Welcome to Chemistry C.E.T. Class

N.R. Chandrashekara,

 M.Sc., M.Phil.,Principal, Vishwamanava P.U. College, Sri Adichunchanagiri Shikshana Trust ${ }^{\circledR}$ Vishwamanava Kshetra, Mandya Tq \& Dist. Joint Secretary, Mandya Dist. P.U. College Principals Association,

Vice President: Mandya Dist. Chemistry Lecturers Forum. Member: Mandya Dist. New P.U. College Inspection Committee.

Physical Chemistry

Thermodynamics and Thermochemistry

Chemical Equilibrium
Surface Chemistry
Catalyst \& Adsorption

$K_{\mathbf{A}}$

1. Which of the following values of heat of formation indicates that product is least stable?
1) -94 kcal
2) -231 kcal
3) +21.4 kcal
4) +64.8 kcal

Answer:

4) +64.8 kcal

Explanation:

Stability of compounds depend on the amount of heat evolved during their formation, larger the heat evolved, more stable is the compound. i.e. more positive ΔH_{f}, least stable is the compound.
2. If in a chemical reaction the products have less energy than the reactants that reaction is

1) A reversible reaction
2) An endothermic reaction
3) An isothermal reaction
4) An exothermic reaction

CHEMISTRY

Answer:

4) An exothermic reaction

$K_{\mathbf{A}}$

Explanation:

Because $\triangle E=E_{P}-E_{R}$
Here, $\quad E_{p}<E_{R}$
$\therefore \Delta E=$ - ve
Hence the reaction is exothermic
3. Given that $\mathrm{Zn}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{ZnO}+$ 35.28 kJ
$\mathrm{HgO} \rightarrow \mathrm{Hg}+1 / 2 \mathrm{O}_{2}-9.11 \mathrm{~kJ}$ so that heat of the reaction
$\mathrm{Zn}+\mathrm{HgO} \rightarrow \mathrm{ZnO}+\mathrm{Hg}$ is

1) 26.17 kJ
2) 44.39 kJ
3) -44.39 kJ
4) 2.617 kJ

Answer:

1) 26.17 kJ

Explanation:

Required equation=equation-1+ equation-2
 $\therefore \mathrm{Zn}+\mathrm{HgO} \rightarrow \mathrm{ZnO}+\mathrm{Hg}+26.17$

4. A mixture of two moles of carbon monoxide and one mole of oxygen in a closed vessel, is ignited to convert the carbon monoxide to carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy
$\begin{array}{lll}\text { 1) } \Delta H>\Delta E & \text { 2) } \Delta H<\Delta E & \text { 3) } \Delta H=\Delta E\end{array}$
4) The relationship depends on the capacity of the vessel

Answer:

 2) $\Delta H<\Delta \mathrm{E}$

Explanation:

$$
\begin{aligned}
& 2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} \\
& \Delta n_{\mathrm{g}}=\mathrm{n}_{\mathrm{p}}-\mathrm{n}_{\mathrm{r}} \\
& \Delta \mathrm{n}_{\mathrm{g}}=2-3 \\
& \Delta n_{g}=-1
\end{aligned}
$$

$$
\text { ш.к.т. } \Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{RT} \times \Delta \mathrm{n}_{\mathrm{g}}
$$

$$
\therefore \Delta H=\Delta E-R T
$$

Hence $\Delta H<\Delta E$
5. Given $\mathrm{C}($ graphite $) \rightarrow \mathrm{C}(\mathrm{g}) \Delta \mathrm{H}=716.7 \mathrm{~kJ}$, C (diamond) $\rightarrow \mathrm{C}_{(\mathrm{g})}, \Delta \mathrm{H}=714.8 \mathrm{~kJ}$. The $\Delta \mathrm{H}$ for the reaction C (graphite) $\rightarrow \mathrm{C}$ (diamond) is

\author{

1) 1.9 kJ
 2) -1.9 kJ
 3) Zero
}
2) 714.8 kJ

Answer:

1) 1.9 kJ

$K_{\mathbf{A}}$

Explanation:

Required equation: equation1 - equation2
$=716.7 \mathrm{~kJ}-714.8 \mathrm{~kJ}$
$=1.9 \mathrm{~kJ}$
6. In the reaction
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $\Delta \mathrm{H}=2.8 \mathrm{~kJ}$ then $\Delta \mathrm{H}$ represents

1) Heat of reaction
2) Heat of combustion
3) Heat of formation
4) Heat of solution

Answer:

1) Heat of reaction

Explanation:

Enthalpy of reaction $\left(\Delta H_{r}\right)$: Enthalpy of reaction is the enthalpy change when the number of moles of reactants react completely to give the products as indicated by the balanced chemical equation.
7. The enthalpies of elements in their standard states are taken as zero. Hence the enthalpy of formation of a compound

1) Should always be negative
2) Should always be positive
3) Will be equal to twice the energy of combustion
4) May be positive or negative

Answer:

4) May be positive or negative

Explanation:

Enthalpy of formation $\left(\Delta H_{f}\right)$: It is the enthalpy change (heat evolved or absorbed) when one mole of compound formed from its elements under given condition.
8. The enthalpy of neutralization of acetic acid and sodium hydroxide is 55.4 kJ . What is the enthalpy of ionization of acetic acid

1) -1.9 kJ
2) +1.9 kJ
3) +5.54 kJ
4) -5.54 kJ

Answer:

2) +1.9 kJ

Explanation:

Enthalpy of ionization = Heat of neutralization of strong acid by a weak base or weak acid by a strong base +57.3.
$=-55.4 \mathrm{~kJ}+57.3 \mathrm{~kJ}$
$=1.9 \mathrm{~kJ}$
9. The heat of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ is -820 kJ . The heat of combustion of iron is

1) -410 kJ
2) -820 kJ
3) 820 kJ
4) -1620 kJ

Answer:

1) -410 kJ

Explanation:

$2 \mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \quad \Delta \mathrm{H}=-820 \mathrm{~kJ}$ $2 \times 56 \mathrm{~g}$ of Fe liberates 820 kJ of Heat.
$\therefore \quad 56 \mathrm{~g}$ of Fe liberates kJ of Heat.

$$
\begin{aligned}
& =820 \times 56 \div 2 \times 56 \\
& =410 \mathrm{~kJ}
\end{aligned}
$$

Enthalpy of combustion $\left(\Delta \mathrm{H}_{\mathrm{c}}\right)$: It is the enthalpy change when one mole of the substance completely burnt in excess of air or oxygen. $\Delta \mathrm{H}_{\mathrm{c}}$ is always negative.

$K_{\mathbf{A}}$

10. The thermochemical equation for the formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is
$2 \mathrm{Al}+\ldots \ldots . \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
1) $3 \mathrm{CO}_{2(\mathrm{~g})}$
2) $3 / 2 \mathrm{O}_{2(\mathrm{~g})}$
3) $3 / 4 \mathrm{O}_{2(\mathrm{~g})}$
4) $2 / 3 \mathrm{O}_{2(\mathrm{~g})}$

CHEMISTRY

Answer:

2) $3 / 2 \mathrm{O}_{2(\mathrm{~g})}$

Explanation:

Enthalpy of formation $\left(\Delta \mathrm{H}_{\mathrm{f}}\right)$: It is the enthalpy change when one mole of compound formed from its elements under given condition.
11. If 4 g of methane are to be completely burnt, the amount of oxygen required is

1) $4 g$
2) $8 g$
3) 16 g
4) 32 g

Answer:

3) 16 g

Explanation:

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ 16 g of methane requires 64 g of O_{2} $\therefore 4 \mathrm{~g}$ of methane requires $\ldots \mathrm{g}$ of O_{2}

$$
=4 \times 64 \div 16
$$

$$
=16
$$

12. In an exothermic reaction heat is

1) Evolved
2) Absorbed
3) Either evolved or absorbed
4) Neither evolved nor absorbed

Answer:

1) Evolved

CHEMISTRY

Explanation:

All exothermic reactions takes place with the liberation of heat.

13. Heat of transition is the heat

 evolved or absorbed when a substance is converted from1) Solid to liquid
2) Solid to vapour
3) Liquid to vapour
4) One allotropic form to another allotropic form

Answer:
4) One allotropic form to another allotropic form

Explanation:

It is the enthalpy change when one mole of an element undergoes a transition from one allotropic form to another.
14. Heat of neutralisation of a strong acid by a strong base is a constant because

1) Salt formed does not hydrolyse
2) Only H^{+}and OH^{-}ions react in every case
3) The strong base and strong acid react completely
4) The strong base and strong acid react in aqeous solution.

Answer:

2) Only H^{+}and OH^{-}ions react in every case

Explanation:

Heat of neutralisation of strong acid by a strong base is nothing but reaction of H^{+} ion of strong acid with OH^{-}ion of strong base to form water only.
i.e. $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-57.3 \mathrm{~kJ}$.
15. The heat of formation of carbon dioxide is -393.5 kJ . The heat of decomposition of carbon dioxide into the elements is

1) 393.5 kJ
2) 161.7 kJ
3) 196.7 kJ
4) 203 kJ

Answer:

1) 393.5 kJ

Explanation:

According to Lavoisier and Laplace law 'The quantity of heat that required to decompose a compound in to its elements is equal to the quantity of heat liberated when the same amount of compound is formed from its elements.

16. When a gm. atom of carbon is

 converted into a gm. molecule of carbon dioxide, the heat liberated is the same1) Irrespective of whether the volume is kept constant.
2) Irrespective of the temperature at which the reaction was carried out.
3) Whether the carbon taken was graphite or diamond.
4) Whether the reaction was carried out in one step or whether the carbon was first converted to carbon monoxide and then to carbon dioxide

Answer:
4) Whether the reaction was carried out in one step or whether the carbon was first converted to carbon monoxide and then to carbon dioxide

Explanation:

According to Hess's law of constant heat summation "The enthalpy change in a given reaction is the same whether the reaction takes place in one step or several steps.

$K_{\mathbf{A}}$

17. $\Delta H=\Delta E$ for the reaction

1) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
2) $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
3) $\mathrm{PCl}_{5(\mathrm{~g})} \leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
4) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}$

Answer:

4) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}$

Explanation:

W.K.T., $\quad \Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{nRT}$, Where $\Delta \mathrm{n}=$ difference moles of gaseous products and reactants.
$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})} \quad \Delta \mathrm{n}=2-2=0$
$\therefore \Delta H=\Delta E$

$K_{\mathbf{A}}$

18. Given $2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}$; $\Delta H=-787 \mathrm{~kJ}$
$\mathrm{H}_{2(\mathrm{~g})}+{ }^{1 / 2 \mathrm{O}_{2(\mathrm{~g})}} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} ; \Delta \mathrm{H}=-286 \mathrm{~kJ}$ $\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+2^{1 / 2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$; $\Delta \mathrm{H}=-1301 \mathrm{~kJ}$, heat of formation of acetylene is
1) -1802 kJ
2) +1802 kJ
3) -800 kJ
4) +228 kJ

CHEMLSTRY

Answer:

4) +228 kJ

Explanation:

$$
\begin{aligned}
& \Delta \mathrm{H}=\mathrm{H}_{\mathrm{P}}-\mathrm{H}_{\mathrm{R}} \\
& \Delta \mathrm{H}=2 \Delta \mathrm{H}_{\mathrm{fCO}}+\Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{O}}-\Delta \mathrm{H}_{\mathrm{fC} 2 \mathrm{H}}-2^{1 / 2} \Delta \mathrm{H}_{\mathrm{fO2}} \\
& -1301=-787-286-\Delta \mathrm{H}_{\mathrm{fC2H2}}-2^{1 / 2 \times 0} \\
& -1301=-787-286-\Delta \mathrm{H}_{\mathrm{fC} 2 \mathrm{H} 2}-0 \\
& \Delta \mathrm{H}_{\mathrm{fC} 2 \mathrm{H} 2}=-787-286+1301 \\
& \Delta \mathrm{H}_{\mathrm{fC} 2 \mathrm{H} 2}=+228 \mathrm{~kJ}
\end{aligned}
$$

$K_{\mathbf{A}}$

19. If the unit of K_{c} for the equilibrium $\mathrm{PCl}_{5(\mathrm{~g})} \leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ is $\mathrm{mol} / \mathrm{m}^{3}$. the unit of K_{p} is
1) Jm^{-3}
2) Nm^{-3}
3) Jm^{-2}
4) Nm^{-2}

Answer:

1) Jm^{-3}

Explanation:

$\mathrm{PCl}_{5(\mathrm{~g})} \Leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
$\therefore \Delta \mathrm{n}_{\mathrm{g}}=\mathrm{n}_{\mathrm{p}}-\mathrm{n}_{\mathrm{r}}=2-1=1$
Hence, $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \times \mathrm{RT}$,

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{mQl}}{\mathrm{~m}^{3}} \times\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~h}^{-1}\right) \mathrm{k} \\
& \mathrm{~K}_{\mathrm{p}}=\mathrm{Jm}^{-3}
\end{aligned}
$$

20. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ the forward reaction is favoured by
1) High temperature
2) Low pressure
3) Removal of sulphur dioxide
4) High pressure

Answer:
 4) High pressure

Explanation: In a reaction, If $\Delta n_{g}=n_{p}-n_{r}=-v e$, high pressure is favoured for the reaction $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$ In this reaction $\Delta n_{g}=2-3=-1$ If $\Delta \mathrm{n}<0$ high pressure favours forward reaction.
$\Delta \mathrm{n}>0$ high pressure favours backward reaction.
$\Delta \mathrm{n}=0$ pressure has no effect on the reaction at equilibrium.
21. The equilibrium $\mathrm{N}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}$ is established in a reaction vessel of 2.5 litres capacity. The amounts of nitrogen and oxygen taken at the start were respectively 2 moles and 4 moles. Half a mole of nitrogen has been used up at equilibrium. The molar concentration of nitric oxide is

1) 0.2
2) 0.4
3) 0.6
4) 0.1

CHEMISTRY

Answer:

2) 0.4

Explanation:

No. of moles at $\mathrm{t}=0$ in 2.5 litres

No. of moles at equilibrium

$$
(2-0.5)(4-0.5)(2 \times 0.5)
$$

$\therefore[\mathrm{NO}]=$ No. moles $/$ volume $=1 / 2.5=0.4$
$K_{\mathbf{A}}$
22. One mole of hydrogen iodide is heated in a closed container of capacity 2 litres. At equilibrium half a mole of hydrogen iodide has dissociated. The equilibrium constant is

1) 1.00
2) 0.50
3) 0.25
4) 0.75

Answer: 3) 0.25

Explanation: in 2 litres

 No. of moles at $\mathrm{t}=0$$2 \mathrm{HI} \Leftrightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
100

No. of moles at equilibrium ($1-0.5$) (0.25) (0.25) $\therefore\left[\mathrm{H}_{2}\right]=$ No. moles at eq./volume $=0.25 / 2=0.125$
$\left[I_{2}\right]=$ No. moles at eq./volume $=0.25 / 2=0.125$ $[\mathrm{HI}]=$ No. moles at eq./volume $=0.5 / 2=0.25$

$$
\mathrm{K}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=\frac{0.125 \times 0.25}{(0.25)^{2}}=0.25
$$

23. A and B are gaseous substances which react reversibly to give two gaseous substances C and D, accompanied by liberation of heat. When the reaction reached equilibrium it is found that $K_{c}=K_{p}$. The equilibrium cannot be disturbed by
1) Adding A
2) Adding D
3) Raising the temperature
4) Increasing the pressure

Answer:

4) Increasing the pressure

Explanation:

$\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \Leftrightarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}+$ Heat Here, $\Delta \mathrm{n}=\mathrm{n}_{\mathrm{p}}-\mathrm{n}_{\mathrm{r}}=2-2=0$ $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$ If $\Delta \mathrm{n}=\mathbf{0}, \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$

In such cases pressure has no effect on the equilibrium
$K_{\mathbf{A}}$
24. In a reaction $A+B \Leftrightarrow C+D$ the initial concentration of A and B were 0.9 mol dm^{-3} each. At equilibrium the concentration of D was found to be $0.6 \mathrm{~mol} \mathrm{dm}^{-3}$. What is the value of equilibrium constant for the reaction?

1) 8
2) 4
3) 9
4) 3

CHEMISTRY

Answer:
2) 4

Explanation:

$$
A+B \Leftrightarrow C+D
$$

Initial Concentration equilibrium at $t=0$
$\begin{array}{llll}0.9 & 0.9 & 0 & 0\end{array}$
No. of moles at equilibrium
$(0.9-0.6)(0.9-0.6) 0.60 .6$
$K=[C][D] \div[A][B]=(0.6)(0.6) \div(0.3)(0.3)=2 \times 2=4$
$K_{\mathbf{A}}$
25. 5 moles of SO_{2} and 5 moles of O_{2} are allowed to react to form SO_{3} in the closed vessel. At equilibrium state, 60% of SO_{2} is used. The total number of moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} in the vessel now is

1) 10.0
2) 8.5
3) 10.5
4) 3.9

Answer:
 $$
\text { 2) } 8.5
$$

Explanation:

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}
$$

Initial Concentration equilibrium at $\mathrm{t}=0$
 5
 5
 0

No. of moles at equilibrium

$$
(5-3) \quad(5-1.5) 3
$$

Total Number of moles $=2+3.5+3$
$=8.5 \mathrm{~mol}$
$K_{\mathbf{A}}$
26. The rate of forward reaction is twice the rate of reverse reaction at a given temperature and identical concentration K_{eq} is

1) 0.5
2) 1.5
3) 2.5
4) 2.0

Answer:

$$
\text { 4) } 2.0
$$

Explanation:

$$
\begin{aligned}
& K=K_{f} / K_{b} \\
& K=2.0 / 1.0 \\
& K=2
\end{aligned}
$$

27. $2 \mathrm{HI} \leftrightarrow \mathrm{H}_{2}+\mathrm{I}_{2} \quad$ Here the relation

 between K_{P} and K_{C} is1) $K_{P}>K_{C}$
2) $K_{P}<K_{C}$
3) $K_{P}=K_{c}$
4) $K_{p} \neq K_{c}$

Answer:

3) $K_{P}=K_{C}$

Explanation:

W.K.T., $K_{p}=K_{c}(R T)^{\Delta n}$
$2 \mathrm{HI}_{(\mathrm{g})} \leftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} ; \quad \Delta \mathrm{n}=2-\mathbf{2 = 0}$
$\therefore \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
28. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrow 2 \mathrm{NH}_{3}+$ Heat. What is the effect of increase of temperature on the equilibrium of the reaction?

1) Equilibrium is shifted to the left 2) Equilibrium is shifted to the right 3) Equilibrium is unaltered
2) Reaction rate does not change

Answer:

1) Equilibrium is shifted to the left

Explanation:

According Le-chatelier's principle all exothermic reactions are favoured by low temperature. Since the forward reaction is exothermic. If we increase the temperature backward reaction takes place. Hence equilibrium shifted to left.
29. The reaction in which the yield of the product cannot be increased by the application of high pressure is

1) $\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \leftrightarrow \mathrm{PCl}_{5}$
2) $\mathrm{N}_{2}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{NO}$
3) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrow 2 \mathrm{NH}_{3}$
4) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{SO}_{3}$

CHEMISTRY

Answer:

2) $\mathrm{N}_{2}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{NO}$

Explanation:

If $\Delta \mathrm{n}=0$, then the pressure has no effect on the equilibrium.

In this reaction

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})} ; \Delta \mathrm{n}=2-2=0
$$

$K_{\mathbf{A}}$
30. At any moment before a reversible reaction attains equilibrium it is found that

1) The velocity of the forward reaction is increasing and that of the backward reaction is decreasing.
2) The velocity of the forward reaction is decreasing and that of the backward reaction is increasing.
3) The velocities of both the forward reaction and backward reaction are increasing.
4) The velocities of both the forward reaction and backward reaction are decreasing.

Answer:
2) The velocity of the forward reaction is decreasing and that of the backward reaction is increasing.

CHEMISTRY

Explanation:

Rate

Forward reaction

Equilibrium

Backward reaction

31. In a catalytic conversion of N_{2} to NH_{3} by Haber process the rate of a reaction was expressed as change in the concentration of ammonia per time is $40 \times 10^{-3} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$. If there are no side reactions the rate of the concentration as expressed in terms of hydrogen is

$K_{\mathbf{A}}$

1) $60 \times 10^{-3} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$
2) $20 \times 10^{-3} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$ 3) $1200 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$
3) $10.3 \times \mathrm{mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$

Answer:

1) $60 \times 10^{-3} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$

Explanation:

$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
 $-\mathrm{d}\left[\mathrm{N}_{2}\right] / \mathrm{dt}=-1 / 3 \mathrm{~d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}=1 / 2 \mathrm{~d}\left[\mathrm{NH}_{3}\right] / \mathrm{dt}$
 Given, $\mathrm{d}\left[\mathrm{NH}_{3}\right] / \mathrm{dt}=40 \times 10^{-3} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$

 $d\left[\mathrm{H}_{2}\right] / \mathrm{dt}=$?

 $d\left[\mathrm{H}_{2}\right] / \mathrm{dt}=$?}
W.K.T.,
$1 / 3 \mathrm{~d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}=1 / 2 \mathrm{~d}\left[\mathrm{NH}_{3}\right] / \mathrm{dt}$ $\mathrm{d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}=3 / 2 \mathrm{~d}\left[\mathrm{NH}_{3}\right] / \mathrm{dt}$ $d\left[\mathrm{H}_{2}\right] / \mathrm{dt}=3 / 2 \times 40 \times 10^{-3}$
$\mathrm{d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}=60 \times 10^{-3} \mathrm{~mol} \mathrm{I}^{-1} \mathrm{~s}^{-1}$
32. At a given temperature, the equilibrium constant for the reaction, $\mathrm{PCl}_{5(\mathrm{~g})} \leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ is 2.4×10^{-3}. At the same temperature, the equilibrium constant for the reaction $\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightarrow \mathrm{PCl}_{5(\mathrm{~g})}$ is

1) 2.4×10^{-3}
2) -2.4×10^{-3}
3) 4.2×10^{2}
4) 4.8×10^{-2}

Answer:

 3) 4.2×10^{2}

Explanation:

Given, $\mathrm{K}_{\mathrm{f}}=\mathbf{2 . 4 \times 1 0 ^ { - 3 }}$

$$
\mathrm{K}_{\mathrm{b}}=\text { ? }
$$

W.K.T.,

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=1 / \mathrm{K}_{\mathrm{f}} \\
& \mathrm{~K}_{\mathrm{b}}=1 / 2.4 \times 10^{-3} \\
& \mathrm{~K}_{\mathrm{b}}=0.416 \times 10^{3} \\
& \mathrm{~K}_{\mathrm{b}}=4.2 \times 10^{2}
\end{aligned}
$$

$K_{\mathbf{A}}$
33. In a vessel containing $\mathrm{SO}_{3}, \mathrm{SO}_{2}$, and O_{2} at equilibrium, some helium gas is introduced so that the total pressure increases while temperature and volume remains constant. According to Lechatelier principle, the dissociation of SO_{3} is

1) Increases
2) decreases
3) remains unaltered
4) changes unpredictably

Answer:

2) decreases

Explanation:

$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
$\therefore \Delta \mathrm{n}_{\mathrm{g}}=\mathrm{n}_{\mathrm{p}}-\mathrm{n}_{\mathrm{r}}=2-3=-1$
If $\Delta \mathrm{n}_{\mathrm{g}}=0$, pressure has no effect on the equilibrium
If $\Delta \mathrm{n}_{\mathrm{g}}=+\mathrm{ve}$, high pressure favours backward reaction.
If $\Delta \mathrm{n}_{\mathrm{g}}=-\mathrm{ve}$, high pressure favours forward reaction.
Hence rate of backward reaction decreases.
34. Which of the following types of metals form the most efficient catalysts?

1) Alkali metals
2) Alkaline earth metals
3) Transition metals
4) All of these

Answer:

3) Transition metals

Explanation:

This is because they can provide larger surface for the adsoprtion of reactants and they exhibit multiple oxidation state.
$K_{\mathbf{A}}$
35. Which of the following statements is not true?

1) A catalyst alters the rate of a reaction 2) A catalyst is specific in nature
2) A catalyst initiates a reaction
3) A catalyst does not affect an equilibrium

CHEMISTRY

Answer:
 3) A catalyst initiates a reaction

Explanation:

Catalyst does not initiate a reaction just it accelerates the reaction which is already in progress.
36. Mark the correct statement, in a reversible reaction.

1) The catalyst catalyses the forward reaction
2) The catalyst catalyses the backward reaction
3) The catalyst influences the direct and the reverse reaction to the same extent
4) The catalyst increases the rate of forward reaction and decreases the rate of backward reaction.

Answer:
3) The catalyst influences the direct and the reverse reaction to the same extent.

Explanation:

The catalyst helps to attain the equilibrium quickly by accelerating both forward and backward reaction equally.
$K_{\mathbf{A}}$
37. Which of the statements is wrong among the following?

1) Haber's process of NH_{3} requires iron as catalyst
2) Friedel-Craft's reaction uses iron as catalyst.
3) Hydrogenation of oils uses iron as catalyst
4) Oxidation of SO_{2} to SO_{3} requires $\mathrm{V}_{2} \mathrm{O}_{5}$

Answer:

3) Hydrogenation of oils uses iron as catalyst

Explanation:

In the hydrogenation of oil nickel is used as catalyst.

38. Which one of the following is a homogeneous catalysis?
1) Hydrogenation of oils
2) Synthesis of ammonia by Haber's process
3) Manufacture of sulphuric acid by lead chamber process
4) Manufacture of sulphuric acid by contact process

Answer:

3) Manufacture of sulphuric acid by lead chamber process

Explanation:

In Lead chamber process following reaction takes place, Here reactants and catalysts are in same phase.
$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \stackrel{\mathrm{NO}_{(\mathrm{g})}}{\Leftrightarrow} 2 \mathrm{SO}_{3(\mathrm{~g})}$
39. The adsorption of inert gases on the surface of activated charcoal increases with

1) Decrease of both atomic mass and temperature
2) Increase of both atomic mass and temperature
3) Increase of atomic mass and decrease in temperature
4) Decrease of atomic mass and increase in temperature

Answer:

3) Increase of atomic mass and decrease in temperature

Explanation:

Increase in atomic mass and decrease in temperature are favourable for adsorption.
40. A small amount of silica gel and that of anhydrous CaCl_{2} are placed separately in two corners of room containing water vapour. What phenomena will occur in these two cases?

1) Adsorption in both 2) Absorption in both
2) Adsorption on silica gel and absorption on CaCl_{2}
3) Absorption on silica gel and adsorption on CaCl_{2}

Answer:

3) Adsorption on silica gel and absorption on CaCl_{2}

Explanation:

Adsorption is a surface phenomena and absorption is a bodily phenomena hence water vapours are adsorbed by silica gel and absorbed by anhydrous calcium chloride.

$K_{\mathbf{A}}$

41. Rate of physisorption increases with

1) Decrease in temperature
2) Increase in temperature
3) Decrease in pressure
4) Decrease in surface area

CHEMISTRY

Answer:

1) Decrease in temperature

Explanation:

Physisorption is exothermic hence it is favoured by low temperature.
$\mathbf{K}_{\mathbf{A}}$
42. In chemisorption, as the pressure increases the rate of adsorption

1) Decreases
2) Increases
3) Increases up to certain pressure and later remains constant
4) Remains the same

Answer:
3) Increases up to certain pressure and later remains constant

Explanation:

In chemisorption as pressure increases rate of adsorption also increases but pressure has no effect after the formation of unilayer.

$K_{\mathbf{A}}$

43.The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ increases in the presence of

1) Acetanilide
2) dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$
3) Alcohol
4) MnO_{2}

CHEMISTRY

Answer:
 4) MnO_{2}

Explanation:

MnO_{2} acts as positive catalyst acetanilide, dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, Alcohol acts as negative catalyst.

$K_{\mathbf{A}}$

44. An inhibitor is

1) A homogeneous catalysis
2) A heterogeneous catalyst
3) A negative catalyst
4) An auto catalyst

Answer:

3) A negative catalyst

Explanation:

Negative catalyst is a catalyst which decreases the rate of reaction.

Catalytic inhibitor decreases the efficiency of catalyst by blocking the active centres and hence rate of reaction decreases.
45. Potassium metabisulphite used as a food preservative is

1) A homogeneous catalyst
2) A heterogeneous catalyst
3) A positive catalyst
4) A negative catalyst

Answer:

4) A negative catalyst

Explanation:

Food preservative decreases the rate of spoiling of food hence it is taken as negative catalyst.
46. In the case of auto catalysis

1) Solvent catalyses
2) Product catalyses
3) Heat produced in the reaction catalyses
4) Reactant catalyses

CHEMISTRY

Answer:

2) Product catalyses

Explanation:

Auto catalyst is a substance produced during a reaction and it self acts as catalyst.

During the titrations using acidified $\mathrm{KMnO}_{4}, \mathrm{MnSO}_{4}$ formed as product and acts as an auto catalyst.
47. A catalytic poison destroys the activity of a catalyst by

1) Forming a protective coating on the layer of the surface of the catalyst
2) Decreasing the activation energy of the reaction
3) Establishing weak Vander Waals forces at the active centres
4) Blocking active centres permanently

Answer:
4) Blocking active centres permanently

Explanation:

Catalytic inhibitor decreases the efficiency of catalyst by blocking the active centres permanently.
48. For adsorption of a gas on a solid, the plot of $\log x / m$ Vs $\log P$ is linear with slope equal to (n being whole number)

1) k
2) logk
3) n
4) $1 / n$

Answer:
4) $1 / n$

Explanation:

W.K.T., Freundlich adsorption isotherm is $\mathrm{x} / \mathrm{m}=\mathrm{kp}{ }^{1 / \mathrm{n}}$, where x / m is the mass of the gas adsorbed per unit mass of the adsorbent, P is the equilibrium pressure, k and n are constants.
Taking log
$\log x / m=\log k+1 / n \log p$ is similar to equation of the straight line with slope m

$$
y=c+m x
$$

$\therefore m=1 / n$

49. Which of the following is not correct regarding the physical adsorption of a gas on the solid surface?

1) On increasing temperature, adsorption increases continuously
2) Enthalpy and entropy changes are negative
3) Adsorption is more for specific substance
4) It is a reversible reaction

Answer:

1) On increasing temperature, adsorption increases continuously

CHEMISTRY

Explanation:

Adsorption is exothermic hence it decreases with increasing temperature.
50. In Langmuir's model of adsorption of a gas on a solid surface

1) The rate of dissociation of adsorbed molecules from the surface does not depend on the surface covered
2) The adsorption at a single site on the surface may involve multiple molecules at the same time
3) The mass of gas striking a given area of surface is proportional to the pressure of the gas
4) The mass of gas striking a given area of surface is independent of the pressure of the gas

Answer:
3) The mass of gas striking a given area of surface is proportional to the pressure of the gas

CHEMISTRY

Explanation:

The amount of gas striking a given surface area is directly proportional to the pressure of gas.

51. Freundlich equation for a

 adsorption of gases (in amount of X g) on a solid (in amount of mg) at constant temperature can be expressed as$$
\begin{aligned}
& \text { 1) } \log \frac{X}{m}=\log p+\frac{1}{n} \log k \text { 2) } \frac{X}{m} \propto p^{n} \\
& \text { 3) } \frac{x}{m}=\log p+\frac{1}{n} \log k \\
& \text { 4) } \log \frac{X}{m}=\log k+\frac{1}{n} \log p
\end{aligned}
$$

CHEMSTRY

Answer:

4) $\log \frac{x}{m}=\log k+\frac{1}{n} \log p$

Explanation:

W.K.T., Freundlich adsorption isotherm is $\mathrm{x} / \mathrm{m}=\mathrm{kp}{ }^{1 / \mathrm{n}}$, where x / m is the mass of the gas adsorbed per unit mass of the adsorbent, P is the equilibrium pressure, k and n are constants.
Taking log
$\log x / m=\log k+1 / n \log p$

CHEMSTRY

Thank You

