

H₃C

CHEMISTRY

Topics:

METALLURGY-1 ATOMIC STRUCTURE OXIDATION NUMBER

Metallugy-1

- Composition of different ores
- Methods of concentration of ore
- Calcination and roasting
- Pyrometallurgy
- Electrometallurgy
- Hydrometallurgy
 - Different methods of refining

H₃C

CHEMISTRY

1.A cuprous ore among the following is

a) Malachite
b) Cuprite
c) Azurite
d) Chalcopyrite

a)Malachite $\longrightarrow [CuCO_3.Cu(OH)_2]$ b)Cuprite $\longrightarrow Cu_2O$ c)Azurite $\longrightarrow [2CuCO_3.Cu(OH)_2]$ d)Chalcopyrite $\longrightarrow CuFeS_2$

-l₃C

CHEMISTRY

C5H11

1.A cuprous ore among the following is

a)Malachite b)cuprite c)Azurite d)Chalcopyrite

-13C

CHEMISTRY

C5H11

2.For an ore containing silicon impurities suitable flux is

a) Silica
b) Phosphorous pentoxide
c) Manganese oxide
d) Calcined dolomite

-13C

- Silicon impurities are acidic in nature.
- so basic flux like CaO ,FeO and MgO are used.

2.For an ore containing silicon impurities suitable flux is

a)Silica b)Phosphorous pentoxide c)Manganese oxide d)calcined dolomite

3. Which of the following has lowest percentage of carbon?

a) Steel
b) Cast iron
c) Wrought iron
d) All have same percentage

-aC

CHEMISTRY

• Wrought iron \rightarrow carbon 0.12 to 0.25%

• Steel \rightarrow carbon 0.25 to 2.5%

OH

Cast iron/Pig Iron→carbon 2.5 to 4.5%

3. Which of the following has lowest percentage of carbon?

a) Steel
b) Cast iron
c) Wrought iron
d) All have same percentage

4. In Alumino Thermic Process, Thermite mixture contains

a) 3 parts Fe_2O_3 and 2 parts Al b) 3 parts Al_2O_3 and 4 parts Al c) 1 part Fe_2O_3 and 1 part Al d) 3 parts Fe_2O_3 and 1 part Al

H₃C

сн. 3

CHEMISTRY

1

OH

•

$Fe_2O_3 + 2AI \longrightarrow 2Fe + Al_2O_3$

4. In Alumino Thermic Process, Thermite mixture contains

a) 3 parts Fe_2O_3 and 2 parts Al b) 3 parts AI_2O_3 and 4 parts Al c) 1 part Fe_2O_3 and 1 part Al d) 3 parts Fe_2O_3 and 1 part Al

5. In order to refine blister copper, it is melted in a furnace and stirred with green logs of wood. The purpose is

a) To expel the dissolved gases present in blister copper.
b) To bring the impurities to the surface and oxidise them.

c)To increase the carbon content of copper.
d)To reduce the metallic oxide impurities with hydrocarbon gases liberated from the wood.

Blister copper means 98% of cu, contains mainly oxide impurities.

 $3Cu_2O+CH_4 \rightarrow 6Cu+2H_2O+CO$

KEA

CHEMISTRY

a) To expel the dissolved gases present in blister copper. b) To bring the impurities to the surface and oxidise them. c) To increase the carbon content of copper. d) To reduce the metallic oxide impurities with hydrocarbon gases liberated from the wood.

6. Gold is extracted by Hydrometallurgical process based on it's property a) Of being electropositive b) Of being less reactive c) To form salts which are water soluble d) To form complexes which are water soluble. C5H11

H₃C

CH₃

• $4Au + 8KCN + 2H_2O + O_2 \rightarrow 4K[Au(CN)_2 + 4KOH$

C5H11

• $2K[Au(CN)_2] + Zn \longrightarrow K_2[Zn(CN)_4] + Au$

6. Gold is extracted by Hydrometallurgical process based on it's property

a) Of being electropositive
b) Of being less reactive
c) To form salts which are water soluble
d) To form complexes which are water soluble.

7. In which of the following ore, calcination is not applicable

a) $CaCO_3$ b) $AI_2O_32H_2O$ c) PbS d) $CaCO_3MgCO_3$

H₃C

CHEMISTRY

$CaCO_3 \longrightarrow CaO + CO_2$

$MgCO_{3} \xrightarrow{} MgO + CO_{2}$ $Al_{2}O_{3}2H_{2}O \xrightarrow{} Al_{2}O_{3}+2H_{2}O$

7. In which of the following ore, calcination is not applicable

C5H11

a) $CaCO_3$ b) $Al_2O_32H_2O$ c) PbS d) $CaCO_3MgCO_3$

8.Which of the following process is used in the extractive metallurgy of magnesium?

- a) Fused salt electrolysis
- b) Self reduction
- c) Aqueous solution electrolysisd) Thermite reduction

For electropositive metals like Na, K, Ca, Mg, Al etc. are extracted by electrolysis of fused salts like Halides, Hydroxides oxides etc.

8. Which of the following process is used in the extractive metallurgy of magnesium?

a) Fused salt electrolysis
b) Self reduction
c) Aqueous solution electrolysis
d) Thermite reduction

Atomic structure

- Constituents of atom
- Electromagnetic spectrum
- Plank's quantum theory of radiation
- Line or atomic spectrum
- Bohr's atomic model and its limitations
- Dual nature of electron
- Quantum numbers and Shape of orbital
- Rules for writing the electronic configuration of elements.

9. For which of the following species, Bohr's theory is not applicable?

C5H11

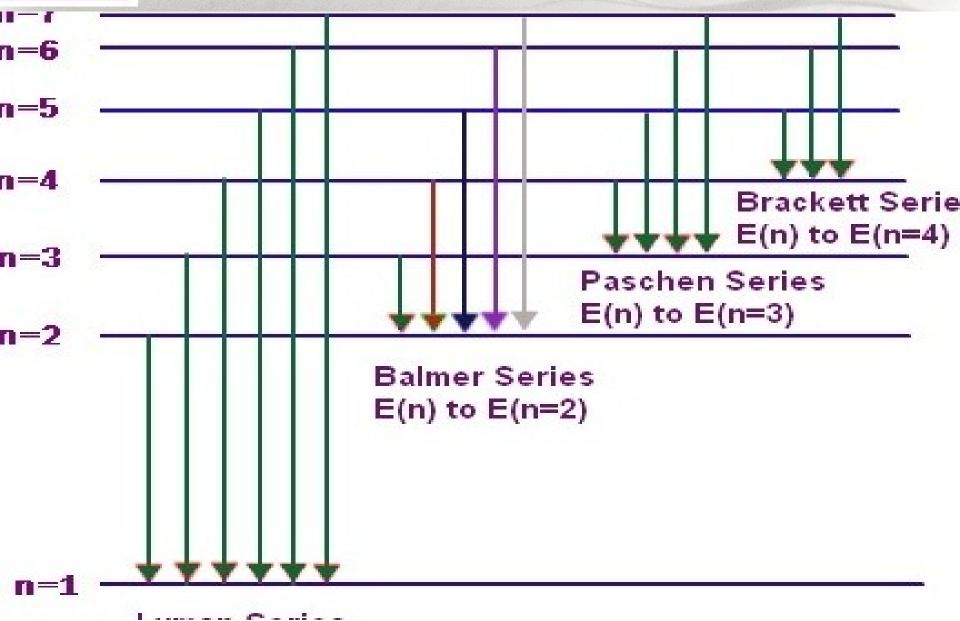
a) H b) He²⁺ c) Li²⁺ d) Be³⁺

H contains Z=1 electron

He²⁺ contains Z-2 = 2-2 = 0 electron

Li^{2+} contains Z-2 = 3-2 = 1 electron

Be³⁺ contains Z-2= 4-3 = 1 electron



9. For which of the following species, Bohr's theory is not applicable? a)H b)He²⁺ c) Li²⁺ d) Be³⁺ H3C

10. Number of visible lines observed when an electron jumps back from 5th orbit to ground state hydrogen spectrum are a) 3 b)4 c) 5 -13C d) 10

10. Number of visible lines observed when an electron jumps back from 5th orbit to ground state hydrogen spectrum are

C5H11

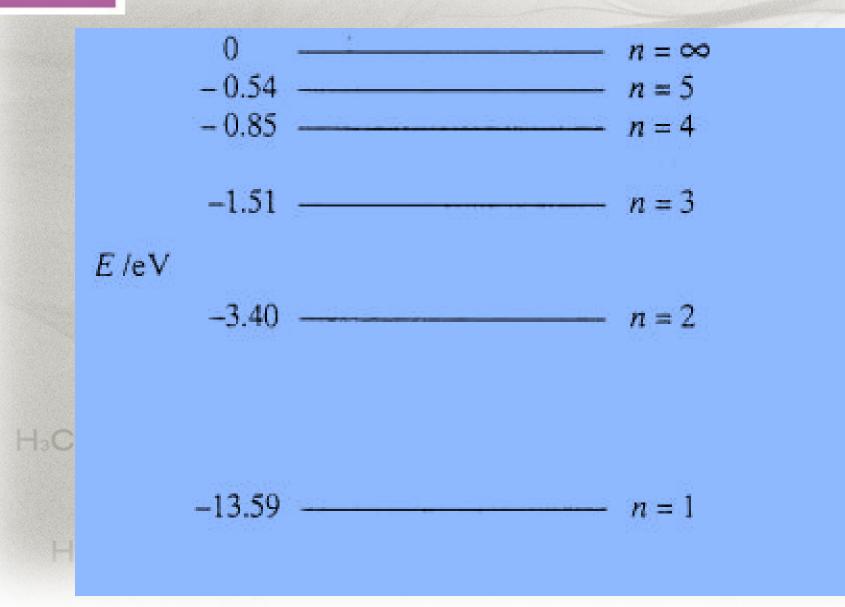
a)3 b)4 c)5 d)10

KEA

CHEMISTRY

11. Which of the following electron transitions in a hydrogen atom will require large amount of energy?

a) From n=1 to n=2
b) From n=2 to n=3
c) From n=∞ to n=1
d) From n=3 to n=4



• As we go away from the nucleus, the energy level comes closer.

• Therefore $E_2 - E_1 > E_3 - E_2 > E_4 - E_3 > E_5 - E_4$ etc.

KEA

CHEMISTRY

11. Which of the following electron transitions in a hydrogen atom will require large amount of energy? a) From n=1 to n=2 b) From n=2 to n=3 c) From n=∞ to n=1 d) From n=3 to n=4

12. The wave length of radiation emitted, when in a H atom electron falls from infinity to stationary state-1 would be $(R = 1.097 \times 10^7 \, \text{m}^{-1})$ a) 406nm b) 192nm - c)91nm d) 9.1X10⁻⁸nm

KEA

CHEMISTRY

$$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

= 1.097 X10⁷ $\left(\frac{1}{1} - \frac{1}{\infty} \right) m^{-1}$
= 1.097 X10⁷ (1-0) m⁻¹
= 1.097 X10⁷ m^{-1}
 $\lambda = \frac{1}{1.097 X10^7}$
= 0.91 X10⁻⁷ m
= 91 X10⁻⁹ m = 91 nm

12.The wave length of radiation emitted, when in a H atom electron falls from infinity to stationary state-1 would be (R =1.097X10⁷ m⁻¹)

C5H11

a) 406nm b) 192nm c) 91nm d) 9.1X10⁻⁸nm

H₃C


CHEMISTRY

C5H11

13. Which d orbital has lobes directed along the axis?

 $\begin{array}{c} \textbf{a} d_{xy} \\ \textbf{b} d_{yz} \\ \textbf{c} d_{xz} \\ \textbf{d} d_{x^2-y^2} \end{array}$

H₃C

CH₃

CHEMISTRY

13.Which d orbital has lobes directed along the axis?

C5H11

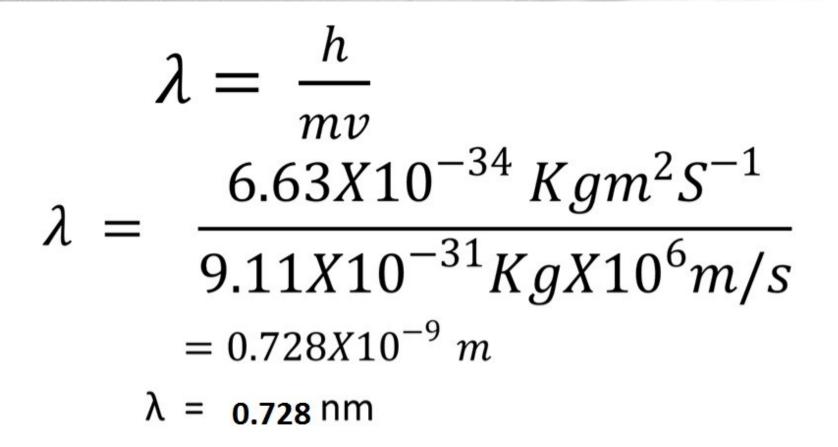
a) d_{xy} b) d_{yz} c) d_{xz} d) $d_{x^2-y^2}$

14. Consider the ground state of Cr atom(z=24). The number of electrons with the azimuthal quantum number I=1 and I=2 are respectively a) 16 and 4 b) 12 and 5 c) 12 and 4 d) 16 and 5 C5H11

 Electronic configuration of Cr(Z=24) is 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d⁵ when I=1, it is p sub shell so 6+6=12 electrons • When I=2, it is d sub shell so 5 electrons

KEA

CHEMISTRY


14. Consider the ground state of Cr atom(z=24). The number of electrons with the azimuthal quantum number I=1 and I= 2 are respectively a) 16 and 4 b) 12 and 5 c) 12 and 4 d) 16 and 5

KEA

CHEMISTRY

15. What is the wave length associated with an electron moving with velocity of 10⁶ m/s (Given h=6.63X10-34Js and $m=9.11X10^{-31}Kg)$ a) 7.27nm b) 72.7nm c) 0.727nm d) None of the above

KEA

H3C

CHEMISTRY

15. What is the wave length associated with an electron moving with velocity of 10⁶ m/s (Given h=6.63X10⁻³⁴Js and m=9.11X10⁻³¹Kg)

> a) 7.27nm b) 72.7nm c) 0.727nm d) None of the above

16.There is no difference between 2p and 3p orbital regarding

C5H11

a)Shape b)Size c)Energy d)Value of n

 The principal quantum number gives energy and size of orbit.

- It is denoted by **n**
- In 2p ,n=2
- In 3p,n=3

16.There is no difference between 2p and 3p orbital regarding a) Shape b) Size c) Energy d) Value of n H3C

Oxidation number

- Electronic concept of oxidation and reduction
- Calculation of Oxidation number by some arbitrary rules
- Exceptional cases of Oxidation numbers
- Redox reactions
- How to balance redox reaction?
- Calculation of equivalent mass of an oxidising and redusing agents.

17. Oxidation is removal of electrons. Therefore strongest oxidizer is a) Fluorine b) Chlorine c) lodine d) oxygen

H₃C

CHEMISTRY

Oxidiser helps for oxidation by taking electrons.

• F is more electronegative so good oxidiser.

17. Oxidation is removal of electrons. Therefore strongest oxidizer is a) Fluorine b) Chlorine c) lodine d) oxygen

18. The oxidation number and electronic configuration of sulphur in H_2SO_4 is

a) +4 : $1s^2 2s^2 2p^6 3s^2$ b) +6 : $1s^2 2s^2 2p^6 3s^2 3p^4$ c) +3 : $1s^2 2s^2 2p^6 3s^2 3p^1$ d) +6 : $1s^2 2s^2 2p^6$

C5H11

O.N of S in H₂SO₄ is 2(+1)+1(x)+4(-2)=0 Therefore x=+6 In +6 state, S has Z-6=16-6=10

electrons.

Therefore 1s² 2s² 2p⁶

C5H11

18. The oxidation number and electronic configuration of sulphur in H₂SO₄ is a) +4 : $1s^2 2s^2 2p^6 3s^2$ b)+6 : $1s^2 2s^2 2p^6 3s^2 3p^4$ c) +3 : $1s^2 2s^2 2p^6 3s^2 3p^1$ d)+6 : 1s² 2s² 2p⁶

C5H11

19. The oxidation number of nitrogen in N₃H is a) +1/2 b) +3 c) -1 OH d) -1/3 H₃C

• $\ln N_3 H$, Oxidation NO.of N= 3(x)+1(+1)=0: • x=-1/3 OH H₃C

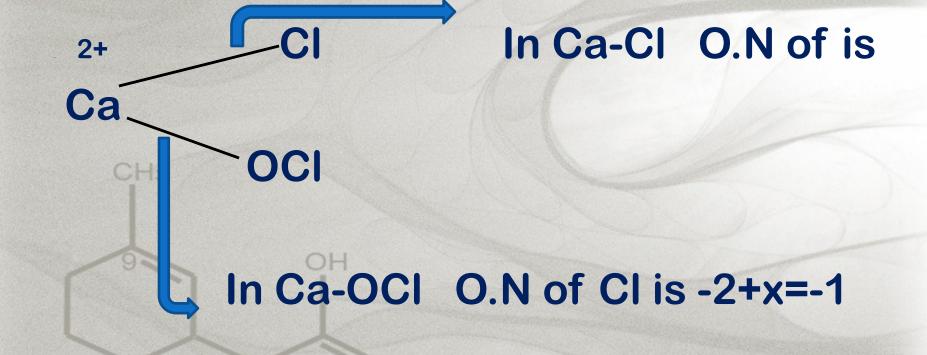
C5H11

19. The oxidation number of nitrogen in N₃H is a)+1/2 b)+3 OH c)-1 d)-1/3 H₃C

-13C

CHEMISTRY

20. On the basis of structure, two Cl atoms in bleaching powder have the oxidation number respectively


C5H11

a) +2,-2 b) -2,+2 c) -1,+1 d) -2,+1

H₃C

CHEMISTRY

C5H11

Therefore x=+1

20. On the basis of structure, two Cl atoms in bleaching powder have the oxidation number respectively a) +2,-2 b)-2,+2 c)-1,+1 d)-2,+1 -laC

H₃C

CHEMISTRY

21. Oxidation number of S in $H_2S_2O_8$ is

C5H11

OH

a) +2 b) +4 c) +6 d) +7

о о II II H-O-S-O-O-S-O-H II II O O

- Here 2 oxygen atoms shows peroxide linkage hence their oxidation number is -1.
- 2(+1) + 2(x) + 2(-1) +6(-2) = 0H atom S atom O - O O atom linkage

C5H11

Therefore x=+6

21. Oxidation number of S in H₂S₂O₈ is a) +2 b) +4 c) +6 d) +7 OH H₃C C5H11

H₃C

CHEMISTRY

C5H11

22. Which of the following is not a reducing agent?

a) SO_2 b) H_2O_2 c) CO_2 d) NO_2

- In reducing agent element is in lowest possible oxidation states. During reduction it gives electrons to enter highest oxidation number.
- O.N of S in $SO_2 = +4$
- **O.N of O in H_2O_2 = -1**
- O.N of C in $CO_2 = +4$
 - O.N of N in $NO_2 = +4$

H3C

CHEMISTRY

C5H11

22. Which of the following is not a reducing agent?

a) SO_2 b) H_2O_2 c) CO_2 d) NO_2

-13C

CHEMISTRY

C5H11

23. In acid medium, the equivalent mass of $K_2Cr_2O_7$ (molecular mass M) is a) M/3

b) M/4 c) M/6 d) M/2

Eq. mass of reducing / oxidising agent =

Molecular mass

change in oxidation number per molecule

- $K_2Cr_2O_7 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3(O)$
 - +6 +3 $K_2Cr_2O_7 \longrightarrow Cr_2(SO_4)_3$
- Change in ON =3.
- But there are two Cr atoms in a molecule.
- Therefore O.N per molecule = M/6

23. In acid medium, the equivalent mass of K₂Cr₂O₇ (molecular mass M) is (a) M/3 b) M/4 OH c) M/6 d) M/2 H₃C

24. In the balanced equation: $H_2SO_4 + xHI \longrightarrow H_2S + yI_2 + zH_2O$, the value of x, y and z are a) X=3, y=5, z=2 b) X=4, y=8, z=5 c) X=8, y=4, z=4-13C d) X=5, y=3, z=4

change in ON is 8

• $H_2SO_4 + x HI \rightarrow H_2S + yI_2 + zH_2O$

change in ON is 1

- Increase in ON for reducing agent = Decrease in ON for oxidising agent.
- Therefore H_2SO_4 +8HI $\rightarrow H_2S+4I_2+4H_2O$

24. In the balanced equation: $H_2SO_4 + xHI \rightarrow H_2S + yI_2 + zH_2O$, the value of x,y and z are a) X=3, y=5, z=2 b) X=4, y=8, z=5 c) X=8, y=4, z=4 H3C d) X=5, y=3, z=4 C5H11

H₃C

CHEMISTRY

25.Which of the following halogen acids is the strongest reducing agent?

C5H11

a) HCl b) HBr c) HI d) HF

-13C

CHEMISTRY

HI is stronger reducing agent because HI bond cleaves most easily

H₃C

CHEMISTRY

25.Which of the following halogen acids is the strongest reducing agent?

C5H11

a) HCl b) HBr c) HI d) HF

26.Which of the following is a redox reaction?

a) H_2SO_4 with NaOH b) In atmosphere O₃ forms O₂ by lightning c) Nitrogen oxide from nitrogen and oxygen by lightning d) Evaporation of water

$\begin{array}{cccc} 0 & 0 & +2-2 \\ \bullet N_2 & + & O_2 & \longrightarrow & 2NO \end{array}$

 It involves both gain and loss of electrons

H₃C

CHEMISTRY

26.Which of the following is a redox reaction?.

a) H₂SO₄ with NaOH
b) In atmosphere O₃ with O₂ by lightning
c) Nitrogen oxide from nitrogen and oxygen by lightning
d) Evaporation of water

KEA

CHEMISTRY

27. In the reaction, \longrightarrow 4Fe³⁺+ 6O²⁻ 4Fe +30₂ which of the following statement is incorrect?. a) Redox reaction b) Metallic iron is a reducing agent c) Fe³⁺ is an oxidising agent d) Metallic iron is reduced to Fe³⁺

-laC

CH₃

- 0 0 +3 -2
- 4Fe + $3O_2 \longrightarrow 4Fe^{3+} + 6O^{2-}$
- Fe undergoes oxidation =redusing agent
 i.e Metallic iron oxidised to Fe³⁺

27.In the reaction, $4Fe + 3O_2 \longrightarrow 4Fe^{3+} + 6O^{2-}$ which of the following statement is incorrect?

a) Redox reaction
b) Metallic iron is a reducing agent
c) Fe³⁺ is an oxidising agent
d) Metallic iron is reduced to Fe³⁺

28.The colour of K₂Cr₂O₇ changes from orange red to yellow on treatment with aqueous KOH because of CH3 a) Oxidation b) Reduction c) Neither oxidation nor reduction d) Partial oxidation and reduction

+6

+6

 $\begin{array}{ccc} K_2 Cr_2 O_7 & + 2KOH & \longrightarrow 2K_2 CrO_4 & + H_2 O \\ \mbox{(Orange red)} & & \mbox{(Yellow)} \end{array}$

Here oxidation number of Cr remains +6 in both side.

C5H11

So it is not a redox reaction

28.The colour of K₂Cr₂O₇ changes from orange red to yellow on treatment with aqueous KOH because of

a) Oxidation
b) Reduction
c) Neither oxidation nor reduction
d) Partial oxidation and reduction

C5H11

29. Oxidation number of Silver in silver amalgam is

a) +1 b) 0 c) -1 d) +2

H₃C

CHEMISTRY

C5H11

29. Oxidation number of Silver in silver amalgam is

a) +1 b) 0 c) -1 d) +2

30. The nitride ion in lithium nitride is composed of

a) 7 protons + 10 electrons
b) 10 protons + 10 electrons
c) 7 protons + 7 electrons
d) 10 protons + 7 electrons

-laC

CHEMISTRY

Nitride contains (N³⁻) Number of electrons= Z+3=7+3=10 Number of protons = Z=7

30. The nitride ion in lithium nitride is composed of

a) 7 protons + 10 electrons
b) 10 protons + 10 electrons
c) 7 protons + 7 electrons
d) 10 protons + 7 electrons

31.Which is not correct?

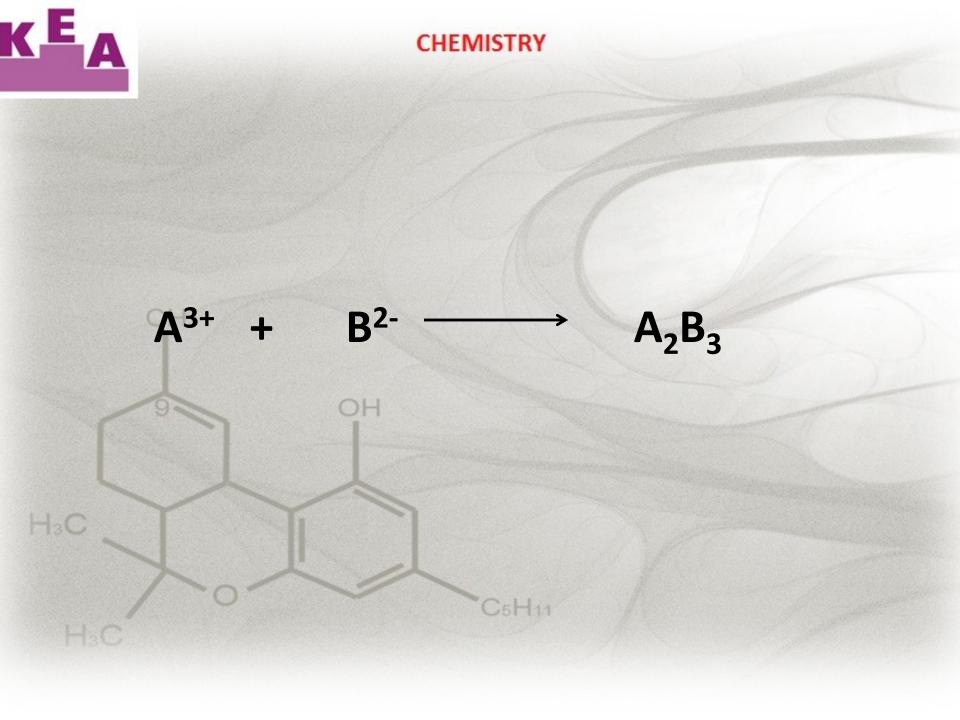
- a) Maximum number of electrons in a subshell is 4l+2
- b) Maximum number of orbitals in a shell = n²
- c) Spin quantum number cannot be derived from Schrödinger wave equation
- d) Maximum number of electrons in a shell=2l+1

H₃C

CHEMISTRY

Maximum number of electrons in a shell is 2n²

31.Which is not correct?


- a)Maximum number of electrons in a subshell is 4l+2
- b) a)Maximum number of orbitals in a shell
 =n2
- c)Spin quantum number cannot be derived from shrodinger wave equation
- d)Maximum number of electrons in a shell
 =2l+1

32.An atom of an element A has three electrons in its outer most orbit and that of B has 6 electrons in its outermost orbit the formula of the compound between these two will be

C5H11

a) $A_{3}B_{6}$ b) $A_{2}B_{3}$ c) $A_{3}B_{2}$ d) $A_{2}B$

32.An atom of an element A has three electrons in its outer most orbit and that of B has 6 electrons in its outermost orbit the formula of the compound between these two will be

C5H11

a) $A_{3}B_{6}$ b) $A_{2}B_{3}$ c) $A_{3}B_{2}$ d) $A_{2}B$

-13C

CH₃

CHEMISTRY

33.Bohr's radius for the H atom (n=1) is approximately 0.53A^o.The radius of the I exited state (n=2)orbit is

C5H11

a) 0.13A° b) 1.06A° c) 4.77A° d) 2.12A°

H3C

CHEMISTRY

Radius of an orbit in hydrogen and hydrogen like species CH3 $r_n = 0.529 X \frac{n^2}{Z}$ =0.53 X $\frac{2^2}{1}$ =0.53 X 4 =2.12A° C5H11

-13C

CHEMISTRY

33.Bohr's radius for the H atom (n=1) is approximately 0.53A^o.The radius of the I exited state (n=2)orbit is

C5H11

a) 0.13A° b) 1.06A° c) 4.77A° d) 2.12A°

- 34. Which is Incorrect?a) During roasting, air holes of reverberatory furnace are kept open
- b) A Slag has a low melting point and is heavier than the metal
- c) Flux is used to remove the non fusible impurities present in ores as slag
- d) Refractory materials are used for making furnaces as they can with stand high temp

H3C

CHEMISTRY

C5H11

Slag is a light material and form a separate layer over the molten layer

OH

34. Which is Incorrect?

- a) During roasting. Air holes of reverberatory furnace are kept open
- b) A Slag has a low melting point and is heavier than the metal
- c) Flux is used to remove the non fusible impurities present in ores as slag
- d) Refractory materials are used for making furnaces as they can with stand high temp

KEA

CHEMISTRY

35. If the nitrogen atom had electronic configuration 1s⁷ it would have energy lower than that of normal ground state configuration 1s² 2s² 2p³, because the electron would be closer to the nucleus. Yet 1s⁷ is not observed because it violates a) Heisenberg uncertainty principle b) Hund's rule c) Pauli's exclusion principle d) Bohr's postulates of stationary orbits

-13C

CHEMISTRY

An orbital can have a maximum of two electrons having their spins antiparallel.

KEA

CHEMISTRY

35 If the nitrogen atom had electronic configuration 1s⁷ it would have energy lower than that of normal ground state configuration 1s² 2s² 2p³, because the electron would be closer to the nucleus. Yet 1s⁷ is not observed because it violates a) Heisenberg uncertainty principle b) Hund's rule c) Pauli's exclusion principle d) Bohr's postulates of stationary orbits

H₃C

CHEMISTRY

36. Froth flotation process is used for the metallurgy of?

C5H11

a) Chloride ores
b) Amalgams
c) Oxide ores
d) Sulphide ores

Froth flotation process is mainly used to concentrate Sulphide ore due to the preferential wetting properties of Sulphide ore by oil

C5H11

36. Froth flotation process is used for the metallurgy of?

a) Chloride ores
b) Amalgams
c) Oxide ores
d) Sulphide ores

37. Electrolysis of molten sodium chloride leads to the formation of

C5H11

a) Sodium and oxygen
b) Sodium and hydrogen
c) Hydrogen and oxygen
d) Sodium and chlorine

H₃C

CHEMISTRY

NaCl \longrightarrow Na⁺ + Cl⁻

At cathode: $Na^+ + e^- \rightarrow Na$

At anode: $Cl^2 - e^2 \longrightarrow 1/2Cl_2$

37. Electrolysis of molten sodium chloride leads to the formation of

a) Sodium and oxygen
b) Sodium and hydrogen
c) Hydrogen and oxygen
d) Sodium and chlorine

-13C

CHEMISTRY

38.Angular momentum of an electron in the nth orbit of hydrogen atom is given by

C5H11

a) 2π/nh b) π/2nh c) nh/2π d) nh

CH₃

According to the Bohr's postulate

Angular momentum (mvr)= $nh/2\pi$

-13C

CHEMISTRY

38.Angular momentum of an electron in the nth orbit of hydrogen atom is given by

C5H11

a) 2π/nh b) π/2nh c) nh/2π d) nh

39. The number of electrons of same spin with n+l =5 are a) 6 b) 9 OH c) 12 d)18 H₃C

- subshells having n+l=5 are 5s, 4p and 3d.
- No. electrons in 5s,4p and3d are 2+6+10= 18.
- So the number of electrons with same spin =9

H₃C

CHEMISTRY

39. The number of electrons of same spin with n+l =5 are a)6 CH₃ b)9 c)12 d)18

C5H11

40. Zinc spleter contains impurities of Cd, Pb, Fe and Zn. When molten impure zinc is distilled, which is distilled first?

a) Molten Zn b) Molten Cd c) Molten Pb d) Molten Fe

H3C

CHEMISTRY

C5H11

 Boiling points of Cd = 1040K
 Zn = 1180K
 Pb = 2020K
 Fe = 3273K

40. Zinc spleter contains impurities of Cd, Pb, Fe and Zn. When molten impure zinc is distilled, which is distilled first?
a) Molten Zn

C5H11

b) Molten Cd c) Molten Pb d) Molten Fe

H₃C

CHEMISTRY

C5H11

41. Oxidation number of nitrogen atom in N₂ molecule is

a) 0 b) -2 c) +2 d) -1/2

C5H11

41. Oxidation number of nitrogen atom in N₂ molecule is

OH

a) 0 b) -2 c) +2 d) -1/2

42. The energy of 2nd Bohr's orbit of hydrogen atom is -328KJmol⁻¹,hence the energy of 4th Bohr's orbit would be

a) -41 KJmol⁻¹ b) -82 KJmol⁻¹ c) -164 KJmol⁻¹ d) -1312 KJmol⁻¹

-13C

CHEMISTRY

Energy of electron in any orbit of hydrogen or hydrogen like species

 $E_n = \frac{-1312 Z^2}{n^2} \text{kJmol}^{-1} = -\frac{kZ^2}{n^2}$ For Hydrogen, Z=1. n=2 for 2nd orbit and n=4 for 4th orbit.

So,
$$E_2 = \frac{-k}{n^2}$$
 or $k = -E_2 X n^2$ or $k = -328 X 4$
 $E_4 = \frac{-328 X 4}{4^2} = -82 \text{ kJmol}^{-1}$

H3C

CHEMISTRY

42. The energy of 2nd Bohr's orbit of hydrogen atom is -328KJmol⁻¹. hence the energy of 4th Bohr's orbit would be

C5H11

a)-41 KJmol⁻¹ b)-82 KJmol⁻¹ c)-164 KJmol⁻¹ d)-1312 KJmol⁻¹