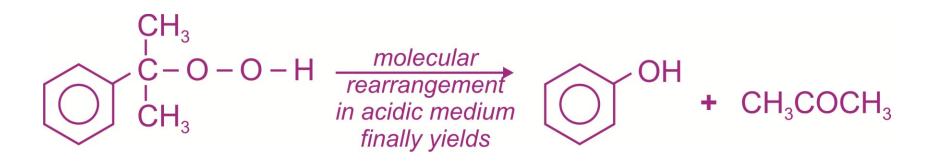


Vikasana CET-2013

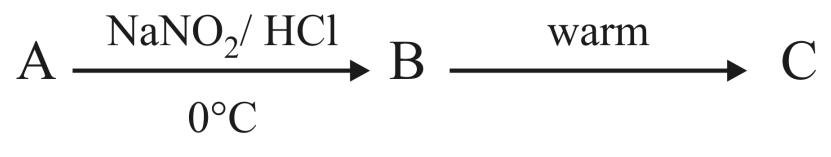
Oxygen containing organic compounds-ll

Phenol Aldehydes & Ketones Carboxylic Acids

PHENOL

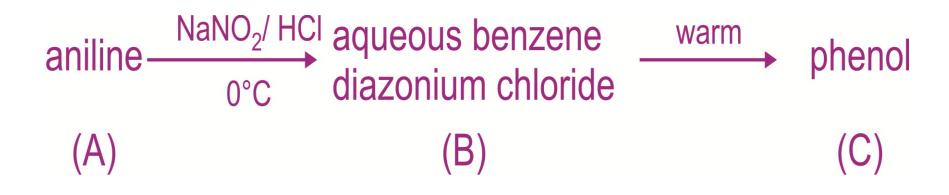

Cumene process does not involve

- 1) Oxidation
- 2) Alkylation
- 3) Molecular rearrangement
- 4) Acylation


Explanation:

Benzene <u>alkylation</u> cumene <u>oxidation</u> cumene hydroperoxide

Ans: 4) Acylation


C on methylation gives cresol. A and B are

- 1) Sodium phenate and phenol
- 2) o-aminotoluene and nitrophenol
- 3) Aniline and benzenediazonium chloride
- 4) Chlorobenzene and phenol

Explanation:

C gives cresol on methylation. Hence C is phenol.

Ans: 3) Aniline and benzenediazonium ` chloride

Phenol under appropriate conditions reacts with all except

- 1. Aqueous NaHCO₃
- 2. HCHO
- 3. PCl₅
- 4. Dilute HNO₃

Explanation: HCHO + phenol PCI_5 + phenol Dilute HNO₃ + phenol NaHCO₃ + phenol

- resin
- chlorobenzene
- o/p nitrophenol
- no reaction

Ans: 1) Aqueous NaHCO₃

phenol + X $\xrightarrow{\text{conc. H}_2\text{SO}_4, \Delta}$ Z

Z is an acid-base indicator. 'X' is

- 1) β -naphthol
- 2) Phenolphthalein
- 3) Phthalic anhydride
- 4) Phthalic acid

Explanation:

Z is an acid-base indicator.

Phenol is used to prepare phenolphthalein an acid-base indicator. To get it phenol is condensed with phthalic anhydride.

Ans: 3) Phthalic anhydride

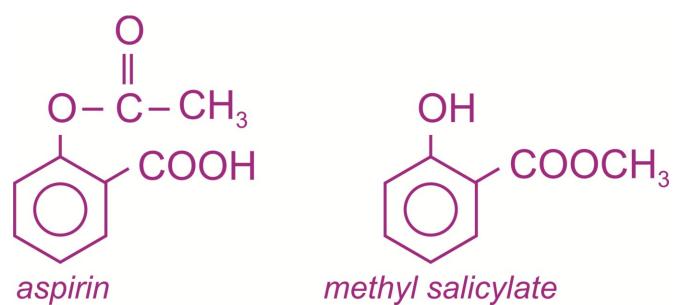
The wrong statement is

- 1) CO₂ can displace phenol from aqueous solution of sodium phenate.
- 2) Phenol is more acidic than alcohols due to resonance stabilisation of phenoxide ion.
- 3) Nitrophenol is more acidic than phenol due to –I and R effect of NO₂ group.
- 4) Cresols are weaker acids than phenol due to resonance stabilization of phenoxide ion

Explanation:

Statements 1, 2, 3 are correct, 4 is partially correct. Cresols are weaker acids than phenol due to resonance **destabilization** of phenoxide ion.

Ans: 4) Cresols are weaker acids than phenol due to resonance stabilization of phenoxide ion



Functional group common to both aspirin and oil of wintergreen is

- 1) Carboxylic acid group
- 2) Ester linkage
- 3) Ether linkage
- 4) Phenolic –OH group

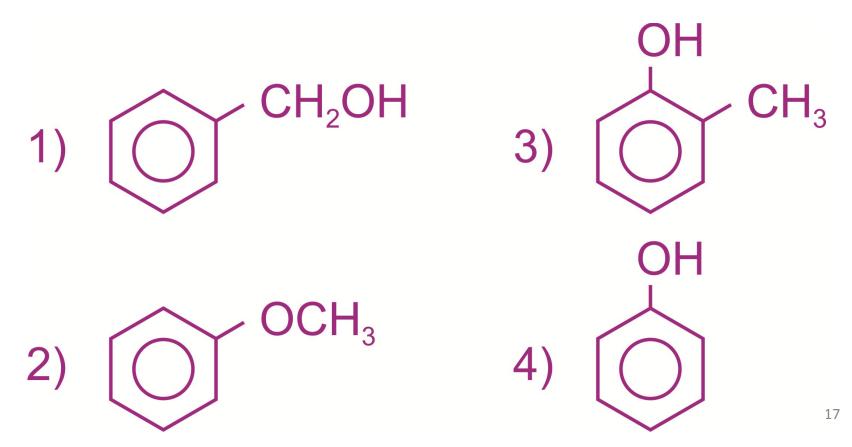
Explanation:

The structures clearly indicate that ester linkage is common to both.

Ans: 2) Ester linkage

The correct increasing order in the reactivity of the compounds towards electrophilic substitution reaction is

- 1) Nitrobenzene, benzene, toluene, phenol
- 2) Benzene, nitrobenzene, toluene, phenol
- 3) Toluene, benzene, nitrobenzene, phenol
- 4) Benzene, toluene, nitrobenzene, phenol


Explanation:

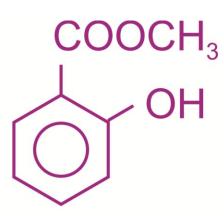
An electron withdrawing group $(-NO_2)$ decreases electron density in benzene ring. An electron releasing group $(-CH_3, -OH)$ increases electron density in benzene ring. $-OH >> -CH_3$.

Ans: 1) Nitrobenzene, benzene, toluene, phenol

A compound (P) with formula C_7H_8O decolourises Br_2 water, and dissolves in aqueous NaOH. The compound could be

Explanation:

An aromatic compound that dissolves in NaOH must be a phenol (or acid). Of the two phenols in (3) and (4) the molecular formula of (3) is C_7H_8O and that of (4) is C_6H_6O . Ans: 3)


Salicylic acid and methyl salicylate can be best distinguished using

1) HCl 2) NaOH 3) n–FeCl₃ 4) NaHCO₃

Explanation: COOH OH

salicylic acid

methyl salicylate

Both of them react with NaOH/ and n–FeCl₃ Both are phenols. But only salicylic acid (with –COOH group) reacts with NaHCO₃.

Ans: 4) NaHCO₃

The strongest acid among the following is

- 1) Acetic acid
- 2) Picric acid
- 3) Carbonic acid
- 4) Salicylic acid

Explanation:

Acetic acid (CH₃COOH) is stronger than carbonic acid (H_2CO_3) Salicylic acid is stronger than acetic acid O_2N

But picric acid

NO₂ is the strongest due to -R and -I effects of three $-NO_2$ groups.

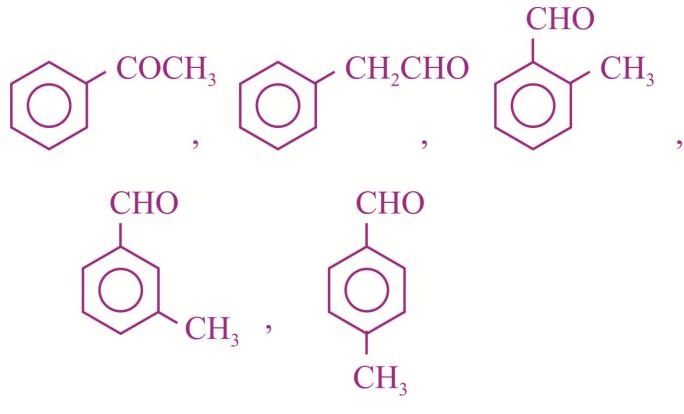
Ans: 2) Picric acid

 NO_2

KEA

CHEMISTRY

Aldehydes and Ketones


The total number of isomeric aldehydes and ketones possible for C_8H_8O are

2) 3
 3) 4
 4) 5

Explanation:

For C₈H₈O we have

Ans: (4) 5

Propanone is obtained by the dehydrogenation of

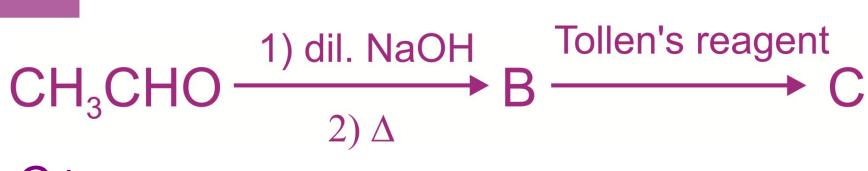
- 1) Propanal
- 2) Propan-2-ol
- 3) Propan-1-ol
- 4) Propanoic acid

Explanation:

$\begin{array}{c} CH_{3} - CH - CH_{3} & \xrightarrow{-H_{2}} CH_{3}COCH_{3} \\ & | \\ OH \\ propan-2-ol \end{array}$

Ans: (2) Propan-2-ol

Which one of these reacts with HCN to form a product that is chiral?


1) HCHO 2) CH_3COCH_3 3) C_6H_5CHO 4) CH_3OCH_3

Explanation: + HCN $R^{1}(H$ The product is chiral if $R \neq R^1$, $R \neq H$. So C_6 C_6H_5 + HCN chiral product benzaldehyde **Ans**: (3) Benzaldehyde

1) $CH_{3}CH = CH COOH$ 2) $CH_{3}-CH(OH)-CH(OH)-COOH$ 3) $CH_{3}CH = CH - CHO$ 4) $CH_{3}CH_{2}CH_{2}COOH$

C is

CHEMISTRY

Explanation:

 $2CH_{3}CHO \xrightarrow{\text{dil. NaOH}} CH_{3}CH(OH)CH_{2}CHO \xrightarrow{\Delta} CH_{3}CH=CH-COOH \xrightarrow{Ag_{2}O} CH_{3}CH=CH-CHO \xrightarrow{Ag_{2}O} (B)$

Ans: (1) $CH_3CH = CH COOH$

1) C_6H_5CHO 2) CH_3CH_2OH 3) CH_3CHO 4) CH_3COOH

CHEMISTRY

Explanation:

 α -H atom in aldehydes and ketones are more acidic than α -H atoms in alcohol (CH₃CH₂OH) or in carboxylic acids (CH₃-COOH) due to resonance stabilisation of carbanion. (weak base, its conjugate acid is strong)

- $\begin{array}{c} H & H \\ H \overset{I}{C} \overset{I}{C} = O \xrightarrow{-H^{+}} \end{array} \xrightarrow{H} H \xrightarrow{H}$
- Hence in the options given the answer is CH_3CHO
- Ans. (3) CH_3CHO

Transfer of hydride ion is a key step in the reaction that occurs when conc.KOH reacts with

1) $C_{6}H_{5}CHO$ 2) $CH_{3}-CHO$ 3) $C_{6}H_{5}-COOH$ 4) $CH_{3}COOCH_{3}$

KEA

Explanation:

All compounds in the options react with KOH, but hydride ion transfer is in Cannizzaro's reaction. Of the options given, only C_6H_5 CHO gives this reaction.

Ans: (1) C_6H_5CHO

Which one of the statements is wrong?

- 1) Benzaldehyde on nitration forms m-nitrobenzaldehyde
- 2) Acetaldehyde can be prepared by dehydration of ethanol
- 3) All methyl ketones answers iodoform reaction
- 4) Carbonyl compounds undergo nucleophilic addition reaction.

-CHO group is EWG, meta directing

 $C_2H_5OH \longrightarrow CH_2=CH_2$ (wrong statement)

- CH₃COR are methyl ketones answer iodoform reaction.
- $\sum_{C=0}^{\delta+} \frac{\delta-}{Because} C = 0$ Because C end is electrophilic.

Ans: (2) acetaldehyde can be prepared by dehydration of ethanol.

37

Fehling's solution helps to distinguish between

- 1) Glucose and fructose
- 2) Benzaldehyde and acetophenone
- 3) Acetaldehyde and benzaldehyde
- 4) Aldehydes and ketones

All monosaccharides, all aliphatic aldehydes reduce Fehling's solution.

But ketones and aromatic aldehydes do not.

Ans: (3) acetaldehyde and benzaldehyde

An organic compound [P] on reduction with Zn-Hg / conc.HCl forms a hydrocarbon. The functional group in the compound P could be

- 1) Ester
- 2) Alcohol
- 3) Carboxylic acid
- 4) Ketone

Explanation:

This is Clemmensen's reduction given best by ketones.

Ans: (4) Ketone

Match the items in column A to items in B

Column A	Column B
A) H–CHO $\xrightarrow{\text{conc.KOH}}$	p) Condensationreaction
$B) CH_3 CHO \xrightarrow{\mathrm{NH}_2 \mathrm{NH}_2} \rightarrow$	q) Electrophilic substitution
C) $CH_3COCH_3 \xrightarrow{HCN}$	r) Disproportionation reaction
D) $C_6H_5CHO \xrightarrow{HNO_3}$	s) Nucleophilic addition

1)A-s, B-r, C-q, D-p 3) A-r, B-p, C-s, D-q 2)A-s, B-q, C-r, d-p 4) A-r, B-p, C-q, D-s

42

Explanation:

H–CHO Cannizzaro's reaction – disproportionation reaction

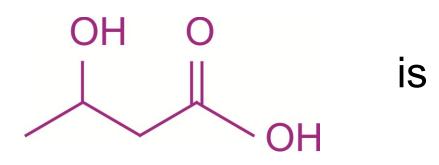
CH₃CHO CH₃CHO condensation reaction CH₃COCH₃ condensation reaction CH₃COCH₃ condensation addition C₆H₅CHO conducts electrophilic substitution Ans: (3)

A-r, B-p, C-s, D-q

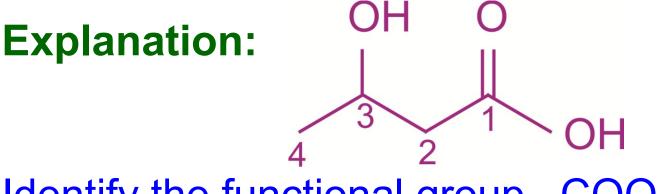
Products obtained are the same when compounds A and B are treated separately with caustic soda. Compounds A and B could be

1) CH₃COOH and CH₃COCI
 2) C₆H₅CHO and C₆H₅COOC₆H₅
 3) H–CHO and H–COOCH₃
 4) CH₃CHO and CH₃COOH

Explanation:


- CH₃COOH & CH₃COCI give CH₃COONa / H₂O CH₃COOH / NaCI
- $C_6H_5CHO \& C_6H_5COOC_6H_5$ give $C_6H_5CH_2OH/C_6H_5COONa$ and C_6H_5COONa/C_6H_5OH
- H–CHO & H–COOCH₃ give H–COONa/ CH_3OH and H–COONa/ CH_3OH
- $CH_3CHO \rightarrow Aldol : CH_3COOH \rightarrow CH_3COONa$
- Ans: (3) H–CHO and HCOOCH₃

Carboxylic Acids



IUPAC name of

- 1) 2-hydroxybutanoic acid
- 2) 3-hydroxybutanoic acid
- 3) 3,4-dihydroxybutanone
- 4) 1,4-dihydroxybutanone

Identify the functional group –COOH and –OH. Least number to carbon of –COOH group.

Numbering as shown above.

Ans: (2) 3-hydroxybutanoic acid

The acid that has the highest pKa value is

- 1) $CI-CH_2COOH$ 2) CH_3COOH 3) H-COOH4) CH_3CH_2COOH

Weaker the acid, higher is the pKa value. Chlorine increases acid strength. Alkyl groups decreases acid strength. C_2H_5 group decreases acid strength more than CH₃.

Ans: 4) CH₃CH₂COOH

Alkanenitrile on complete hydrolysis forms an/a

- 1) Ester
- 2) Carboxylic acid
- 3) Amide
- 4) Primary amine

Alkanenitrile means R–CN.

R–CN on complete hydrolysis forms a carboxylic acid.

$R-CN \longrightarrow R-COOH$

(Partial hydrolysis gives an amide, R–CO–NH₂)

Ans: (2) carboxylic acid

Ammonium ethanoate $\xrightarrow{\Delta}$ P. P is

- 1) Ethanamide
- 2) Ethanoic acid
- 3) Ethanal
- 4) Ethanamine

Explanation:

Ammonium ethanoate is CH_3COONH_4 . $CH_3COONH_4 \xrightarrow{\Delta} CH_3CONH_2 + H_2O$ ethanamide

Ans: (1) Ethanamide

An acid on dehydration forms CO and on decarboxylation liberates hydrogen gas. The acid is

1) CH₃-COOH
 2) COOH
 1
 COOH
 3) H-COOH
 4) H₂CO₃

- Decarboxylation of CH_3COOH gives CH_4 .
- But H_2CO_3 gives H_2O .
- Decarboxylation of $H_2C_2O_4$ and H–COOH gives H_2
- Dehydration of H₂C₂O₄ gives CO & CO₂
- Dehydration of H–COOH gives CO, H_2CO_3 gives CO₂
- **Ans**: (3) H–COOH

Acetic acid is converted into acetyl chloride using

1) Cl₂
 2) CH₃Cl
 3) HCl
 4) PCl₅

Explanation: $CH_3COOH \xrightarrow{?} CH_3COCI$

- Replace –OH by Cl.
- This is done best by PCI₅
- CI cannot replace –OH, it replaces only –H!
- CH₃Cl/ HCl do not react with CH₃COOH
- **Ans**: (4) PCl₅

Methyl magnesium iodide reacts with acetic acid to form

1) CH₃COOCH₃
 2) CH₄
 3) CH₃OH
 4) CH₃I

Explanation:

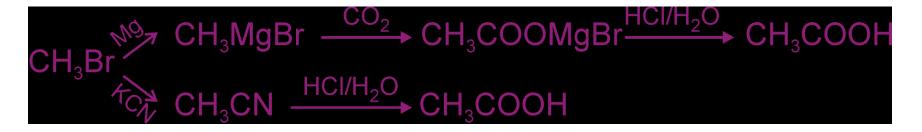
CH₃MgI has CH₃ end as negative end of dipole $\begin{array}{ccc} \delta - & \delta + \\ CH_3 - Mg - \end{array}$

As a strong nucleophile or as a strong base - CH_3 end reacts with acidic compounds like H_2O , HCI, CH_3COOH , NH_3 , alcohols to form CH_4 .

 $\begin{array}{ccc} \delta - & \delta - & \delta + \\ \mathsf{C}\mathsf{H}_{3}\mathsf{M}\mathsf{g}\mathsf{I} + \mathsf{C}\mathsf{H}_{3}\mathsf{C}\mathsf{O}\mathsf{O} - \mathsf{H} \longrightarrow \mathsf{C}\mathsf{H}_{4} \end{array}$

In general $R \rightarrow MgX + HA$ (acidic compound) $\longrightarrow R \rightarrow R \rightarrow R$

Chemicals used to convert CH₃Br into acetic acid are


Mg/ dry ether, H–CHO, HCI/ H₂O
 Alc. KCN, LiAlH₄, HCI / H₂O
 Mg/ dry ether, CO₂, HCI / H₂O
 Alc. KCN, Mg/ dry ether, HCI/ H₂O

Explanation: $CH_3Br \longrightarrow \longrightarrow CH_3COOH$

This combines reaction of haloalkanes with preparation of carboxylic acid.

Two ways:

Ans: (3) Mg/ dry ether, CO_2 , HCI/H₂O

Acetic acid is obtained by the acid hydrolysis of all except

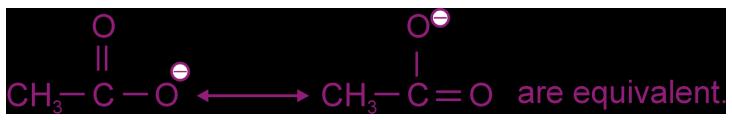
1) CH_3COCH_3 2) $CH_3COOC_2H_5$ 3) CH_3CN 4) CH_3COCI

This involves nucleophilic substitution reaction of acid derivatives.

$$CH_3 - CO - X \xrightarrow{-X} CH_3 COOH$$

(2), (3), (4) are acid derivatives of acetic acid, hence can be hydrolysed. But (1) is acetone, it is not an acid derivative.

Ans: (1) CH₃COCH₃


The statement that is NOT true is

- 1) Functional isomer of ethanoic acid is methyl methanoate.
- 2) Acetate ion has two equivalent resonating structures
- 3) Formic acid can reduce Tollen's reagent due to HCO– group in it.
- 4) Acetic acid reacts with SOCI₂ to form methyl chloride.

Explanation:

CH_3COOH & $HCOOCH_3$ are functional isomers.

$CH_3COOH + SOCI_2 \rightarrow CH_3COCI$ not CH_3CI

Ans: (4) Acetic acid reacts with SOCl₂ to form methyl chloride.

The compound that does not condense with

- 1) phenol
- 2) aniline
- 3) benzaldehyde

is

4) cresol

Explanation: Phenols and aryl amines like aniline condense with BDC to form azo dyes.

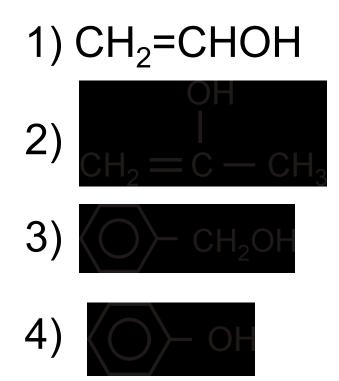
Among the options, phenol, aniline and cresol give azo dyes with BDC. But benzaldehyde does not.

Ans: 3) Benzaldehyde

The alcohol that does NOT yield a carbonyl compound on dehydrogenation is

1) $CH_{3}CH(OH)CH_{3}$ 2) $(CH_{3})_{3}C-OH$ 3) $C_{6}H_{5}CH(OH)CH_{3}$ 4) $C_{6}H_{5}CH_{2}OH$

Primary alcohol [choice (4)] on dehydrogenation forms an aldehyde.


Secondary alcohols [choices (1) and (3)] on dehydrogenation forms a ketone.

Tertiary alcohol [choice (2)] do not undergo dehydrogenation but undergoes dehydration to form an alkene.

Ans: (2) (CH₃)₃C–OH

The enol that is exceptionally stable is

Enol is one that has -OH group attached to sp^2 hybridised carbon $rac{}{}^{C=C-OH}$

Generally enol of aliphatic series are unstable. Their keto forms is more stable. Choice (1) and (2) are unstable. Choice (3) $C_6H_5CH_2OH$ is not an enol. Choice (4) is phenol, is an enol. It is stable because in enol form it is aromatic and highly resonance stabilised. Its keto form is is not aromatic and is highly unstable.

Ans: (4) phenol

Aldol type condensation is possible between

H–CHO and CH₃CHO H–CHO and C₆H₅CHO C₆H₅CHO and C₆H₅COC₆H₅ (CH₃)₃CCHO and H–CHO

Aldol condensation is possible if aldehyde or ketone has α -H atom/s.

Among the choices gives (1) option alone has CH_3CHO which has α -H atom. Hence can undergo aldol condensation with H-CHO.

Ans: 2) H–CHO and CH_3CHO .

1) $CH_3I + CH_3COONa$ 2) $CH_3COI + CH_3OH$ 3) CH_3COCI_3 + Nal 4) $CHI_3 + CH_3COONa$

CHEMISTRY

 CH_3COCH_3 with I_2 / NaOH gives iodoform (CHI₃) and also forms CH_3COONa .

 $CH_{3}COCH_{3} + 3I_{2} + 4NaOH$ $CHI_{3} + CH_{3}COONa + 3NaI + 3H_{2}O$

Ans: 4) $CH_3I + CH_3COONa$

lodoform test is not answered by

1)
$$\begin{array}{c} CH_{3} - CH - CH_{3} \\ OH \\ OH \\ \end{array}$$

2) $CH_{3}CH_{2}CH_{2}OH \\ \end{array}$
3) $CH_{3}CH_{2}OH \\ 4) CH_{3} - CH - CH_{3} \\ \begin{vmatrix} I \\ I \\ CI \end{vmatrix}$

lodoform test / reaction / reaction with NaOI to yield CHI_3 is given by all methyl ketones (CH_3COR) , all secondary alcohols of type $CH_3CH(OH)R$ and alkyl halides of type $CH_3CH(X)R$.

Ethyl alcohol (CH_3CH_2OH) will answer iodoform test. But $CH_3CH_2CH_2OH$ will not answer iodoform test.

Ans: 2) CH₃CH₂CH₂OH

A coordination compound is not a main component in

- 1) Fehling's solution
- 2) Tollens reagent
- 3) Sodium nitroprusside
- 4) 2, 4 DNPH

Fehling's solution has Cu^{+2} as tartarate complex. Tollens reagent has Ag^{+1} as ammonia complex. Sodium nitroprusside is Na_2 [Fe(CN)₅NO]. 2,4 DNPH is not a complex compound.

Ans: 4) 2, 4-DNPH

Acetic acid is converted into acetone by

- 1) pyrolysis of its calcium salt
- 2) pyrolysis of its sodium salt
- 3) pyrolysis of its calcium salt with calcium formate
- 4) pyrolysis of its ammonium salt

Explanation:

Acetone is obtained by dry distillation of calcium acetate.

Ans: 1) Pyrolysis of its calcium salt.

X (vapours) \land Y + H₂.

Y fails to undergo addition reaction with saturated solution of NaHSO₃. X is

- 1)1 phenylethanol
- 2) 2-phenylethanol
- 3) benzyl alcohol
- 4) phenylethanal

Explanation: Aromatic ketones due to steric hindrance do not react with sodium bisulphite. So Y must be an aromatic ketone and X must be a secondary alcohol.

- 1-phenylethanol $C_6H_5CH(OH)CH_3$ is a secondary alcohol.
- On dehydrogenation it gives $C_6H_5COCH_3$ (acetophenone) which does not react with NaHSO₃.
- **Ans**: 1-phenylethanol

P Clemmensen's reduction Y.

Y is also obtained by the hydrogenation of benzene.

P is

- 1) cyclohexanol
- 2) cyclohexanone
- 3) benzaldehyde
- 4) hexanone

Benzene on hydrogenation forms cyclohexane. (Y) is cyclohexane. (X) ? $\xrightarrow{C.R.}$ (Y)

Ketones on Clemmensen's reduction gives respective hydrocarbons.

So X must be a ketone and it must be

 $\langle \rangle = 0$ (cyclohexanone)

Ans: 2) cyclohexanone

Conversion of R–CO–A
$$\xrightarrow{-A^-}$$
 R–CO–Y

is a nucleophilic substitution reaction. The reaction is fastest when 'A' is

'A' must be a weak nucleophile, a good leaving group. A good leaving group is also a weak base, a conjugate of a strong acid. Converting -OH, -CI, -OR, $-NH_2$ into their conjugate acids, we get H_2O , HCI, ROH, NH_3 . HCI is a strong acid. \therefore Cl⁻ must be a good leaving group, weak nucleophile.

Ans: 2) – Cl

Acetophenone on oxidation yields

- 1) acetic acid and phenol
- 2) benzoic acid and phenol
- 3) benzoic acid and carbon dioxide
- 4) acetic acid and benzoic acid

Explanation:

$\begin{array}{c} C_{6}H_{5}COCH_{3} & \xrightarrow{\text{oxidation}} & C_{6}H_{5}COOH + CO_{2} \\ \text{Acetophenone} & \text{benzoic acid carbon dioxide} \end{array}$

Ans: 3) Benzoic acid and carbon dioxide

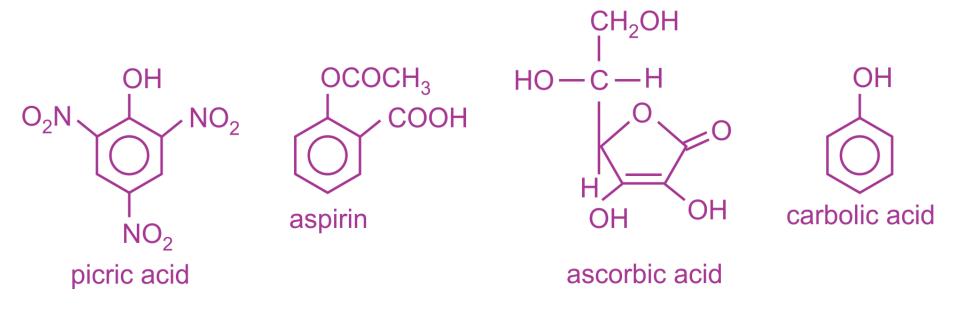
A family of compounds that can exhibit metamerism is

- 1) aldehyde
- 2) ketone
- 3) carboxylic acid
- 4) ester

Metamerism is exhibited by compounds having a functional group that is bivalent.

They are ether (R–O–R), ketone (–CO–) and 2° amine (–NH–).

Ans: (2) Ketone



Which one of the following has a carboxylic acid group

- 1) picric acid
- 2) aspirin
- 3) ascorbic acid
- 4) carbolic acid

Explanation:

The structures clearly indicate that the correct answer is aspirin.

Ans: (2) Aspirin

Acetaldehyde and vinyl alcohol are

- 1) tautomers
- 2) geometric isomers
- 3) enantiomers
- 4) not isomers

Tautomerism is dynamic isomerism due to shift in H atom from position 1 to 3, vice versa. This is shown by aldehydes and ketones with at least 1 α –H atom.

 $^{3}CH_{2} = CH - OH \iff CH_{3} - CHO$ keto

enol

enol and keto forms are tautomers

Ans: 1) Tautomers

