} / \mathrm{L}$ of BaSO_{4} (Z)
$\mathbf{K E}_{\mathbf{A}}$
In the process of extraction of gold,
Roasted gold ore $+\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{O}_{2}}[\mathrm{X}]+\mathrm{OH}^{-}$

$$
[\mathbf{X}]+\mathbf{Z n} \longrightarrow[\mathbf{Y}]+\mathbf{A u}
$$

Identify the complexes $[X]$ and $[Y]$

ANSWER

a) $\mathrm{X}=\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$and $\mathrm{Y}=\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
b) $X=\left[\mathrm{Au}(\mathrm{CN})_{4}\right]^{3-}$ and $Y=\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
c) $X=\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$and $\mathrm{Y}=\left[\mathrm{Zn}(\mathrm{CN})_{6}\right]^{4-}$
d) $X=\left[\mathrm{Au}(\mathrm{CN})_{4}\right]^{-}$and $\mathrm{Y}=\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
$\mathbf{K E}_{\mathbf{A}}$

Chemical bonding-II

-Formation of molecular orbital's by the LCAO in homo diatomic molecules $\mathrm{H}_{2}, \mathrm{Li}_{2}, \mathrm{O}_{2}, \mathrm{He}_{2}$.
-BMO and ABMO
-Bond order

- Energy level diagram
- Extend the concept to the formation of $\mathrm{H}_{2}{ }^{+}$,
$\mathrm{Li}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}, \mathrm{He}_{2}{ }^{+}$etc.

Antibonding electron pair, Highest occupied orbital

Calculation of magnetic moment and comparison
molecular
Bond order calculation and comparison of stability
Formation of MO from AO \uparrow magnetic character and comparison

To overlap, AO's must possess

1. Same symmetry,
2. Similar energy,
3. Close COntact. CHEMISTRY

Which one of the following combinations is NOT allowed (assume z-axis as inter nuclear axis)
a) $2 s$ and $2 s$
b) $2 p_{x}$ and $2 p_{x}$
c) 1 s and 1 s

ANSWER d $2 p_{y}$

CHEMISTRY

For a homonuclear diatomic molecule, the energy of $\sigma_{2 s}$ orbital is

Increasing order of energy of molecular orbital is

σ ANSWER $\sigma_{2 S} \quad \sigma^{*}{ }_{2 S} \quad \sigma_{2 P z}$

$$
\pi_{2 \mathrm{Px}}=\pi_{2 \mathrm{Py}} \quad \pi_{2 \mathrm{Px}}^{*}=\pi_{2 \mathrm{Py}}^{*}
$$

CHEMISTRY

Example for super oxide is KO_{2} and contains $\mathrm{O}_{2}{ }^{-}$ion.

Electronic configuration of O_{2} ion is
$\sigma_{1 s}{ }^{2} \sigma \sigma_{1 S}{ }^{2} \sigma_{2 s}{ }^{2} \sigma^{*}{ }_{2 S}{ }^{2} \sigma_{2 P z}{ }^{2} \pi_{2 P x}{ }^{2}=\pi_{2 P y}{ }^{2} \pi^{*}{ }_{2 P x}{ }^{2}=\pi^{*}{ }_{2 P y}{ }^{1}$
ANSWER
The Bond order
$=\mathrm{Nb}-\mathrm{Na} / 2=10-7 / 2=3 / 2=1.5$

The no. of anti bonding electron pairs in $\mathrm{O}_{2}{ }^{2-}$ according to molecular orbital theory is
Electronic configuration of $\mathrm{O}_{2}{ }^{2-}$ ion is

$$
\begin{aligned}
& \sigma_{1 s}{ }^{2} \sigma * \text { ANSWER } \sigma^{*}{ }_{2 S^{2}} \quad \sigma_{2 P z}{ }^{2} \\
& \pi_{2 \mathrm{Px}}{ }^{2}=\pi_{2 \mathrm{Py}}{ }^{2} \quad \pi^{*}{ }_{2 \mathrm{Px}}{ }^{2}=\pi^{*}{ }_{2 \mathrm{Py}}{ }^{2}
\end{aligned}
$$

How many unpaired electrons are there in $\mathrm{O}_{2}{ }^{2-}$ ion?

ANSWER

Electronic configuration of $\mathrm{O}_{2}{ }^{2-}$ ion is

$$
\begin{aligned}
& \sigma_{1 s}{ }^{2} \quad \sigma *_{1 s}{ }^{2} \quad \sigma_{2 s}{ }^{2} \quad \sigma^{*}{ }_{2 s}{ }^{2} \quad \sigma_{2 P z}{ }^{2} \\
& \pi_{2 \mathrm{Px}}{ }^{2}=\pi_{2 \mathrm{Py}}{ }^{2} \quad \pi_{2 \mathrm{Px}}{ }^{2}=\pi^{*}{ }_{2 \mathrm{Py}}{ }^{2} \\
& \text { no unpaired electrons }
\end{aligned}
$$

In the molecular orbital diagram for $\mathrm{O}_{2}{ }^{+}$ion the highest occupied orbital is

a) $\sigma_{2 s}{ }^{*}$
b) $\sigma_{2 \mathrm{Pz}}{ }^{*}$

ANSWER
d) $\pi_{2 \mathrm{px}}$

Electronic configuration of $\mathrm{O}_{\mathbf{2}}{ }^{+}$ion is

$\sigma_{1 s}{ }^{2} \quad \sigma^{*}{ }_{1 s}{ }^{2} \quad \sigma_{2 s}{ }^{2} \quad \sigma^{*}{ }_{2 s}{ }^{2} \quad \sigma_{2 P z}{ }^{2}$
$\pi_{2 \mathrm{P}}$ ANSWER $\pi^{*}{ }_{2 \mathrm{Px}}{ }^{1}=\pi^{*}{ }_{2 \mathrm{Py}}{ }^{0}$
Bond order $=10-5 / 2=2.5$
No. of unpaired electrons =1
Paramagnetic
Stability more than O_{2} due to higher bond order
$\mathrm{O}_{2}+\mathrm{e}-\mathrm{O}_{2}{ }^{-}$
Added electron goes to $\pi^{*}{ }^{20 v}$ molecular orbital
Bond order decreases from 2 to 1.5 but bond order is inversely related to bond length. Hence bond length increases.

ANSWER onfiguration of O_{2}^{-}

$$
\begin{aligned}
& \sigma_{1 S}{ }^{2} \sigma^{*}{ }_{1 s}{ }^{2} \sigma_{2 s}{ }^{2} \quad \sigma^{*}{ }_{2 S}{ }^{2} \quad \sigma_{2 P z}{ }^{2} \quad \pi_{2 P \mathrm{P}}{ }^{2}=\pi_{2 \mathrm{Py}}{ }^{2} \\
& \pi^{*}{ }_{2 P \mathrm{Px}}{ }^{2}=\pi^{*}{ }_{2 P y}{ }^{1} \\
& \text { Bond order }=10-7 / 2=1.5
\end{aligned}
$$

Which of the species is diamagnetic?
a) $\mathrm{O}_{2}{ }^{+}$species No. of unpaired
b) O_{2} electrons
c) O_{2}^{-}

1 (PARAMAGNETIC)
2 (PARAMAGNETIC)
d) $\mathrm{O}_{2}{ }^{2-}$

1 (PARAMAGNETIC)
$\mathrm{O}_{2}{ }^{2-}$
0 (DIAMAGNETIC)

The ascending order of number of unpaired electrons in $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}$and $\mathrm{O}_{2}{ }^{2-}$ is
a) $\mathrm{O}_{2}{ }^{2-}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}$
b) $\mathrm{O}_{2}{ }^{2}, \mathrm{O}_{2}{ }^{-}, \mathrm{O}_{2}$
c) $\mathrm{O}_{2}{ }^{-}, \mathrm{O}_{2}{ }^{2-}, \mathrm{O}_{2}$
d) $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}$

ion \quad No. of unpaired electrons

O_{2}	2
O_{2}^{-}	1
$\mathrm{O}_{2}{ }^{2-}$	0

ANSWER

CHEMISTRY

About the species $\mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{2-}, \mathrm{O}_{2}$ and $\mathrm{O}_{2}{ }^{-}$, which one of the following statements is CORRECT?

	\mathbf{N}_{b}	\mathbf{N}_{a}	$\mathbf{N}_{\mathrm{b}}-\mathbf{N}_{\mathrm{a}} / \mathbf{2}$
$\mathbf{O}_{\mathbf{2}}{ }^{+}$	10	ANSWER	2.5
$\mathbf{O}_{\mathbf{2}}$	10	6	2
$\mathbf{O}_{2}{ }^{-}$	10	7	1.5
$\mathbf{0}_{\mathbf{2}}{ }^{\mathbf{2 -}}$	10	8	1

According to MO theory, which of the following statements about the magnetic character and bond order is CORRECT regarding $\mathrm{O}_{2}{ }^{+}$

	$\mathrm{N}_{\text {b }}$	ANSWER	$\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}} / 2$
O^{+}	10	5	2.5
$\begin{aligned} & \sigma_{1 s^{2}} \quad \sigma *_{1 s^{2}} \quad \sigma_{2 s^{2}} \quad \sigma^{*}{ }_{2 S^{2}} \quad \sigma_{2 \mathrm{Pz}}{ }^{2} \\ & \pi_{2 \mathrm{Px}}{ }^{2}=\pi_{2 \mathrm{Py}}{ }^{2} \quad \pi_{2 \mathrm{Px}}{ }^{*}=\pi^{*}{ }_{2 \mathrm{Py}} \end{aligned}$			

$\sigma_{1 S}{ }^{2} \quad \sigma *_{1 S}{ }^{2} \quad \sigma_{2 S}{ }^{2} \quad \sigma *{ }_{2 s}{ }^{2} \quad \sigma_{2 \mathrm{Pz}}{ }^{2}$ $\pi_{2 \mathrm{Px}}{ }^{2}=\pi_{2 \mathrm{Py}}{ }^{2} \quad \pi^{*}{ }_{2 \mathrm{Px}}{ }^{1}=\pi^{*}{ }_{2 \mathrm{Py}}{ }^{1}$

(For oxygen with obeying Hund's rule)
$\sigma_{1 s}{ }^{2} \quad \sigma *{ }_{1 S^{2}} \quad \sigma_{2 S^{2}} \quad \sigma *{ }_{2 S^{2}} \quad \sigma_{2 \mathrm{Pz}}{ }^{2}$
$\pi_{2 \mathrm{Px}}{ }^{2}=\pi_{2 \mathrm{Py}}{ }^{2} \quad \pi^{*}{ }_{2 \mathrm{Px}}{ }^{2}=\pi^{*}{ }_{2 \mathrm{Py}}{ }^{0}$
(For oxygen without obeying Hund's rule)
ANSWER d electrons- diamagnetic But no. of e- in antibonding MO remains same hence bond order does not changes.(BO-2)

CHEMISTRY
Which of the following have been arranged in increasing order of bond order as well as bond dissociation energy?

	\mathbf{N}_{b}	\mathbf{N}_{a}	$\mathbf{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}} / \mathbf{2}$
ANSWER	$\mathbf{0}$	5	2.5
\mathbf{O}_{2}	10	6	2
$\mathbf{O}_{2}{ }^{-}$	10	7	1.5
$\mathbf{O}_{\mathbf{2}}{ }^{\mathbf{2 -}}$	10	8	1

Number of moles of ions present in a solution of 1 molar pottassium ferrocyanide is
a) 2
b) 3

Potassium Ferrocyanide is $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

$$
\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow 4 \mathrm{~K}^{+}+1\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}
$$

c) 4

ANSWER

According to IUPAC nomenclature

 sodium nitroprusside is named asa) soc
b) sod
$\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$
c) sodium pe ANSWER rosyl ferrate (II)
d)sodium pentacyanonitrosylferrate (III)

Which of the following is TRUE ?
a)bond order $\alpha \frac{1}{\text { bond length }}$ α bond energy
b) bond order α 1 bond energy
c) bond order α
$\frac{1}{\text { bond energy }}$ α bond length

Werner's theory DOES NOT explain
a) sec. Valency of metal atom
b)ionisable and non ionisable valency
c) directional nature of sec. Valency

ANSWER ive atomic number

