$\mathbf{K}_{\mathbf{A}}$

Stoichiometry

CHEMISTRY

1gram molecular mass
6.022×10^{23} molecules

MOLE

1 gram atomic mass 6.022×10^{23} atoms

Equivalent mass of an element	$=$	$\frac{\text { Atomic mass }}{\text { valency }}$
Equivalent mass of acids or bases	$=$	Molecular mass Basicity or acidity
Equivalent mass of a salt	$=$	Total charge on cation or anion
Equivalent mass of reducing or oxidising agent	Molecular mass Change in oxidation number	

(1) 10 moles of $\mathrm{H}_{2} \mathrm{~S}$ is completely reacted with SO_{2} to form sulphur and water. Number of moles of sulphur atom obtained is
(a) 10
(b) 5
(c) 15
(d) 50

CHEMISTRY
working

Write balanced equation

$$
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \breve{3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}, ~}
$$

Mole

Therefore 10 moles of $\mathrm{H}_{2} \mathrm{~S}$ reacts with 5 moles of SO_{2} gives rise to 15 moles of sulphur atoms
Therefore answer (c) 15
(2) How many H^{+}ions are present in one ml of water at $25^{\circ} \mathrm{C}$
(a) 6.022×10^{13}
(b) 6.022×10^{7}
(c) 6.022×10^{23}
(d) 6.022×10^{10}

CHEMISTRY

working

One litre of $\mathrm{H}_{2} \mathrm{O}$ has H^{+}ions $=10^{-7}$ moles

$$
\begin{aligned}
= & 10^{-7} \times 6.022 \times 10^{23} \text { ions } \\
1 \mathrm{mI}=\quad & 10^{-7} \times 6.022 \times 10^{23} \times 10^{-3} \\
= & \text { (a) } 6.022 \times 10^{13}
\end{aligned}
$$

Therefore answer (a) 6.022×10^{13}
(3) Which of the following contains maximum number of Nitrogen atoms

(a) $22.4 \mathrm{~L} \mathrm{~N}_{2}$ gas at STP
(b) 500 ml of $2.0 \mathrm{M} \mathrm{NH}_{3}$
(c) $1.00 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}$
(d) $6.02 \times 10^{23} \mathrm{NH}_{4} \mathrm{Cl}$

CHEMISTRY

working

(a) $22.4 \mathrm{~L}=1 \mathrm{~mol}$ of N_{2} gas $=\mathbf{2} \mathrm{mol}$ Nitrogen atom (b) 500 ml of $2.0 \mathrm{M} \mathrm{NH}_{3}=1000 \mathrm{ml}$ of $1 \mathrm{M} \mathrm{NH}_{3}=1 \mathrm{~mol}$ of Nitrogen atom
(c) $1.00 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}$ is one mol of Nitrogen atom (d) $6.02 \times 10^{23} \mathrm{NH}_{4} \mathrm{Cl}$ is nothing but one mol
(4) An alloy of iron (55.8\%), nickel (44\%) \& manganese (0.2%) has a density of $8.17 \mathrm{~g} / \mathrm{c} . \mathrm{c}$. Number of moles of iron present in a block of alloy measuring $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ are (at . mass of $\mathrm{Fe}=55.8$)
(a) 163.4
(b) 81.7
(c) 8.17
(d) 16.34

CHEMISTRY

working

$d=m / V \quad$ mass of alloy $=d x V$

$$
\begin{aligned}
& =8.17 \times 10 \times 10 \times 10 \\
& =8170 \mathrm{~g}
\end{aligned}
$$

Mass of pure Fe present $=8170 \times 55.8 / 100$ moles of $\mathrm{Fe}=$ mass/atomic mass
8170×55.8
$100 \times 55.8=81.70$
Therefore the Ans (b) 81.7

CHEMISTRY
(5) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \xrightarrow{\text { burn }} \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ One mole of methane is ignited in 48 g of oxygen gas. The amount of unreacted gas is
$\begin{array}{ll}\text { (a) } 4 \mathrm{~g} \mathrm{CH}_{4} & \text { (b) } 8 \mathrm{~g} \text { Oxygen }\end{array}$
(c) $8 \mathrm{~g} \mathrm{CH}_{4}$
(d) 4 g Oxygen

CHEMISTRY

working

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $16 \mathrm{~g} \quad 64 \mathrm{~g} \quad 44 \mathrm{~g} \quad 18 \times 2 \mathrm{~g}$
$16 \quad 64$ Reacted methane is 12 g
? $\quad 48 \quad$ Unreacted is 4 g of methane

Therefore answer (a) $4 \mathrm{~g} \mathrm{CH}_{4}$

Note: Reagents consumed completely is called the limiting reagent.

CHEMISTRY
(6) A gaseous mixture contains oxygen and sulphur dioxide in equimolar proportion. Mass of $2.24 \mathrm{dm}^{3}$ of this mixture at STP is
(a) 3.2 g
(b) 4.8 g
(c) 6.4 g
(d) 9.6 g

working

Volume of $\mathrm{SO}_{2}=$ Volume of $\mathrm{O}_{2}=2.24 / 2=1.12 \mathrm{dm}^{3}$ Mass of $1.12 \mathrm{dm}^{3}$ of O_{2} at STP $32 \mathrm{~g} \square 22.4$
? $\quad 1.12=1.6 \mathrm{~g}$
Mass of $1.12 \mathrm{dm}^{3}$ of $\mathrm{SO}_{2} \quad 64 \quad 22.4$
Total mass $=1.6+3.2=4.8 \mathrm{~g}$
Therefore answer (b) 4.8 g
(7) For which one of the following eq. mass is equal to $1 / 6^{\text {th }}$ of molar mass
(a) AlCl_{3}
(b) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(c) FeSO_{4}
(d) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$

working

Substances given are salts
For salts = Molecular mass
eq. mass
Total charge on cation or anion For $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, the total charge on cation or anion is 6

Therefore answer (b) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(8) One mole of $\mathrm{H}_{3} \mathrm{PO}_{3}$ completely neutralized 80 g of NaOH . The basicity of the acid is
(a) 3
(b) 1
(c) 2
(d) 4

working

80 g of $\mathrm{NaOH} \equiv 2$ equivalents $\equiv 2$ equivalents of $\mathrm{H}_{3} \mathrm{PO}_{3}$
. . 1 mole of $\mathrm{H}_{3} \mathrm{PO}_{3} \equiv 2$ equivalents
$\therefore \mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic has $\mathbf{- 2} \mathbf{O H}$ groups per molecule
Therefore answer (c) 2
(9) If 10^{21} molecules are removed from 200 mg of CO_{2} then number of moles of CO_{2} left is
(a) 2.88×10^{-3}
(b) 28.8×10^{-3}
(c) 0.288×10^{-3}
(d) 1.66×10^{-2}

working

G.M.M of $\mathrm{CO}_{2}=44$
0.2 g of $\mathrm{CO}_{2}=0.2 / 44=0.0045 \mathrm{~mol}$

Number of molecules removed $=10^{21}$
$=10^{21} / 6.022 \times 10^{23}=0.001666 \mathrm{~mol}$
Number of moles left $=0.0045-0.00166$

$$
=0.00284 \text { moles }=2.88 \times 10^{-3}
$$

Therefore answer (a) 2.88×10^{-3}

CHEMISTRY
(10) 0.7 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ was dissolved in 100 ml of water and the volume of 20 ml of this solution required 19.8 ml of $\mathrm{N} / 10 \mathrm{HCl}$ for complete neutralisation. The value of x is

$$
\begin{array}{llll}
\text { (a) } 7 & \text { (b) } 53 & \text { (c) } 2 & \text { (d) } 5
\end{array}
$$

CHEMISTRY

working

$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{x}_{2} \mathrm{O}$ dissolved in $1000 \mathrm{ml}=0.7 \times 10=$ 7 g/L Normality equation $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$

\[

\]

Mass of the substance dissolved in litre $=\mathbf{N} \times$ Eq. Mass

$$
7=0.099 \times \frac{(106+18 x)}{2} \quad 18 x=\frac{7 \times 2}{0.099}-106=35.41
$$

$X=35.41 / 18=$ Approx 2
Therefore answer (c) 2
(11) Calcium carbonate reacts with aqueous HCl according to the reaction $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ The mass of CaCO_{3} required to react completely with 25 ml of 0.75 M HCl
(a) 1.875 g
(c) 1.00 g
(b) 0.9375 g
(d) 0.1875 g

working

No. of gram equivalent mass of $\mathrm{CaCO}_{3}=\mathrm{X} / 50$
(Since Eq mass of $\mathrm{CaCO}_{3}=50$)
No. of gram equivalent $=\frac{25 \times 0.75}{1000}=\frac{18.75}{1000}=0.01875$ mass of HCl 10001000
Since the substances react in the ratio of their Eq. masses equating $X / 50=0.01875$

$$
X=0.9375 \mathrm{~g}
$$

Therefore answer (b) 0.9375 g
(12) Concentrated aqueous sulphuric acid is 98% pure by mass. The density of the acid is $1.80 \mathrm{~g} / \mathrm{ml}$. The volume of this acid required to make one litre of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is
(a) 5.55 ml
(b) 11.10 ml
$\begin{array}{ll}\text { (c) } 16.65 \mathrm{ml} & \text { (d) } 22.20 \mathrm{ml}\end{array}$

CHEMISTRY

working

Density $=1.80 \mathrm{~g} / \mathrm{ml}$
$\Longrightarrow 1$ litre has $1800 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ (impure) $\frac{98}{100} \times 1800=1764 \mathrm{~g}$ (pure)
$\Longrightarrow 1$ litre has $1764 / 98$ moles $\mathrm{H}_{2} \mathrm{SO}_{4}=18 \mathrm{M}$
Dilution formula $\mathbf{M}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$

$$
18 \times V_{1}=0.1 \times 1000, \quad V_{1}=5.55 \mathrm{ml}
$$

Therefore answer (a) 5.55 ml

CHEMISTRY
(13) $100 \mathrm{~cm}^{3}$ of $2 \mathrm{~N} \mathrm{HCl}+100 \mathrm{~cm}^{3}$ of 2 N $\mathrm{HNO}_{3}+200 \mathrm{~cm}^{3}$ of 1 N NaOH is mixed. What is the pH of the resultant solution.
$\begin{array}{lll}\text { (a) } 1=\text { (b) } 0 & \text { (c) } 0.3010 & \text { (d) } 0.6990\end{array}$

CHEMISTRY

working

$\mathrm{NxV} \mathrm{cm}^{3}$ gives miliequivalants
$\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}-\mathrm{N}_{3} \mathrm{~V}_{3}$
= N mixture
$V_{1}+V_{2}+V_{3}$
$2 \times 100+2 \times 100-1 \times 200$ $100+100+200$
$\underline{200+200-200}=1 / 2=0.5 \mathrm{~N}$, Therefore $\mathrm{pH}=0.3010$

Therefore answer (C) 0.3010

$\mathbf{K}_{\mathbf{A}}$

CHEMISTRY

(14) The amount of KMnO_{4} required to prepare 100 ml of 0.1 N solution in alkaline medium
(a) 3.16 g
(b) 0.31 g
(c) 0.52 g
(d) 01.58 g

working

In alkaline medium KMnO_{4} acts as
Oxidant as
$2 \mathrm{KMnO}_{4}+2 \mathrm{KOH} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}+[0]$
Hence its equivalent wt = Molecular wt
$\mathbf{N}=$ mass in grams in a litre/ Eq. mass
$W=0.1 \times 158=1.58 \mathrm{~g}$ 10
Therefore answer (d) 1.58 g
$\mathbf{K}_{\mathbf{A}}$
CHEMISTRY

CHEMISTRY

15. Which of the following statement is correct

a) At constant temperature, the kinetic energy of all gas molecules is the same
b) At constant temperature, the kinetic energy of different molecules is different
c) At constant temperature, the kinetic energy greater for heavier gas molecules
d) At constant temperature, the kinetic energy is less for heavier gas molecules

$K^{E_{A}}$

Ans: a is correct
Kinetic energy depends only on temperature
(16) As the temperature is raised from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ the average kinetic energy of Neon atoms changes by a factor of
(a) $1 / 2$
(c) $313 / 293$
(b) $\sqrt{ } 313 / 293$
(d) 2

CHEMISTRY

working

K.E \boldsymbol{a} T
K. $E_{313 K}=\underline{313}$ K. $E_{293 K} \quad 293$

Therefore answer is (c) 313/293
(17). The Vander Waal's constant ' a ' for the gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3} \& \mathrm{CH}_{4}$ are 1.3, 1.39, $4.17 \& 2.253 \mathrm{~L}^{2}$ atm mol^{-2} respectively. The gas which can be most easily liquefied is
(a) O_{2}
(c) NH_{3}
(b) N_{2}
(d) CH_{4}

Explanation

Factor 'a' accounts for intermolecular forces of attraction, hence greater the value of ' a ' more easily the gas is liquefied. Also there exists hydrogen bonding in NH_{3} molecule.

Therefore the answer is c) NH_{3}
(18). A vessel has two equal components A \& B containing H_{2} and O_{2} respectively each at one atmospheric pressure. If the wall separating the compartments is removed, the pressure
(a) will remain unchanged in A \& B
(b) will increase in A and decrease in B
(c) will decrease in A and increase in B
(d) will increase in both A and B

CHEMISTRY

Explanation

If V is the volume, initially the product $P V$ in compartment A and $B=1 \times V+1 \times V=2 V$
Now PV = constant, at constant temperature. When the wall is removed then V becomes 2 V , thus the pressure should be 1 atm to have PV constant.
Therefore the answer is a) will remain unchanged in A \& B

CHEMISTRY
(19) Two glass bulbs A and B are connected by a very small tube (of negligible volume) having stop cock. Bulb A has a volume of 100 ml and contains certain gas while bulb B is empty. On opening the stop cock, the pressure in A reduced by $\mathbf{6 0 \%}$. The volume of bulb B must be
(a) 200 ml
(b) 150 ml
(c) 250 ml
(d) 100 ml

working

Let the pressure in A be P
Final pressure $=40 / 100 \times P$
Let the volume of B be $\mathbf{V ~ m l}$
Total volume after opening the stop clock $=100+\mathrm{V}$
According to Boyle's Law $\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$

$$
100 \times P=(100+V) \frac{40}{100} P
$$

On solving $\mathbf{V}=150$
Therefore answer (b) 150 ml
(20) Equal masses of ethane and hydrogen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of total pressure exerted by hydrogen is
(a) $1 / 2$
(b) $1 / 1$
(c) $1 / 16$
(d) $15 / 16$

CHEMISTRY

working

Let the mass of each gas be W
$n_{\mathrm{C}_{2} \mathrm{H}_{6}}=\mathrm{W} / 30 \quad \mathrm{n}_{\mathrm{H}_{2}}=\mathrm{W} / 2$
$\mathrm{P}_{\mathrm{H}_{2}}=$ Mole fraction x Total pressure

$$
=\frac{W / 2 \times P}{W / 30+W / 2}=\frac{15}{16} \cdot P
$$

Therefore answer (d) 15/16
(21) 3.2 g of oxygen (At. Mass =16) and 0.2 g of hydrogen (Atomic mass $=1$) are placed in 1.12 L flask at $0^{\circ} \mathrm{C}$. The total pressure of the gaseous mixture will be
$\begin{array}{llll}\text { (a) } 1 \mathrm{~atm} & \text { (b) } 4 \mathrm{~atm} & \text { (c) } 3.4 \mathrm{~atm} & \text { (d) } 2 \mathrm{~atm}\end{array}$

working

From Combined Gas equation PV $=\mathrm{nRT}$

$$
P=n R T / V
$$

$$
\mathrm{Po}_{2}=\frac{3.2}{32} \times \frac{0.0821 \times 273}{1.12}=2 \mathrm{~atm}
$$

$$
\mathbf{P}_{\mathrm{H}_{2}}=\frac{0.2}{2} \times \frac{0.0821 \times 273}{1.12}=2 \mathrm{~atm}
$$

Total $\mathrm{P}=\mathrm{PO}_{2}+\mathrm{P}_{\mathrm{H}_{2}}=\mathbf{2 + 2}=\mathbf{4}$
Therefore answer $\begin{array}{ll}\text { (b) } 4 \mathrm{~atm}\end{array}$
(22) Two separate bulbs contains ideal gas A \& B respectively. Density of the gas A is twice that of B while molecular mass of gas A is half that of gas B at the same temperature. The pressure ratio will be

$$
\begin{array}{llll}
\text { (a) } 1 / 2 & \text { (b) } 1 / 4 & \text { (c) } 1 / 1 & \text { (d) } 4 / 1
\end{array}
$$

working

According to Boyle's Law

$$
\begin{aligned}
& P_{1} / P_{2}=V_{1} / V_{2}, d=m / V \text { or } V=m / d \\
& P_{1} / P_{2}=m_{2} d_{1} / d_{2} m_{1}
\end{aligned}
$$

Given $m_{2}=2 m_{1}$ and $d_{1}=2 d_{2}$
$P_{1} / P_{2}=2 m_{1} \times 2 d_{2} / m_{1} \times d_{2}=4 / 1$
Therefore answer is (d) $4 / 1$
(23) CO_{2} diffuses 2 times faster than a gas. The molecular mass of the gas is
(a) 22
(b) 44
(c) 88
(d) 176

working

$r_{1} / r_{2}=\sqrt{ } M_{2} / M_{1} \quad$ Given $r_{1}=2 r_{2}, \quad M_{1}=44$
$2 \mathrm{r}_{2} / \mathrm{r}_{2}=\sqrt{ } \mathrm{M}_{2} / 44$
$2=\sqrt{ } M_{2} / 44$
$(2)^{2}=M_{2} / 44$
$M_{2}=44 \times 4$
$M_{2}=176$

Therefore answer is (d) 176
(24) The molecules of which of the following has highest rms velocity
$\begin{array}{ll}\text { (a) Hydrogen at }-50^{\circ} \mathrm{C} & \text { (b) Methane at } 298 \mathrm{~K}\end{array}$ $\begin{array}{ll}\text { (c) Nitrogen at } 1000^{\circ} \mathrm{C} & \text { (d) Oxygen at } 0^{\circ} \mathrm{C}\end{array}$

CHEMISTRY

$u_{r m s}$ for $H_{2}=\sqrt{\frac{3 R \times 223}{2}}=\sqrt{ } 111.5 \times 3 R$
$u_{\text {rms }}$ for $\mathrm{CH}_{4}=\sqrt{\frac{3 R \times 298}{16}}=\sqrt{ } 18.6 \times 3 R$
$u_{\text {rms }}$ for $N_{2}=\sqrt{\frac{3 R \times 1273}{28}}=\sqrt{ } 45.4 \times 3 R$
$u_{\text {rms }}$ for $\mathrm{O}_{2}=\sqrt{\underline{3 R \times 273}}=\sqrt{ } 8.5 \times 3 R$ 32
Therefore the Ans. (a) Hydrogen at $-50^{\circ} \mathrm{C}$

CHEMISTRY
(25) Two gases A and B having the same volume diffuses through a porous partition in 20 and 10 seconds respectively. The molecular mass of A is 49. The molecular mass of B will be
(a) 12.25
(b) 6.50
(c) 25
(d) 50

CHEMISTRY

working

Rate of diffusion $=\underline{\text { Volume diffused }}=\underline{\mathbf{V}}$
Time

```
Since \(V_{1}=V_{2}\)
\(\frac{r_{1}}{r_{2}}=\frac{t_{2}}{t_{1}}=\sqrt{ } \quad M_{2} / M_{1}\)
```

$10 / 20=\sqrt{ } B / 49 \quad 1 / 4=B / 49 \quad$ Therefore $B=12.25$
Therefore answer is (a) 12.25
(26) In which of the following does the given amount of chlorine exert the least pressure in a vessel of capacity 1dm ${ }^{3}$ at 273K
(a) 0.0355 g
(b) 0.071 g
(d) 0.02 mole
(c) 6.023×10^{21} molecul

CHEMISTRY

working

Since R, T \& V are constant
$P V=n R T$
Pan
(a) $0.0355 \mathrm{~g}=0.0355 / 71=0.0005 \mathrm{~mol}$
(b) $0.071 \mathrm{~g}=0.071 / 71 \quad 0.001 \mathrm{~mol}$
(c) $6.023 \times 10^{21}=0.01 \mathrm{~mol}$
(d) 0.02 mol

Therefore answer is (a) 0.0355 g

CHEMISTRY
(27) An open vessel at $27^{\circ} \mathrm{c}$ is heated until $3 / 5^{\text {th }}$ of the air has been expelled. Assuming that the volume of air is constant, the temperature at which the vessel has been heated is
(a) $750^{\circ} \mathrm{C}$
(c) 120 K
(b) $477^{\circ} \mathrm{C}$
(d) 820 K

CHEMISTRY

In this problem the volume of vessel is constant, as the vessel is open its pressure will also remains constant. According to ideal gas equation $\mathrm{PV}=\mathrm{nRT} \quad \mathrm{PV}=\mathrm{n}_{1} \mathrm{RT}_{1} \quad \mathrm{PV}=\mathrm{n}_{2} \mathrm{RT} \mathrm{T}_{2}$ $\mathrm{n}_{1} \mathrm{RT}_{1}=\mathrm{n}_{2} \mathrm{RT}_{2}$
$\mathrm{n}_{1} / \mathrm{n}_{2}=\mathrm{T}_{2} / \mathrm{T}_{1}$
$\frac{1}{2 / 5}=\frac{I_{2}}{300}$
$\mathrm{T}_{2}=300 \times 5 / 2=750 \mathrm{~K}$
$=477^{\circ} \mathrm{C}$
Therefore answer is (b) $477^{\circ} \mathrm{C}$

CHEMISTRY
(28) To which of the following Dalton's law of partial pressure is not applicable (a) $\mathrm{SO}_{2} \& \mathrm{CO}_{2}$ at room temp.
(b) $\mathrm{N}_{2} \& \mathrm{H}_{2}$ at room temp.
(c) $\mathrm{SO}_{2} \& \mathrm{O}_{2}$ at room temp.
(d) $\mathrm{HCl} \& \mathrm{NH}_{3}$ at room temp.

CHEMISTRY

working

Answer is (d) $\mathrm{HCl} \& \mathrm{NH}_{3}$ at room temp

Note: $\left(\mathrm{NO}+1 / 2 \mathrm{O}_{2}\right),\left(\mathrm{CO}+\mathrm{N}_{2}\right),\left(\mathrm{CO}+\mathrm{Cl}_{2}\right)$, etc are the gaseous mixtures which do not obey Dalton's law
(29) 0.5 moles of each of $\mathrm{H}_{2}, \mathrm{SO}_{2}$ and CH_{4} are kept in a container. A hole was made in the container. After 3 hours the order of partial pressure in the container
(a) $\mathrm{P}_{\mathrm{SO}_{2}}>\mathrm{P}_{\mathrm{CH}_{4}}>\mathrm{P}_{\mathrm{H}_{2}}$ (b) $\mathrm{P}_{\mathrm{H}_{2}}>\mathrm{P}_{\mathrm{SO}_{2}}>\mathrm{P}_{\mathrm{CH}_{4}}$
(c) $\mathrm{P}_{\mathrm{CH}_{4}}>\mathrm{P}_{\mathrm{SO}_{2}}>\mathrm{P}_{\mathrm{H}_{2}}$ (d) $\mathrm{P}_{\mathrm{H}_{2}}>\mathrm{P}_{\mathrm{CH}_{4}}>\mathrm{P}_{\mathrm{SO}_{2}}$

CHEMISTRY

working

Diffusion of gases is inversely proportional to their molecular mass. Hence rate of diffusion is $\mathrm{H}_{2}>\mathrm{CH}_{4}>\mathrm{SO}_{2}$ The no. of moles left will be $\mathrm{SO}_{2}>\mathrm{CH}_{4}>\mathrm{H}_{2}$ Hence the amount left will be $\mathrm{P}_{\mathrm{SO} 2}>\mathrm{P}_{\mathrm{CH} 4}>\mathrm{P}_{\mathrm{H} 2}$ Therefore answer is (a) $\mathrm{P}_{\mathrm{SO}_{2}}>\mathrm{P}_{\mathrm{CH}_{4}}>\mathrm{P}_{\mathrm{H}_{2}}$
(30) X ml of H_{2} gas diffuse through a hole in a container in 5 seconds. The time taken for the diffusion from the container of the same volume of the gas specified below under identical condition
(a) 10 Seconds: He
(b) 20 Seconds : O_{2}
(c) 25 Seconds: CO
(d) 55 Seconds : CO_{2}

CHEMISTRY

working

$r \propto 1 / \sqrt{M}$ Since $M_{H_{2}}: M_{O_{2}}=2: 32=1: 16$
$\sqrt{ } M_{H 2}: \sqrt{ } M_{\mathrm{O} 2}=1: 4$
Therefore time taken to diffuse same volume of oxygen is 4 times more $=5 \times 4=20$ seconds.

Therefore answer is (b) 20 Seconds: O_{2}
(31) The root mean square velocity of one mole of mono atomic gas having molecular mass M IS $u_{\text {rms }}$. The relationship between the average K.E (E) of the gas and $u_{r m s}$ is
(a) $u_{\text {rms }}=\sqrt{ } 3 E / 2 M$
(b) $u_{\text {rms }}=\sqrt{ } 2 E / 3 M$
(c) $U_{\text {rms }}=\sqrt{ } 2 E / M$
(d) $u_{\text {rms }}=\sqrt{ } E / 3 M$

working

$u_{\mathrm{rms}}=\sqrt{3 R T} / \mathrm{M}$

Average K.E=3RT/2=E

or
 $3 R T=2 E$

Ans $u_{r m s}=\sqrt{9 E} / M^{O H}$
(32) A weather balloon filled with hydrogen at 1 atm and $27^{\circ} \mathrm{C}$ has volume equal to $1200 \mathrm{dm}^{3}$. On ascending it reaches a place where the temperature is $-23^{\circ} \mathrm{C}$ and pressure 0.5 atm . The volume of the balloon is
(a) $2400 \mathrm{dm}^{3}$
(b) $2000 \mathrm{dm}^{3}$
(c) $1000 \mathrm{dm}^{3}$
(d) $1200 \mathrm{dm}^{3}$

CHEMISTRY

working

$$
\begin{aligned}
& P_{1} V_{1} / T_{1}=P_{2} V_{2} / T_{2} \\
& \text { Substituting } 1 \times 1200 / 300=0.5 \times V_{2} / 250 \\
& V_{2}=2000 \mathrm{dm}^{3}
\end{aligned}
$$

Therefore the Ans: (b) =2000dm3
(33) The kinetic energy of N molecules of O_{2} is x joule at $-123^{\circ} \mathrm{C}$. Another sample of O_{2} at $27^{\circ} \mathrm{C}$ has a kinetic energy of $2 x$ joule. The latter sample contains
$\begin{array}{ll}\text { (a) } \mathrm{N} \text { molecules of } \mathrm{O}_{2} & \text { (b) } 2 \mathrm{~N} \text { molecules of } \mathrm{O}_{2}\end{array}$
(c) $\mathrm{N} / 2$ molecules of O_{2} (d) $\mathrm{N} / 4$ molecules of O_{2}

CHEMISTRY
working

K.E \quad -

Let $Y \mathrm{~N}$ be the no. of molecules of O_{2} at $27^{\circ} \mathrm{C}$
$\frac{K . E_{300 K}}{K}=\frac{2 x}{x}=\frac{Y N}{N} \frac{300}{150}=2 Y=2 \quad Y=1$ K. $E_{150 \mathrm{~K}} \quad \mathrm{X} \quad$ N 150

Therefore answer is (a) \mathbf{N} molecules of O_{2}
(34) By what factor the root mean square velocity of gaseous molecule increased when the temperature (in kelvin) doubled
(a) 2.8
(b) 4.0
(c) 1.4
(d) 2.0

CHEMISTRY

working

Here $\mathrm{T}_{2}=2 \mathrm{~T}_{1}$
$u=\sqrt{ } \underline{3 R T}$
M
$\underline{u}_{2}=\sqrt{ } \underline{2 I}_{1}=\underline{\underline{u}}_{2}=\sqrt{ } \mathbf{2}=1.4$
\mathbf{u}_{1}
Therefore answer is
(35) A football bladder contains equimolar proportions of hydrogen and oxygen gases. The composition by mass of the mixture effusing out of the punctured football is in the ratio of (Hydrogen: Oxygen)
$\begin{array}{lll}\text { (a) } 1: 4 & \text { (b) } 2 \downarrow^{2}: 1 & \text { (c) } 1: 2 \sqrt{ } 2\end{array}$
(d) $4: 1$

CHEMISTRY

working

$$
\frac{\mathbf{r} \mathbf{o}_{2}}{r_{H_{2}}}=\sqrt{ } \frac{\mathrm{MH}_{2}}{\mathrm{M}_{\mathbf{O}_{2}}}=\sqrt{ } 2 / 32=1 / 4
$$

Therefore answer is \quad (a) 1:4

CHEMISTRY
(36) Zinc and aluminium metals produces hydrogen gas with dilute sulphuric acid. The ratio of moles of H_{2} produced when 1 mole of each reacts with excess of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be
(a) $1: 1.5$
(b) $3: 1$
(c) $1: 3$
(d) $1: 2$

CHEMISTRY working
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
1 mole 1 mole
$2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}$
2 mole
3 mole
1 mole
1.5 mole

Therefore answer (a) 1:1.5
(37) The number of moles of KMnO_{4} that will be required to react with one mole of sulphite ion in acidic medium is
(a) 1
(b) $3 / 5$
(c) $4 / 5$
(d) $2 / 5$

CHEMISTRY

working

Write the balanced equation
$2 \mathrm{MnO}_{4}+5 \mathrm{SO}_{3}{ }^{2-}+\mathrm{H}^{+} \longrightarrow 5 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Mn}^{2+}$
Therefore, the number of moles of KMnO_{4} that reacts with 1 mole of $\mathrm{SO}_{3}{ }^{2-}$ will be $2 / 5$

Therefore answer (d) 2/5
(38) Out of the following, the largest number of atoms are contained in
(a) 11 g of CO_{2}
(b) 4 g of H_{2}
(c) 8.5 g of NH_{31}
(d) 8 g of SO_{2}

working

(a) 11 g of $\mathrm{CO}_{2}=0.25 \mathrm{~mol} \equiv 3 \times 0.25 \times \mathrm{N}$ atoms $=$ 0.75 N atoms
(b) 4 g of $\mathrm{H}_{2}=\mathbf{2} \mathrm{mol}=2 \times 2 \times \mathrm{N}=\mathbf{4}$ atoms
(c) 8.5 g of $\mathrm{NH}_{3}=0.5 \mathrm{~mol}=0.5 \times 4 \times \mathrm{N}$ atoms
$=2 \mathrm{~N}$ atoms
(d) 8 g of $\mathrm{SO}_{2}=8 / 64=0.125 \mathrm{moles}$
$=3 \times 0.125 \times \mathrm{N}$ atom
Therefore answer (b) 4 g of H_{2}

CHEMISTRY
(39) An aqueous solution of 6.3 g of oxalic acid dihydrate is made upto 250 ml . The volume of 0.1 N NaOH required to completely neutralise 10 ml of this solution is
(a) 40 ml
(c) 10 ml
(b) 20 ml
(d) 4 ml

CHEMISTRY

working

Normality of Oxalic acid $=6.3 \times 4 / 63$
$=0.4 \mathrm{~N}$
$N_{1} V_{1}=N_{2} V_{2}$
(acid) (base)
$0.4 \times 10=0.1 \times V_{2}$
$V_{2}=4 / 0.1=40 \mathrm{ml}$
Therefore answer (a) 40 ml

CHEMISTRY
(40) 500 ml of 4.0 molar aqueous solution of NaCl is electrolysed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass of $\mathrm{Na}=23$, $\mathrm{Hg}=200$, $1 \mathrm{~F}=96500 \mathrm{C}$)
The total number of moles of chlorine gas evolved is
(a) 0.5
(b) 1.0
(c) 2.0
(d) 3.0

CHEMISTRY

working

$2 \mathrm{NaCl} \longrightarrow \mathbf{2 N a}+\mathrm{Cl}_{2}$
2 Mol
1 Mol
500 ml of 4.0 molar $=2.0 \mathrm{~mol}$
No. of moles $=2.0 \mathrm{~mol}$
No. of moles of Cl_{2} evolved $=1 \mathrm{~mol}$

Therefore answer (b) 1 mol
(41) 0.5 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is diluted from 1 litre to 10 litre, Normality of resulting solution is
(a) 0.1 N
(b) 1 N
(c) 10 N
(d) 11 N

working

N of $\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Mx}$ basicity $=0.5 \times 2=1 \mathrm{~N}$
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
(before dilution) (after dilution)

$$
1 \times 1=N_{2} \times 10
$$

$$
N_{2}=1 / 10=0.1
$$

Therefore answer (a) 0.1 N
(42) The percentage of an element M is 53 in its oxide of molecular formula $\mathrm{M}_{2} \mathrm{O}_{3}$. Its atomic mass is about
(a) 9
(b) 18
(c) 27
(d) 36

CHEMISTRY

working

Let m is the atomic mass of element M $\%$ of the metal in $\mathrm{M}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
& =\frac{2 m \times 100}{2 m+48}=53 \\
& \\
& \quad 200 m=(2 m+48) 53
\end{aligned}
$$

On solving $\mathrm{m}=27$
Therefore answer (c) 27
(43) A certain divalent metal salt solution is electrolysed in a series with silver. The weight of silver \& the metal deposited are 0.52 g and 0.27 g respectively. Given that the equivalent mass of silver is 108, what is the atomic mass of the element.
(a) 212
(b) 56
(c) 217.2
(d) 112

working

According to Faraday Second Law when the same quantity of electricity flows thro' solution of different electrolytes, then Mass of X deposited $=$ Eq mass of X
Mass of Y deposited Eq mass of Y
Therefore, eqi. Mass of the metal $=\frac{0.27}{0.52} \times 108=56 \mathrm{~g}$
At. Mass = Eq. Mass X Valency = 56 X $2=112$

Therefore answer (d) 112
(44) The formula weight of an acid is 82.0 . In a titration $100 \mathrm{~cm}^{3}$ of a solution of this acid containing 39.0 g of the acid per litre were completely neutralised by $95 \mathrm{~cm}^{3}$ of aqueous NaOH containing 40 g of NaOH per litre. What is the basicity of the acid.

$\begin{array}{llll}\text { (a) } 2 & \text { (b) } 3 & \text { (c) } 1 & \text { (d) } 4\end{array}$

CHEMISTRY

working

$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
(acid) (base)
Normality of $\mathrm{NaOH}=40 \mathrm{~g} / \mathrm{lits}=1 \mathrm{~N}$ 40
$N_{1} \times 100=1 \times 95$
$N=95 / 100=0.95$
$N=\frac{39 / \text { liter }}{E} E=\frac{39 / l i t e r}{N}=\frac{39}{0.95}=41 \quad$ Basicity $=82 / 41$
Therefore the answer (a) 2
(45) 1.520 g of certain metal hydroxide on ignition gave 0.995 g of metal oxide. The equivalent mass of the metal is

CHEMISTRY

working

mass of metal hydroxide mass of metal oxide
$=$ Eq. Mass of ($m+$ hydroxide)
Eq. Mass of ($\mathrm{m}+$ oxygen)
$=\frac{1.50}{0.995}=\frac{m+17}{m+8}$
On solving Eq. Mass of the metal $=9$
Therefore answer (d) 9
(46) The ratio of kinetic energy of 3 g of hydrogen and 4 g of oxygen at TK is
(a) $12: 1$
(b) $6: 1$
(c) 1:6
(d) $24: 1$

$K_{\mathbf{A}}$

K.E $H_{2}=3 / 2 \times 3 / 2 \times R T$ K.E O ${ }_{2} \quad 3 / 2 \times 4 / 32 \times$ RT
$=3 / 2 \times 32 / 4$

$=12$

Therefore answer is (a) 12:1
(47) Mole fraction of the solute in a 1.00 molal aqueous solution is

(a) 0.0177
 (c) 1.7700

(b) 0.0344
(d) 0.1770

CHEMISTRY

working

$$
\begin{aligned}
1 / X_{B} & =1+\frac{1000}{m \times M_{A}} \\
1 / X_{B} & =1+1000 / 1 \times 18 \\
& =1+55.55 \\
& =56.55 \\
X_{B} & =1 / 56.55=0.0177 \\
\text { Therefore answer } & \text { (a) } 0.0177
\end{aligned}
$$

CHEMISTRY
(48) Ammonia reacts with copper Sulphate according to the following equation
$\mathrm{CuSO}_{4}+4 \mathrm{NH}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$
The number of moles of NH_{3} required to produce 2.50 moles of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$ is
(a) 3 mol
(b) 6 mol
(c) 5 mol
(d) 10 mol

working

As per the balanced equation
$4 \mathrm{NH}_{3} \equiv \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$
Therefore, Moles of NH_{3} required
$2.5 \times 4=10 \mathrm{~mol}$

Therefore answer (d) 10 mol

$\mathbf{K E}_{\mathbf{A}}$

ALL THE
 BEST

