

Welcome to Chemistry C.E.T. Class

N.R. Chandrashekara, M.Sc., M.Phil., Principal, Vishwamanava P.U. College, Sri Adichunchanagiri Shikshana Trust ® Vishwamanava Kshetra, Mandya Tq & Dist. Joint Secretary, Mandya Dist. P.U. College Principals Association, Vice President: Mandya Dist. Chemistry Lecturers Forum. Member: Mandya Dist. New P.U. College Inspection Committee.

Physical Chemistry Thermodynamics and Thermochemistry CH3 **Chemical Equilibrium** Surface Chemistry H₃C **Catalyst & Adsorption** C5H11

1. Which of the following values of heat of formation indicates that product is least stable?

C5H11

-94 kcal
 -231 kcal
 +21.4 kcal
 +64.8 kcal

Explanation:

Stability of compounds depend on the amount of heat evolved during their formation, larger the heat evolved, more stable is the compound. i.e. more positive ΔH_f , least stable is the compound.

2. If in a chemical reaction the products have less energy than the reactants that reaction is

C5H11

A reversible reaction
 An endothermic reaction
 An isothermal reaction
 An exothermic reaction

Explanation: Because $\Delta E = E_P - E_R$ Here, $E_P < E_R$ ∴ **∆E= - ve** CH3 Hence the reaction is exothermic H₃C C5H11

3. Given that $Zn+1/2 O_2 \rightarrow ZnO +$ 35.28kJ $HgO \rightarrow Hg+1/2O_2 - 9.11kJ$ so that heat of the reaction $Zn+HgO \rightarrow ZnO+Hg$ is 1) 26.17kJ 2) 44.39kJ 3) - 44.39kJ C5H11 4) 2.617kJ

H₃C

CHEMISTRY

Explanation:

Required equation=equation-1+ equation-2 \therefore Zn+HgO \rightarrow ZnO+Hg +26.17

C5H11

OH

4. A mixture of two moles of carbon monoxide and one mole of oxygen in a closed vessel, is ignited to convert the carbon monoxide to carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy **1)** $\Delta H > \Delta E$ **2)** $\Delta H < \Delta E$ **3)** $\Delta H = \Delta E$ 4) The relationship depends on the capacity of the vessel

Explanation: $\mathbf{2CO}_{(g)} + \mathbf{O}_{2(g)} \rightarrow \mathbf{2CO}_{2(g)}$ $\Delta n_g = n_p - n_r$ $\Delta n_g = 2 - 3$ $\Delta n_q = -1$ W.K.T. $\Delta H = \Delta E + RT \times \Delta n_a$ $\therefore \Delta H = \Delta E - RT$ Hence $\Delta H < \Delta E$ C5H11

5. Given C(graphite) \rightarrow C(g) Δ H=716.7kJ, C(diamond) \rightarrow C_(g), Δ H=714.8kJ. The Δ H for the reaction C(graphite) \rightarrow C(diamond) is

C5H11

1) 1.9kJ 2) -1.9kJ 3) Zero 4) 714.8kJ

Explanation:

H₃C

Required equation: equation1 – equation2 = 716.7kJ – 714.8kJ CH3 = 1.9kJ

C5H11

OH

C5H11

6. In the reaction CO₂(g)+H₂(g) → CO(g)+H₂O (g) △H=2.8kJ then △H represents 1) Heat of reaction 2) Heat of combustion 3) Heat of formation 4) Heat of solution

Answer: Heat of reaction 1) CH₃ OH H₃C C5H11

Explanation:

Enthalpy of reaction (ΔH_r) : Enthalpy of reaction is the enthalpy change when the number of moles of reactants react completely to give the products as indicated by the balanced chemical equation.

7. The enthalpies of elements in their standard states are taken as zero. Hence the enthalpy of formation of a compound

- Should always be negative
 Should always be positive
 Will be equal to twice the energy of combustion
- 4) May be positive or negative

C5H11

Answer:

H₃C

4) May be positive or negative

OH

CH3

Explanation:

Enthalpy of formation (ΔH_f) : It is the enthalpy change (heat evolved or absorbed) when one mole of compound formed from its elements under given condition.

8. The enthalpy of neutralization of acetic acid and sodium hydroxide is - 55.4kJ. What is the enthalpy of ionization of acetic acid

C5H11

1) -1.9 kJ 2) +1.9 kJ 3) +5.54 kJ 4) -5.54 kJ

H₂C

Explanation:

Enthalpy of ionization = Heat of neutralization of strong acid by a weak base or weak acid by a strong base + 57.3.

> е - 55.4kJ + 57.3kJ = 1.9kJ

9. The heat of formation of Fe₂O_{3(s)} is -820kJ. The heat of combustion of iron is 1) -410 kJ 2) -820 kJ 3) 820 kJ 4) -1620kJ

Explanation:

- 2Fe+ $O_2 \rightarrow Fe_2O_3$ △H=-820kJ 2×56g of Fe liberates 820kJ of Heat. ∴ 56g of Fe liberates kJ of Heat. = 820×56 ÷ 2×56 = 410 kJ
- Enthalpy of combustion (ΔH_c): It is the enthalpy change when one mole of the substance completely burnt in excess of air or oxygen. ΔH_c is always negative.

10. The thermochemical equation for the formation of Al_2O_3 is $2Al+.... \rightarrow Al_2O_{3(s)}$

C5H11

1) $3CO_{2(g)}$ 2) $3/2O_{2(g)}$ 3) $3/4O_{2(g)}$ 4) $2/3O_{2(g)}$

Explanation:

Enthalpy of formation (ΔH_f): It is the enthalpy change when one mole of compound formed from its elements under given condition.

is

CHEMISTRY

11. If 4g of methane are to be completely burnt, the amount of oxygen required

C5H11

OH

CH3 1) 4g 2) 8g 3) 16g 4) 32g

HaC

Explanation:

 $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$ 16g of methane requires 64g of O₂ \therefore 4g of methane requiresg of O₂ $= 4 \times 64 \div 16$ = 16

H₃C

CHEMISTRY

12. In an exothermic reaction heat is

- 1) Evolved
- 2) Absorbed
- 3) Either evolved or absorbed
- 4) Neither evolved nor absorbed

H₃C

CHEMISTRY

Explanation:

All exothermic reactions takes place with the liberation of heat.

C5H11

OH

CH3

13. Heat of transition is the heat evolved or absorbed when а substance is converted from 1) Solid to liquid 2) Solid to vapour 3) Liquid to vapour 4) One allotropic form to another allotropic form C5H11

Answer:

4) One allotropic form to another allotropic form

H₃C

Explanation: It is the enthalpy change when one mole of an element undergoes a transition from one allotropic form to another.

C5H11

14. Heat of neutralisation of a strong acid by a strong base is a constant because

- Salt formed does not hydrolyse
 Only H⁺ and OH⁻ ions react in every case
- 3) The strong base and strong acid react completely
- 4) The strong base and strong acid react in aqeous solution.

Answer:

H₃C

CH3

2) Only H⁺ and OH⁻ ions react in every case

C5H11

OH

Explanation:

Heat of neutralisation of strong acid by a strong base is nothing but reaction of H⁺ ion of strong acid with OH⁻ ion of strong base to form water only.

C5H11

i.e. $H^+ + OH^- \rightarrow H_2O$ $\Delta H = -57.3 \text{ kJ}.$

15. The heat of formation of carbon dioxide is -393.5kJ. The heat of decomposition of carbon dioxide into the elements is 1) 393.5kJ OH 2) 161.7kJ 3) 196.7kJ 4) 203kJ C5H11

Explanation:

According to Lavoisier and Laplace law 'The quantity of heat that required to decompose a compound in to its elements is equal to the quantity of heat liberated when the same amount of compound is formed from its elements.

*C5H11

16. When a gm. atom of carbon is converted into a gm. molecule of carbon dioxide, the heat liberated is the same 1) Irrespective of whether the volume is kept constant. 2) Irrespective of the temperature at which the reaction was carried out. C5H11

3) Whether the carbon taken was graphite or diamond.

4) Whether the reaction was carried out in one step or whether the carbon was first converted to carbon monoxide and then to carbon dioxide

C5H14

Answer:

HaC

4) Whether the reaction was carried out in one step or whether the carbon was first converted to carbon monoxide and then to carbon dioxide

C5H11

OH

H₂C

Explanation:

According to Hess's law of constant heat summation "The enthalpy change in a given reaction is the same whether the reaction takes place in one step or several steps.

C5H11

H₃C

CHEMISTRY

C5H11

17. $\Delta H = \Delta E$ for the reaction

1) $N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$ 2) $2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)}$ 3) $PCI_{5(g)} \leftrightarrow PCI_{3(g)} + CI_{2(g)}$ 4) $N_{2(g)} + O_{2(g)} \leftrightarrow 2NO_{(g)}$

C5H11

Answer:

H₃C

CH3

4) $N_{2(g)} + O_{2(g)} \leftrightarrow 2NO_{(g)}$

OH

Explanation: W.K.T., $\Delta H = \Delta E + \Delta n R T$, Where Δn =difference in number of moles of gaseous products and reactants. OH $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ **∆n=2–2=0** $\therefore \Delta H = \Delta E$ C5H11

18. Given $2C_{(s)} + 2O_{2(g)} \rightarrow 2CO_{2(g)}$; **∆H=-787kJ** $H_{2(g)}$ + $\frac{1}{2}O_{2(g)} \rightarrow H_2O_{(I)}$; ΔH =-286kJ $C_2H_{2(g)}+2^{1/2}O_{2(g)} \rightarrow 2CO_{2(g)}+H_2O_{(l)};$ $\Delta H=-1301kJ$, heat of formation of acetylene is -1802 kJ 1) -1802 kJ 2) +1802 kJ 3) -800 kJ C5H11 4) +228 kJ

Explanation:

$$\begin{split} \Delta H &= H_{P} - H_{R} \\ \Delta H &= 2 \Delta H_{fCO2} + \Delta H_{fH2O} - \Delta H_{fC2H2} - 2^{1}/_{2} \Delta H_{fO2} \\ -1301 &= -787 - 286 - \Delta H_{fC2H2} - 2^{1}/_{2} \times 0 \\ -1301 &= -787 - 286 - \Delta H_{fC2H2} - 0 \\ \Delta H_{fC2H2} &= -787 - 286 + 1301 \\ \Delta H_{fC2H2} &= +228 \text{ kJ} \end{split}$$

C5H11

19. If the unit of K_c for the equilibrium $PCI_{5(g)} \leftrightarrow PCI_{3(g)}+CI_{2(g)}$ is mol/m³. the unit of K_p is

C5H11

OH

1) Jm⁻³ 2) Nm⁻³ 3) Jm⁻² 4) Nm⁻²

H₃C

K

CHEMISTRY

 $= \frac{\text{mol}}{\text{m}^3} \times (J \text{mol}^{-1} k^{-1}) k$

C5H11

Explanation: PCI_{5(g)} ⇔PCI_{3(g)} + CI_{2(g)}

 $\therefore \Delta n_g = n_p - n_r = 2 - 1 = 1$ Hence, $K_p = K_c \times RT$,

Jm⁻³

C5H11

20. $2SO_2+O_2 \Leftrightarrow 2SO_3$ the forward reaction is favoured by

High temperature
 Low pressure
 Removal of sulphur dioxide
 High pressure

H₃C

CHEMISTRY

C5H11

Answer: 4) High pressure

OH

CH3

Explanation: In a reaction, If $\Delta n_q = n_p - n_r = -ve$, high pressure is favoured for the reaction $2SO_{2(g)}+O_{2(g)} \Leftrightarrow 2SO_{3(g)}$ In this reaction $\Delta n_q = 2 - 3 = -1$ If $\Delta n < 0$ high pressure favours forward reaction. $\Delta n > 0$ high pressure favours backward reaction. $\Delta n=0$ pressure has no effect on the reaction at equilibrium.

21. The equilibrium $N_2+O_2 \Leftrightarrow 2NO$ is established in a reaction vessel of 2.5 litres capacity. The amounts of nitrogen and oxygen taken at the start were respectively 2 moles and 4 moles. Half a mole of nitrogen has been used up at equilibrium. The molar concentration of nitric oxide is 1) 0.2 2) 0.4 3) 0.6 4) 0.1

Explanation:

No. of moles at t=0 in 2.5 litres

CH3

No. of moles at equilibrium

$\begin{array}{c} \mathsf{N}_2 + \mathsf{O}_2 \Leftrightarrow 2\mathsf{NO} \\ \mathsf{2} \quad \mathsf{4} \quad \mathsf{0} \end{array}$

$(2 - 0.5) (4 - 0.5) (2 \times 0.5)$

∴ [NO] = No. moles / volume = 1 / 2.5 = 0.4

OH

22. One mole of hydrogen iodide is heated in a closed container of capacity 2 litres. At equilibrium half a mole of hydrogen iodide has dissociated. The equilibrium constant is OH 1) 1.00 2) 0.50 3) 0.25 C5H11 4) 0.75

Explanation: 2HI \Leftrightarrow **H**₂ + **I**₂ No. of moles at t=0 0 0 in 2 litres No. of moles at (1 - 0.5) (0.25) (0.25)equilibrium :. [H₂]=No. moles at eq./volume=0.25 / 2=0.125 [l₂]=No. moles at eq./volume=0.25 / 2=0.125 [HI]=No. moles at eq./volume=0.5 / 2= 0.25 $\mathbf{K} = \frac{\left[\mathbf{H}_{2}\right]\left[\mathbf{I}_{2}\right]}{\left[\mathbf{HI}\right]^{2}} = \frac{0.125 \times 0.25}{\left(0.25\right)^{2}} = 0.25$

23. A and B are gaseous substances which react reversibly to give two gaseous substances C and D, accompanied by liberation of heat. When the reaction reached equilibrium it is found that K_c= K_p. The equilibrium cannot be disturbed by 1) Adding A 2) Adding D 3) Raising the temperature 4) Increasing the pressure

C5Hin

Answer:

H₃C

CH3

4) Increasing the pressure

OH

Explanation:

 $\begin{array}{l} \mathsf{A}_{(g)}+\mathsf{B}_{(g)}\Leftrightarrow\mathsf{C}_{(g)}+\mathsf{D}_{(g)}+\mathsf{Heat}\\ \mathsf{Here},\,\Delta n=n_p\text{-}n_r=2\text{-}2=0\\ \mathsf{K}_p=\mathsf{K}_c(\mathsf{RT})^{\Delta n}\\ \mathsf{If}\,\Delta n=0,\;\mathsf{K}_p=\mathsf{K}_c\\ \quad \mathsf{In \ such \ cases \ pressure \ has \ no \ effect}\\ \mathsf{on \ the \ equilibrium} \end{array}$

C5H11

24. In a reaction $A+B \Leftrightarrow C+D$ the initial concentration of A and B were 0.9 mol dm⁻³ each. At equilibrium the concentration of D was found to be 0.6 mol dm⁻³. What is the value of equilibrium constant for the reaction? 1) 8 2) 4 3) 9 4) 3

Explanation:

Initial Concentration equilibrium at t=0

0.9 0.9 0 0

+ $B \Leftrightarrow C + D$

No. of moles at equilibrium

(0.9-0.6)(0.9-0.6)0.60.6

K=[C][D] + [A][B] = (0.6)(0.6)+(0.3)(0.3)=2×2=4

25. 5 moles of SO₂ and 5 moles of O₂ are allowed to react to form SO₃ in the closed vessel. At equilibrium state, 60% of SO₂ is used. The total number of moles of SO₂, O₂ and SO₃ in the vessel now is 10.0 1) 2) 8.5 3) 10.5 C5H11 3.9 4)

2SO,

5

Explanation:

Initial Concentration equilibrium at t=0

No. of moles at of equilibrium

(5-3) (5-1.5) 3

+ $O_2 \Leftrightarrow 2SO_3$

0

5

Total Number of moles = 2+3.5+3 = 8.5 mol

26. The rate of forward reaction is twice the rate of reverse reaction at a given temperature and identical concentration K_{eq} is

C5H11

1) 0.5 2) 1.5 3) 2.5 4) 2.0

C5H11

Explanation: $K = K_f / K_b$ K = 2.0 / 1.0K = 2CH3 OH H₃C

27. 2HI \leftrightarrow H₂ + I₂ Here the relation between K_P and K_C is

C5H11

1) $K_{P} \ge K_{C}$ 2) $K_{P} \le K_{C}$ 3) $K_{P} = K_{C}$ 4) $K_{P} \neq K_{C}$ Hoc

Explanation: W.K.T., K_p=K_c(RT)^{∆n} $2HI_{(g)} \leftrightarrow H_{2(g)} + I_{2(g)};$ **∆n= 2 - 2=0** OH $\therefore K_p = K_c$ H₃C C5H11

28. $N_2+3H_2 \leftrightarrow 2NH_3 + Heat$. What is the effect of increase of temperature on the equilibrium of the reaction? **Equilibrium is shifted to the left** 1) 2) **Equilibrium is shifted to the right Equilibrium is unaltered** 3) **Reaction rate does not change** 4)

C5H11

H₃C

CH3

CHEMISTRY

C5H11

Answer: 1) Equilibrium is shifted to the left

OH

Explanation:

According Le-chatelier's principle all exothermic reactions are favoured by low temperature. Since the forward reaction is exothermic. If we increase the temperature backward reaction takes place. Hence equilibrium shifted to left.

*C5H11

29. The reaction in which the yield of the product cannot be increased by the application of high pressure is 1) $PCI_3 + CI_2 \leftrightarrow PCI_5$ 2) $N_2 + O_2 \leftrightarrow 2NO$ 3) $N_2 + 3H_2 \leftrightarrow 2NH_3$ 4) $2SO_2 + O_2 \leftrightarrow 2SO_3$

C5H11

H₃C

CHEMISTRY

C5H11

Answer: 2) $N_2 + O_2 \leftrightarrow 2NO$

OH

CH3

H₃C

CH3

CHEMISTRY

Explanation: If ∆n=0, then the pressure has no effect on the equilibrium.

In this reaction $N_{2(g)} + O_{2(g)} \leftrightarrow 2NO_{(g)}; \Delta n=2-2=0$

C5H11

30. At any moment before a reversible reaction attains equilibrium it is found that

- 1) The velocity of the forward reaction is increasing and that of the backward reaction is decreasing.
- 2) The velocity of the forward reaction is decreasing and that of the backward reaction is increasing.

The velocities of both the forward reaction and backward reaction are increasing.
The velocities of both the forward reaction and backward reaction are decreasing.

C5H11

Answer:

HaC

2) The velocity of the forward reaction is decreasing and that of the backward reaction is increasing.

C5H11

OH

31. In a catalytic conversion of N_2 to NH_3 by Haber process the rate of a reaction was expressed as change in the concentration of ammonia per time is 40×10⁻³ mol l⁻¹s⁻¹. If there are no side reactions the rate of the concentration as expressed in terms of hydrogen is C5H11

H₃C

C5H11

1) 60×10⁻³ mol l⁻¹ s⁻¹ 2) 20×10⁻³ mol l⁻¹ s⁻¹ 3) 1200 mol l⁻¹ s⁻¹ 4) 10.3×mol l⁻¹ s⁻¹

OH

H₃C

CHEMISTRY

C5H11

Answer: 1) 60×10⁻³ mol I⁻¹ s⁻¹

OH

CH3

Explanation: $N_{2(g)}+3H_{2(g)} \leftrightarrow 2NH_{3(g)}$ $-d[N_2] / dt = -1/3d[H_2]/dt = 1/2d[NH_3]/dt$ Given, d[NH₃]/dt=40×10⁻³ mol I⁻¹ s⁻¹ $d[H_2]/dt=?$ W.K.T., $1/3d[H_2]/dt = 1/2d[NH_3]/dt$ $d[H_2]/dt = 3/2d[NH_3]/dt$ $d[H_2]/dt = 3/2 \times 40 \times 10^{-3}$ $d[H_2]/dt = 60 \times 10^{-3} \text{ mol } l^{-1} \text{ s}^{-1}$

32. At a given temperature, the equilibrium constant for the reaction, $PCI_{5(g)} \leftrightarrow PCI_{3(g)}+CI_{2(g)}$ is 2.4×10⁻³. At the same temperature, the equilibrium constant for the reaction $PCI_{3(g)}+CI_{2(g)} \leftrightarrow PCI_{5(g)}$ is 1) 2.4×10⁻³ 2) -2.4×10⁻³ 3) 4.2×10² C5H11 4) 4.8×10⁻²

C5H11

Explanation: Given, K_f = 2.4 × 10⁻³ **K**_b=? W.K.T., $K_{b}=1/K_{f}$ $K_{b} = 1/2.4 \times 10^{-3}$ $K_{b} = 0.416 \times 10^{3}$ $K_{b} = 4.2 \times 10^{2}$ H₃C

33. In a vessel containing SO₃, SO₂, and O₂ at equilibrium, some helium gas is introduced so that the total pressure increases while temperature and volume remains constant. According to Lechatelier principle, the dissociation of SO₃ is 1) Increases 2) decreases 3) remains unaltered 4) changes unpredictably

Explanation:

 $\mathbf{2SO}_{2(g)} + \mathbf{O}_{2(g)} \leftrightarrow \mathbf{2SO}_{3(g)}$ $\therefore \Delta n_q = n_p - n_r = 2 - 3 = -1$ If $\Delta n_q = 0$, pressure has no effect on the equilibrium If Δn_{q} =+ve, high pressure favours backward reaction. If Δn_q =-ve, high pressure favours forward reaction. Hence rate of backward reaction decreases.

34. Which of the following types of metals form the most efficient catalysts? 1) Alkali metals 2) Alkaline earth metals 3) Transition metals 4) All of these

C5H11

Answer: 3) Transition metals

Explanation:

This is because they can provide larger surface for the adsoprtion of reactants and they exhibit multiple oxidation state.

C5H11

OH

HaC

35. Which of the following statements is not true?

- 1) A catalyst alters the rate of a reaction
- 2) A catalyst is specific in nature
- 3) A catalyst initiates a reaction
- 4) A catalyst does not affect an equilibrium

C5H11

CH3

CHEMISTRY

Answer: 3) A catalyst initiates a reaction

C5H11

HaC

Explanation:

Catalyst does not initiate a reaction just it accelerates the reaction which is already in progress.

C5H11

36. Mark the correct statement, in a reversible reaction.

- 1) The catalyst catalyses the forward reaction
- 2) The catalyst catalyses the backward reaction
- The catalyst influences the direct and the reverse reaction to the same extent
 The catalyst increases the rate of forward reaction and decreases the rate of backward reaction.

Answer:

HaC

CH3

3) The catalyst influences the direct and the reverse reaction to the same extent.

C5H11

HaC

Explanation:

The catalyst helps to attain the equilibrium quickly by accelerating both forward and backward reaction equally.

C5H11

37. Which of the statements is wrong among the following?

- 1) Haber's process of NH₃ requires iron as catalyst
- 2) Friedel-Craft's reaction uses iron as catalyst.
- 3) Hydrogenation of oils uses iron as catalyst
- 4) Oxidation of SO_2 to SO_3 requires V_2O_5

Answer: 3) Hydrogenation of oils uses iron as catalyst

CHEMISTRY

Explanation:

In the hydrogenation of oil nickel is used as catalyst.

C5H11

OH

CH3

38. Which one of the following is a homogeneous catalysis?

- 1) Hydrogenation of oils
- 2) Synthesis of ammonia by Haber's
 - process OH
- 3) Manufacture of sulphuric acid by
 - lead chamber process
- 4) Manufacture of sulphuric acid by
 - contact process

CH3

CHEMISTRY

Answer: 3) Manufacture of sulphuric acid by lead chamber process

C5H11

Explanation:

2SO_{2(g)}

H₂C

In Lead chamber process following reaction takes place, Here reactants and catalysts are in same phase.

 $\stackrel{\mathsf{NO}_{(g)}}{\Leftrightarrow} 2SO_{3(g)}$

C5H11

39. The adsorption of inert gases on the surface of activated charcoal increases with **Decrease of both atomic mass and** 1) temperature Increase of both atomic mass and 2) temperature Increase of atomic mass and decrease 3) in temperature **Decrease of atomic mass and increase** 4) in temperature

CH3

CHEMISTRY

C5H11

Answer: 3) Increase of atomic mass and decrease in temperature

HaC

CHEMISTRY

Explanation:

CH3

Increase in atomic mass and decrease in temperature are favourable for adsorption.

C5H11

40. A small amount of silica gel and that of anhydrous CaCl₂ are placed separately in two corners of room containing water vapour. What phenomena will occur in these two OH cases? 1) Adsorption in both 2) Absorption in both 3) Adsorption on silica gel and absorption on CaCl₂ 4) Absorption on silica gel and adsorption on CaCl₂

Answer:

H₃C

3) Adsorption on silica gel and absorption on CaCl₂

C5H11

OH

CH3

Explanation:

Adsorption is a surface phenomena and absorption is a bodily phenomena hence water vapours are adsorbed by silica gel and absorbed by anhydrous calcium chloride.

C5H11

HaC

41. Rate of physisorption increases with

C5H11

Decrease in temperature
 Increase in temperature
 Decrease in pressure
 Decrease in surface area

Answer:

1) Decrease in temperature

CHEMISTRY

Explanation:

Physisorption is exothermic hence it is favoured by low temperature.

C5H11

OH

CH3

42. In chemisorption, as the pressure increases the rate of adsorption Decreases 1) 2) Increases 3) Increases up to certain pressure and later remains constant 4) **Remains the same** HaC

C5H11

CH3

CHEMISTRY

Answer: 3) Increases up to certain pressure and later remains constant

C5H11

HaC

Explanation: In chemisorption as pressure increases rate of adsorption also increases but pressure has no effect after the formation of unilayer.

C5H11

CHEMISTRY

43.The decomposition of H₂O₂ increases in the presence of 1) Acetanilide 2) dil.H₂SO₄ 3) Alcohol 4) MnO₂

C5H11

Explanation:

MnO_2 acts as positive catalyst acetanilide, dil.H₂SO₄, Alcohol acts as negative catalyst.

C5H11

C5H11

44. An inhibitor is

A homogeneous catalysis
 A heterogeneous catalyst
 A negative catalyst
 A nauto catalyst

Explanation:

Negative catalyst is a catalyst which decreases the rate of reaction. Catalytic inhibitor decreases the efficiency of catalyst by blocking the active centres and hence rate of reaction decreases.

C5H11

45. Potassium metabisulphite used as a food preservative is 1) A homogeneous catalyst 2) A heterogeneous catalyst 3) A positive catalyst 4) A negative catalyst

C5H11

CHEMISTRY

C5Hin

Answer: 4) A negative catalyst

OH

CH3

HaC

Explanation:

Food preservative decreases the rate of spoiling of food hence it is taken as negative catalyst.

C5H11

CHEMISTRY

C5H11

46. In the case of auto catalysis

- 1) Solvent catalyses
- 2) Product catalyses
- 3) Heat produced in the reaction catalyses
- 4) Reactant catalyses

Explanation:

Auto catalyst is a substance produced during a reaction and it self acts as catalyst. During the titrations using acidified KMnO₄, MnSO₄ formed as product and acts as an auto catalyst.

C5H11

47. A catalytic poison destroys the activity of a catalyst by

- 1) Forming a protective coating on the layer of the surface of the catalyst
- 2) Decreasing the activation energy of the reaction
- 3) Establishing weak Vander Waals forces at the active centres
- 4) Blocking active centres permanently

H₃C

CH3

CHEMISTRY

C5H11

Answer: 4) Blocking active centres permanently

OH

Explanation:

Catalytic inhibitor decreases the efficiency of catalyst by blocking the active centres permanently.

48. For adsorption of a gas on a solid, the plot of log x/m Vs log P is linear with slope equal to (n being whole number) k 1) OH 2) logk 3) n 1/n

C5H11

Explanation: W.K.T., Freundlich adsorption isotherm is x/m=kp^{1/n} where x/m is the mass of the gas adsorbed per unit mass of the adsorbent, P is the equilibrium pressure, k and n are constants. **Taking log** log x/m=logk+1/n logp is similar to equation of the straight line with slope m y=c + m x ∴ m=1/n

49. Which of the following is not correct regarding the physical adsorption of a gas on the solid surface? **On increasing temperature, adsorption** 1) increases continuously 2) Enthalpy and entropy changes are negative 3) Adsorption is more for specific substance C5H11 It is a reversible reaction 4)

Answer:

H₃C

1) On increasing temperature, adsorption increases continuously

C5H11

OH

CH3

H₃C

CHEMISTRY

Explanation:

Adsorption is exothermic hence it decreases with increasing temperature.

C5H11

OH

CH3

50. In Langmuir's model of adsorption of a gas on a solid surface

 The rate of dissociation of adsorbed molecules from the surface does not depend on the surface covered
 The adsorption at a single site on the surface may involve multiple molecules at the same time

C5H11

3) The mass of gas striking a given area of surface is proportional to the pressure of the gas
4) The mass of gas striking a given area of surface is independent of the pressure of the gas

C5H11

Answer:

H₃C

3) The mass of gas striking a given area of surface is proportional to the pressure of the gas

C5H11

OH

HaC

Explanation:

The amount of gas striking a given surface area is directly proportional to the pressure of gas.

C5H11

OH

51. Freundlich equation for a adsorption of gases (in amount of X g) on a solid (in amount of m g) at constant temperature can be expressed as

Explanation: W.K.T., Freundlich adsorption isotherm is x/m=kp^{1/n} where x/m is the mass of the gas adsorbed per unit mass of the adsorbent, P is the equilibrium pressure, k and n are constants. Taking log log x/m=logk+1/nlogp C5H11

