

CHEMISTRY

Topics:

- ✓ Nomenclature of Organic Compounds
- ✓ Hydrocarbons
- ✓ Aromatic Hydrocarbons
- ✓ Polymers
- ✓ Organic compound containing Oxygen-I

1. Which of the following could act as propallent for rocket?

```
1. Liquid N<sub>2</sub> + Liquid O<sub>2</sub>
```

- 2. Liquid H₂ + Liquid N₂
- 3. Liquid O₂ + Liquid Argon
- 4. Liquid H₂ + Liquid O₂

Ans: 4. Liquid H₂ + Liquid O₂

Reason: Liquid hydrogen has low molecular mass and high heat of combution while oxygen is supporter of combution. Thus liquid H₂ + liquid O₂ is used as good rocket propallent

2. An element essentially found in all explosive is ______.

- 1. Nitrogen
- 2. Sulphur
- 3. Carbon
- 4. Phosphorus

Ans: 1. Nitrogen

because all explosive contain Nitrogen

- 3. Drug which is used to reduce anxiety and brings calmness is known as _____
- 1. Tranquilizer
- 2. Analgesic
- 3. Antacid
- 4. Antibiotic

- Ans:
- 1. Tranquilizer

4. Household gaseous fuel (LPG) mainly contains

- 1. CH₄
- 2. C₂H₆
- 3. C₂H₄ 4. C₄H₁₀

Ans: 4. C₄H₁₀

LPG contains

C5H11

butane &

isobutane

- 5. In Lassaign's test, the organic compound is fused with a piece of sodium metal in order to
- 1. Increase the ionisation of the compound
- 2. Increase the reactivity of the compound
- 3. Converts the covalent compound into a mixture of ionic compound
- 4. Decrease the melting point of the compound

H₃C

CHEMISTRY

Ans: 3. convert the covalent compound into a mixture of ionic compound

Note: ionic compounds like NaCN, Na₂S, NaX are formed which easily give the test for N_, S and Halogens.

6. The blue colour developed when sodium fusion extract is heated with fresh FeSO₄ in presence of alkali cooled and acidified with dil.H₂SO₄ indicates ______.

Continued ...

H₃C

CHEMISTRY

Continued ...

- 1. N, Fe₄ [Fe(CN)₆]₄
- 2. N, Na₄ [Fe(CN)₆]
- 3. S, Na_4 [Fe(CN)₅NOS]
- 4. N+S, Fe(CNS)₃

Ans: 1.N, Fe₄ [Fe(CN)₆]₄

KEA

CHEMISTRY

- 7. During the test for Halogen by Silver Nitrate test, the sodium extract is first boiled with few drops of HNO₃ to
- 1. decompose sodium halides present.
- 2. helps in the precipitation of AgCl.
- 3. increase the concentration of Nitrate ion.
- 4. Decompose Na₂S and NaCN if formed.

Ans:

4. Decompose Na₂S and NaCN if formed.

H₃C

CHEMISTRY

- 8. In Kjeldahl's method, copper sulphate acts as
 - 1. an Oxidising agent
 - 2. a reducing agent
 - 3. a catalytic agent
 - 4. a hydrolysing agent
 - Ans: 3. a catalytic agent

- 9. In Liebig's method, for the estimation of carbon, the CO₂ produced is absorbed in the solution of
 - 1. Ca(OH)₂
 - 2. pyrogallol
- 3. KOH
- 4. Any one of these

Ans: 3. KOH

10. Empirical formula of a compound is CH₂O and its molecular mass is 90. The molecular formula of the compound is

C5H11

```
    C<sub>3</sub>H<sub>6</sub>O<sub>3</sub>
    C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>
```

2.
$$C_2H_4O_2$$

$$3. C_6 H_{12} O_6$$

Ans: 1. $C_3H_6O_3$

Note:

```
Empirical formula mass = CH_2O
= 12+2+16=30
```

- ∴n=molecular mass/emp. formula mass
 - = 90/30
 - = 3

H₃C

- : mol.formula = emp.formula x n
 - $= CH_2O \times 3$
 - $= C_3 \overline{H}_6 O_3$

11. An Organic Compound contain C,H&N give following on analysis, C=40%, H=13.33% & N=46.67% what would be its empirical formula

C5H11

- 1. C_2H_7N
- 2. $C_2H_7N_2$
- 3. CH₃N
 - 4. CH₄N

Ans: 4. CH₄N

H₃C

CHEMISTRY

Note: C H N
$$40/12 \quad 13.33/1 \quad 46.67/14$$

$$=3.33 \quad =13.33 \quad =3.33$$

$$=3.33/3.33 \quad =13.33/3.33 \quad =3.33/3.33$$

$$1 \quad 4 \quad 1$$

$$\therefore CH_4N$$

C5H11

12. IUPAC Name of CH₃-CH₂-CH-CH-CH₂-CH₃ CH₃C₂H₅

is

- 1. 4-ethyl-3-methyl hexane
- 2. 3-ethyl-4-methyl hexane
- 3. Both of these
 - 4. None of these

H₂C

Ans: 2. 3-ethyl-4-methyl hexane

Note: If two different substituents are present at equivalent position from the two ends in the parent chain, then the numbering of parent chain is done, in such a way that substituent which comes first in the alphabetical order gets the lowest number.

KEA

CHEMISTRY

13. IUPAC Name of CH₃-CH₂-C(Br)=CHCl is

- 1. 4-chloro-3-bromo but-3-ene
- 2. 2-bromo-1-chloro but-1-ene
- 3. 2-bromo-1-chloro butene-1
- 4. 2-bromo-2-ethyl-3-chloro propene
- Ans: 2. 2-bromo-1-chloro but-1-ene

14. IUPAC Name of CH₃-CH(CH₃)=CH-COOH is

- 1. 2-methyl but-2-enoic acid
- 2. 3-methyl but-3-enoic acid
- 3. 3-methyl but-2-enoic acid
- 4. 2-methyl but-3-enoic acid
- Ans: 3. 3-methyl but-2-enoic acid

15. The number of Pi Bonds in CH₂=CH-CH=C≡CH is

1. 2 CH 2. 5

H₃C

3.4

4. 3

Ans: 3.4

Note:

- (i)carbon-carbon double bond contains One Sigma bond and One Pi bond
- (ii)carbon-carbon Triple bond contains one sigma bond & two Pi bonds.
- (iii) Two double bond = 2 Pi-bonds
 One Triple bond = 2 Pi-bonds
 - ∴ Total Pi-bonds = 4

- 16. Two members of the homologous series have
 - 1. different general formula
 - 2. different molecular weight
 - 3. different methods of preparation
 - 4. different chemical properties
 - Ans: 2. different molecular weight

Note:

Each member of the homologous series differ from preceding member and succeeding member by CH₂ group and hence they differ in their molecular weight by 14.

17. For the preparation of alkane, a concentrated aqueous solution of sodium or potassium salt of carboxylic acid is subjected to

1. Hydrolysis

2. Oxidation

3. Hydrogenation

4. Electrolysis

Ans: 4. Electrolysis

 $2RCOONa + 2H_2O \rightarrow R-R+2CO_2\uparrow + 2NaOH + H_2\uparrow$

18. CH₃-CH(Br)-CH₃→CH₃-CH=CH₂ this transformation is carried out in the presence of

1.aqu.KOH

2. H₂O

3.alc.KOH

4. H₂SO₄

Ans: 3.alc.KOH

Note:

Hydrogen & Bromine are eliminated,

: It is a dehydrohalogenation reaction.

19. Photochemical chlorination of alkane is initiated by the process of

1. Pyrolysis

2. Substitution

3. Homolysis

4. Hetrolysis

Ans: 3. Homolysis

Note:

$$Cl \cdot \cdot Cl \longrightarrow Cl \cdot + Cl \cdot$$

Chlorine free radical is formed by the homolysis of chlorine molecule.

- 20. During the preparation of ethane by Kolbe's electrolytic method using inert electrodes the pH of the electrolyte
 - 1.increases progressively as the reaction proceeds
 - 2.decreases progressively as the reaction proceeds
 - 3.remains constant throughout the reaction
 - 4.may decrease if the concentration of electrolyte is not very high.

Ans: 1.increases progressively as the reaction proceeds

Note:

 $2CH_3COONa + 2H_2O \rightarrow C_2H_6 + 2CO_2 + 2NaOH + H_2$

as the reaction proceeds formation of NaOH increases hence pH increases

- 21. When Calcium salt of adipic acid is distilled and the product is reduced with Zn-Hg/HCl is obtained.
 - 1.Cyclopentanone
- 2. Cyclopentane

3. Cyclohexane

4. Cyclohexanone

Ans: 2. Cyclopentane

Calcium Adipate→Cyclopentanone

Cyclopentane

22. A hydrocarbon C₄H₈, neither decolourises bromine in CCl₄ solⁿ, nor reacted with HBr when heated to 200°C with hydrogen in the presence of Ni-catalyst, a new hydrocarbon C₄H₁₀ was formed. What is the Name of original compound?

1.n-butane

2. cis-2-butene

3.Isobutylene

4. Cyclobutane

Ans: 4. Cyclobutane

- Note: Hydrocarbon C₄H₈
 - i) doesn't decolourise Br₂ in CCl₄
 - ii) doesn't react with HBr, means it is not an unsaturated open chain compound.
- iii) It reacts with H_2 in presence of Nicatalyst at 200° c to form C_4H_{10} means it is a cyclic compound adds on H_2 and undergo ring opening reaction to form open chain compound n-butane.

- 23. According to MarKownikoff's rule when hydrogenchloride adds on to unsymmetrical alkene the hydrogen of HCl attaches to
 - 1. Carbon in the middle of the molecule.
 - 2. Carbon at the end of the molecule
 - 3. Carbon with most number of hydrogen
 - 4. Carbon with least number of hydrogen

Ans: 3. Carbon with most number of hydrogen

Note:

Markownikoff's rule

Positive part of the reagent adds on to carbon containing more number of hydrogen atom

24.A gas decolourises Alkaline KMnO₄ (Baeyer`s Regent) but does not give any precipitate with Ammonical AgNO₃ the gas is

1. Methane

2. Ethane

3. Ethene

4. Ethyne

Ans: 3. Ethene

Note:

- 1. Unsaturation in organic compound is tested by using following reagent
 - Alkaline KMnO₄ (Colour of KMnO₄ is decolourised)
 - Bromine water (Colour of Bromine water is decolourised)
 - Ozone (formation of Ozonide)

(Continued...)

Note: (Continued...)

- Ammonical AgNO₃ (Tollen's reagent) and Ammonical Cu₂Cl₂ are used to test acidic hydrogen atom in alkynes
- 3. Acidic Hydrogen atom is present at the end of the triple bonded carbon atom. It is due to the higher electronegativity of the SP-Hybridized Carbon Atom

25. Methane is formed from the Hydrolysis of

- 1. Calcium Carbide
- 2. Methanal
- 3. Aluminium Carbide
- 4. Ethanol

Ans: 3. Aluminium Carbide

Note:

$$1.CaC2 + 2H2O \rightarrow Ca(OH)2 + C2 H2$$

$$2.Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4$$

3. H-CHO +
$$H_2O \rightarrow$$
 No reaction

$$4.C_2H_5OH + H_2O \rightarrow No reaction$$

26.A Metallic Carbide on treatment with water gives a colourless gas which burns readily in air and gives a red precipitate with Cu₂Cl₂+NH₄OH the gas is

1. Methane

2. Ethane

3. Ethene

4. Ethyne

Ans: 4. Ethyne (Acetylene)

- 27.Addition of HI on double bond of Propene yields Isopropyle Iodide and not n-Propyl Iodide as the major product, because addition proceeds through
 - 1. A more stable carbonium ion
 - 2. A more stable carbanion
 - 3. A more stable Free Radical
 - 4. Nucleophile

Ans: 1. A more stable carbonium ion

Note:

$$CH_3-CH=CH_2+H^+$$
 \downarrow

Iso propyl carbonium ion(More stable)

n-propyl carbonium ion(Less stable)

- 28. Two jars A and B are filled with Hydrocarbons, Br₂ in CCl₄ is added to these jars A does not decolourise the Br₂ solution but B decolourises what are A and B
 - 1. Alkane and Alkene 2. Alkene and Alkane
 - 3. Alkene and Alkyne 4. Alkene & Benzene

Ans: 1. Alkane and Alkene

KEA

CHEMISTRY

29. Benzene reacts with Chlorine to form benzene Hexachloride in the presence of

1. Nickel

2. Alcl₃

3. Bright Sunlight

4. Zn

Ans: 3. Bright Sunlight

Note:

C₆H₆ + 3Cl₂ Bright sunlight C₆H₆Cl₆ (BHC Insecticide)

- 30. Which of the following is the main component of heavy oil fraction of coal tar
 - 1. Cresol and Naphthol
 - 2. Phenol
 - 3. Toluene
 - 4. β Naphthylamine
 - Ans: 1. Cresol and Naphthol

Note:

- 1. Light oil fraction 0º - 170° C
- 2. Middle oil fraction 170° C - 230° C
- 3. Heavy oil fraction HSC 2300 C - 2700 C
- 4. Green oil fraction Anthracene, 270° C - 340°C

- Benzene, Toluene, Xylene
- Phenol, Naphthalene
- Cresols, **Naphthols**
- Phenanthrene

KEA

- 31. Benzene is less reactive than Ethene and Ethyne towards addition reaction. This is due to
 - 1. Cyclic Nature
 - 2. Delocalisation of π Electrons
 - 3. SP² Hybridization
 - 4. Presence of 3 Double Bonds
 - Ans: 2. Delocalisation of π Electrons Stability of Benzene is due to delocalisation of π - Electrons (resonance)

32. Carbon in Benzene undergoes SP²
Hybridization and the bond angle is 120°. The shape of Benzene
Molecule is

C5H11

- 1. Linear
- 2. Planar Hexagonal
- 3. Pyramidal
 - 4. Tetrahedral

- Ans: 2. Planar
 - Hexagonal

- 33. Which of the following can be easily Sulphonated?
 - 1. Benzene
 - 2. Toluene
 - 3. Nitrobenzene
 - 4. Chlorobenzene

Note: The electron releasing CH₃ group in Toluene increases the electron density on benzene ring and hence facilitates the attack of Electrophile

Ans: 2. Toluene

- 34. Toluene can be separated from Benzene by
 - 1. Washing with Con H₂SO₄
 - 2. Cooling in freezing mixture
 - 3. Dissolving in Sodium Hydroxide
 - 4. Steam distillation
- Ans: 2. Cooling in freezing mixture

- 35. Which of the products can not be obtained when Chlorine is passed into boiling Toluene
 - 1. Benzyl Chlorine
 - 2. Benzotrichloride
 - 3. Benzal Chloride
 - 4. O-Chlorotolune

Ans: 4. O-Chlorotolune

Note:

H₃C

Toluene

Sunlight,110°C ↓ Cl₂

BenzylChloride

↓ Cl₂

Benzal chloride

 $\downarrow Cl_2$

Benzotrichloride

36. Rectified spirit gives absolute alcohol by

- 1. Fractional distillation
- 2. Azotropic distillation
- 3. Vaccum distillation
- 4. Steam distillation

Ans: 2. Azotropic distillation i.e, by heating with quick lime (CaO)

37. The enzymes which can catalyse the conversion of glucose to ethanol is

- 1. Zymase
- 3. Maltase

- 2. Invertase
- 4. Diastase

Ans: 1. Zymase

Note: Maltase – converts Maltose to Glucose
Invertase - converts Sucrose to Glucose & Fructose
Diastase – converts Starch to Maltose

- 38. Most favourable condition for the alcoholic fermentation of sugar are
- 1. High concⁿ of solⁿ, Low temperature, plenty of air supply
- 2. Low concⁿ of solⁿ, moderate temperature, absence of air
- 3. Low concⁿ of solⁿ, Low temperature, plenty of air supply
- 4. None of the above
- Ans: 2. Low concⁿ of Solⁿ, moderate temperature, absence of air

H₂C

CHEMISTRY

- 39. Which of the following compounds provides food to catalysts during alcoholic fermentation
 - 1. Ammonium Chloride 2. Invertase
 - 3. Ammonium Sulphate 4. Wine
 - Ans: 3. Ammonium Sulphate

C5H11

40. Power alcohol is a mixture of petrol and alcohol in the ratio of

1.4:1

2.1:4

3. 2 : 1

4.1:2

Ans: 1.4:1

Note: 80% petrol and 20% alcohol mixture is called power alcohol. - Fuel for internal combustion engines

41. Ethyl alcohol exhibits acidic character on reacting with

1. Acetic acid

2. Sodium metal

3. Hydrogen chloride

4. Acidified K₂Cr₂O₇

Ans: 4. Acidified K₂Cr₂O₇

Note:

acidified K₂Cr₂O₇

 $C_2H_5OH + 2[O] \longrightarrow CH_3COOH + H_2O$

42. In ethanol, the bond that undergoes hetrolysis during its esterification with CH₃COOH/H₂SO₄ is

1. C-C 2. C-O 3. O-H

4.C-H

Ans: 3. O-H

Note:
$$C_2H_5O_{+}^{+}H_0+COCH_3 \xrightarrow{C_5H_{11}} C_2H_5OCOCH_3 \xrightarrow{C_5H_{12}} C_2H_5OCOCH_3 \xrightarrow{C_5H_{12}} H_2O$$

KEA

- 43. Wide spread deaths due to liquor poisoning is because of
 - 1. Presence of bad compound in higher
- 2. Presence of methanol
- 3. Presence of Ethanol
- 4. Fermentation
 - Ans: 2. Presence of methanol
- Note: Denatured alcohol-unfit for drinking purpose. Rectified spirit + 5% methanol +0.5% pyridine + colouring matter

- 44. Which of the following will react fastest with Lucas reagent
 - 1. Ethanol
 - 2. Isopropyl alcohol
 - 3. 2-methyl propan-2-ol
 - 4. All reacts at Equal speed

Continued ...

Ans: 3. 2-methyl propan-2-ol

Note:

Alcohol + HCl + anhydrous ZnCl₂→Alkylhalide

- 1. 3^o alcohols react immediately to give turbidity
- 20 alcohols react after some time to give turbidity
- 3. 1º alcohols reacts on heating to give turbidity
 - Order of reactivity of alcohol 30>20>10

- 45. Lucas test can be used to distinguish between
- 1. Methanol and Ethanol
- 2. Propan-1-ol & ethanol
- 3. Butan-1-ol and 2-methylpropan-2-ol
- 4. Ethanol and glycol

Continued ...

Ans:

3. Butan-1-ol and 2-methylpropan-2-ol

Note: CHI

Lucas test is to distinguish between 1°, 2° & 3° alcohol Butan-1-ol is a 1° alcohol and

2-methyl-propan-2-ol is a 30 alcohol

46. Ethanol is soluble in water due to

- 1. Its neutral nature
- 2. Dissociation in water
- 3. Hydrogen bonding
- 4. Ethyl group

H₂C

Ans: 3. Hydrogen bonding

47. An organic compound A containing C, H & O has a pleasant odour with boiling point of 90°c on boiling A with conc. H₂SO₄, acolourless gas is produced which decolourises bromine water and alkaline KMNO₄. The organic compound A is

C₂H₅Cl
 C₂H₅OH

2. C₂H₅COOCH

4. C₂H₆

Continued ..

Ans: 3. C_2H_5OH

Note:

H₃C

 $C_2H_5OH[Ethanol]$ $C_0nc.$ \downarrow H_2SO_4 $C_2H_4[Ethene]$

Ethene decolourises colour of Bromine water and alkaline KMNO₄

- 48. The mixture of ether and alcohol is used as a petrol substitute under the name
 - 1. Haloethane
 - 2. Natalite
- 3. Proof spirit
- 4. Artificial camphor
 - Ans: 2. Natalite

49. In Williamson's Synthesis Ethoxyethane is prepared by

- 1. Passing ethanol over heated Al₂O₃
- 2. Heating sodium ethoxide with Ethylbromide
- 3. Treating ethylalcohol with excess of H₂SO₄ at 440K
- 4. Heating ethanol with dry Ag₂O

Continued ..

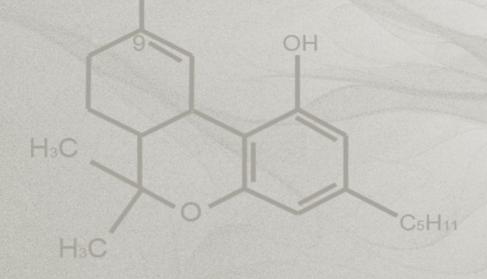
Ans: 2. Heating sodium ethoxide with Ethylbromide

Note:
Sodium Ethoxide Ethyl bromide $C_2H_5ONa + Br-C_2H_5$ $C_2H_5-O-C_2H_5 + NaBr$ Diethyl ether

- 50. When diethyl ether is treated with excess of Cl₂ in the presence of sun light, the product formed is:
 - 1. CH₃CHCl-O-CH₂CH₃
 - 2. CH₃CHCl-O-CHClCH₃
 - 3. CCl₃CCl₂-O-CCl₂CCl₃
 - 4. CH₃CCl₂-O-CHClCH₃

Ans: 3. CCl₃CCl₂-O-CCl₂CCl₃

- 51. Which is formed when diethyl ether is heated with one mole of HI
- 1. Ethyl alcohol and ethyl iodide
- 2. Ethyl iodide only
- 3. Ethyl alcohol only
- 4. Ethyl iodide and ethane
 - Ans: 1. Ethyl alcohol and ethyl iodide


- 52. An ether is more volatile than alcohol having the same molecular formula. This is due to
- 1. Intermolecular hydrogen bonding in ethers
- 2. Intermolecular hydrogen bonding in alcohols
- 3. Dipolar character of ethers
- 4. Alcohols having resonance structures.

Ans:

2. Intermolecular hydrogen bonding in alcohols

Dear Students ALL THE BEST

