

VIKASANA-CET-2013

HYDROARBONS – II HALOALKANES AMINES

I.HYDROCARBONS – II

1] The cycloalkane which easily undergoes ring opening reaction when heated with H_2 and Ni is

1] cyclohexane
 2] cyclopentane
 3] cyclobutane
 4] cyclopropane

H₃C

ring opening reaction is a method of determining order of stability.

- 1] cyclohexane= resistant to ring opening
- 2] cyclopentane = 300° C
- 3] cyclobutane = 200° C
- 4] cyclopropane = 80° C

Ans: 4] cyclopropane

2] The cycloalkane which is most stable according to Baeyer's angle strain theory is

1] cyclohexane 2] cyclopentane 3] cyclobutane 4] cyclopropane

cyclohexane = -5°12`
 cyclopentane = 0°44`
 cyclobutane = 9°44`
 cyclopropane = 24°44`

Ans: 2] cyclopentane

3] 1,4-dibromobutane is treated with sodium metal in dry ether. The product obtained is

1] butane 2] 1-butene 3] cyclobutane 4] 1,3-butadiene

Intra-molecular Wurtz reaction, also called Freund reaction.

Ans: 3] cyclobutane Zinc may be used instead of sodium

4] The most stable conformation of cyclohexane is

Due to least interaction between C-H and C-C bonds, chair form is most stable Ans: 1] chair form

5] In the graph given below ,what do the positions C and E represent w.r.t conformers of cyclohexane?

Reaction coordinate of conformation interconversions

1] half-chair
 3] twist-boat

2] boat 4] chair

H₃C

CHEMISTRY

Ans: 3] twist-boat

6] The hybridisation of carbon atoms and the bond angles in benzene are

1] sp and 180° 2] sp² and 120° 3] sp³ and 109.5° 4] sp³ and 120°

The question is based on VBT structure of benzene

Ans: 2] sp² and 120°

7] Which of the following is a wrong combination? 1]Chlorination of methane » free-radical substitution **2]**nitration of benzene » nucleophilic substitution 3]Kolbe's electrolysis » free-radical mechanism **4]Cannizaro's reaction » H⁻ (hydride)** transfer

Aromatic reactions are electrophilic substitution reactions

Ans:

2]nitration of benzene nucleophilic substitution

>>

8] Which of the following is involved in Friedel-Crafts methylation of benzene?

Friedel-Crafts methylation is an aromatic substitution reaction, it requires an electrophile

Ans: 2] CH₃ (methyl carbocation)

H₃C

CHEMISTRY

9] The product of the following reaction is

anhyd.AlCl₃

1] toluene 2] xylene **3] diphenyl methane** 4] chlorobenzene

OH diphenyl methane

Ans:- 3] diphenyl methane

H₃C

10] During nitration of benzene using nitrating mixture, nitric acid acts as

Lewis acid
 dehydrating agent
 Bronsted base
 catalyst

Electrophile in this reaction is Nitronium ion which is formed when nitric acid is protonated. Hence nitric acid accepts proton. Proton acceptor is called bronsted base.

Ans: 3] bronsted base

11] which of the following is aromatic?

Huckel's rule:- A planar ring with 4n+2 number of delocalised π electrons is aromatic(n=0,1,2 etc). Hence 2 or 6 or 10 delocalised π electrons is must.

Ans:-H = 0, in 4n+2 rule two π electrons delocalised

H₃C

H₃C

CHEMISTRY

CH3 II. HALOALKANES

OH

12] t-butyl bromide & isobutyl bromide are related to each other as-

position isomers
 chain isomers
 functional isomers
 enantiomers

2-bromo-2-methyl propane,1-bromo-2-methyl propane (t-butyl bromide) (iso-butyl bromide)

Ans: 1] position isomers

13] The IUPAC name of sec-butyl chloride is

1] 2-methyl-1-chloropropane
2] 2-methyl-2-chloropropane
3] 2-chloropropane
4] 2-chlorobutane

 CH_3

H₃C

CHEMISTRY

*

Cl

Ans: 4] 2-chlorobutane

OH

 CH_3

14] Which butyl bromide is optically active?

normal
 iso
 tertiary
 secondary

Ans: 4] secondary

H₃C

C5H1

15] The best reagent to convert an alcohol into a chloroalkane is-

1. HCl + anhyd. $ZnCl_2$ 2. PCl_5 3. $SOCl_2$ HC 4. PCl_3

C5H11

H₃C

The byproducts must be easily separable and there must not be formation of re-arrangement products 1° alcohol \rightarrow 1° R-Cl, 2° alcohol \rightarrow 2° R-Cl 3° alcohol \rightarrow 3° R-Cl

Ans: 3] SOCI₂

H₃C

16] ethyl iodide is obtained if -

ethanol is heated with HI & red P
 ethyne is treated with HI
 ethene is treated with iodine
 ethanol is heated with I₂ & red P.

 $CH_{3}CH_{2}OH + HI \longrightarrow CH_{3}-CH_{3}$

 $CH \equiv CH + 2HI \rightarrow CH_3 - CH_2$

 $CH_{2} = CH_{2} + I_{2} \rightarrow CH_{2}I - CH_{2}I$ $CH_{3}CH_{2}OH + PI_{3} \rightarrow CH_{3}CH_{2}I$

Ans: 4] ethanol is heated with I_2 & red P.

17] A characteristic reaction of haloalkane is

1] nucleophilic substitution
 2] electrophilic substitution
 3] free radical substitution
 4] nucleophilic addition

The C-X bond is polar and carbon is electron deficient. It is attacked by nucleophiles to substitute the halogen

Ans:1] nucleophilic substitution

18] when heated with alc.AgNO₃ an alkyl halide that gives yellow precipitate which is insoluble in NH_4OH , is

1] ethyl bromide 2] ethyl chloride
 3] ethyl iodide 4] methyl bromide

R-X + alc.AgNO₃ → AgX. If X is iodine then yellow precipitate of AgI, which is insoluble in NH_4OH is formed.

Ans: 3] ethyl iodide

$\begin{array}{c} \text{Heat} & \text{Heat} & \text{Heat} \\ 3 & & & & \\ \end{array} \xrightarrow{} P & \begin{array}{c} \text{dil.HCl} \\ \hline & & & \\ \end{array} \xrightarrow{} Q \\ \text{heat} \end{array}$

The aqueous solution sodium salt of 'Q' on electrolysis gives

1. ethane2. propane3. butane4. methane.

20] which of the following is not correct

1] $CH_3CH_2CH_2Br$ +alc KOH \longrightarrow $CH_3CH=CH_2$

2] $CH_3CH Br CH_3 + alcKOH \longrightarrow CH_3CH=CH_2$

3] $C_2H_5 OH + HBr \rightarrow C_2H_5Br$ 4] $CH_3CHCH_3 + Na dry ether CH_3CH_2CH_3$ Cl Content of the Content of the

Ans: CH3

CHEMISTRY

Wurtz reaction does not give alkane with same number of carbon atoms.

4] $CH_3CHCH_3 + Na$ dry ether $CH_3CH_2CH_3$ Hac Cl C_{5H_1}

21] Which of these represents Williamson's ether synthesis?

dry ether 1] R-X + Na +Ar-X . dry ether 2] 2R-X + Na AICI₃ 3] R-X + Ar-H H₃C alcohol 4] R-X +RONa

H₃C

H₃C

CHEMISTRY

OH

Ans: 4] R-X + RONa

alcohol

45

22] Grignard reagent is

1] Mg-R-X 2] R-X-Mg 3] R-Mn-X 4] R-Mg-X

H₃C

Organo magnesium halide is Grignard reagent.

Ans: 4] R-Mg-X

H₃C

C5H11

23] Statement A: S_N1 involves carbocation.

- Statement B: if halogen is attached to chiral carbon then a racemic mixture is obtained.
- 1] A is correct & B is wrong
- 2] A is wrong & B is correct.
- 3] both are correct & B is the correct reason for A
- 4] both are correct & B is not the reason for A

24] The final product in the following reaction is

1] chloroethane
 3] ethyl cyanide

2] ethyl amine4] ethanoic acid

$\begin{array}{ccc} \mathsf{PCI}_5 & alc.NaCN \\ & & - & \mathsf{CH}_3\mathsf{CI} & & - & \mathsf{CH}_3\mathsf{CN} \end{array}$

Ans: 2] ethyl amine

25] Which of the following is $\frac{NOT}{S_N}$ true with respect to S_N^{-1} reaction?

- 1] it is favored by polar solvents
- 2] it involves concerted process.
- 3] 3° alkyl halides usually give this reaction

4] change in concentration of nucleophile has no effect on rate of reaction

concerted process takes place in $S_N 2$ reaction

26] Which one of the following is NOT formed when a mixture of bromomethane and bromobenzene is heated with sodium metal in dry ether? 1] ethane 2] biphenyl 3] propane 4] toluene

explanation: possible reactions area] $CH_3Br + CH_3Br \rightarrow ETHANE$ **b**] $CH_3Br + C_6H_5Br \rightarrow TOLUENE$ c] $C_6H_5Br + C_6H_5Br \rightarrow BIPHENYL$. Ans: 3] propane

H₃C

H₃C

CH₃

CHEMISTRY

III.AMINES

C5H11

OH

27] CH_3CH_2 -NH-CH₃ in IUPAC system is

N-methyl ethanamine
 N-methyl ethanamide
 ethyl methyl amine
 N-ethyl methanamine

H₂C

2° and 3° amines are named as Nalkyl derivatives of 1° amines. $CH_{3}CH_{2}$ -NH-CH₃ is named as derivative of ethanamine

Ans: 1] N-methyl ethanamine

28] nitrobenzene is reduced to aniline when heated with

1] zinc amalgam and conc.HCl
 2] alcoholic KOH
 3] bromine and aq.KOH
 4] tin and conc.HCl

Ans: 4] tin and conc. HCl Note: iron & conc.HCl or LiAlH₄ may be used

29] Which of the following gives a red coloured dye on treatment with NaNO₂ in dil.HCl, followed by addition of an alkaline solution of β -naphthol?

Explanation: The question is based on diazotization which is given by aromatic primary amines.
1] is 3° amine and 2] is 2° amine.
4]behaves like methanamine. Hence
3] gives the reaction

Ans: 3 (toluidine)

30] Match the bases with their pK_b values

<u>pK</u>_b base a] dimethyl amine i) 4.75 b] methyl amine ii) 9.38 c] aniline iii) 3.38 iv) 3.27 d] ammonia H₃C 1] a-ii, b-i, c-iii, d-iv 2] a-iv, b-iii, c-ii, d-i. 3] a-i, b-iv, c-ii, d- iii 4] a-iv, b-ii, c-i, d- iii

Explanation: Due to resonance aromatic amines are weaker than ammonia. Alkyl amines are stronger than ammonia due to +I effect.

a] dimethyl amine b] methyl amine c] aniline d] ammonia Ans:

2] a-iv, b-iii, c-ii, d-i

31] trimethyl amine is weaker base than dimethyl amine (pK_b are 4.22 and 3.27). This is explained by 1] steric hindrance in trimethyl amine 2] more +l effect in dimethyl amine 3] difference in hybridization of nitrogen 4] difference in number of lone-pairs on nitrogen

32] -NH₂ group in aniline is

m - directing due to - I effect
 o,p - directing due to + M effect
 o, p - directing due to - M effect
 m - directing due to + M effect

H₃C

CHEMISTRY

Due to resonance the lone-pair on nitrogen is delocalised over benzene ring(+M effect)

Ans: 2] o,p – directing due to + M effect

33] The ring activating nature of $-NH_2$ in aniline is increased by converting aniline into –

1] acetanilide (C_6H_5 -NHCOCH₃) 2] anilium ion (C_6H_5 - $\dot{N}H_3$) 3] BDC C_6H_5 - $\dot{N}_2 \dot{C}l$ 4] N-methyl aniline(C_6H_5 - NH - CH₃)

a methyl group attached to nitrogen eases delocalistion of lone-pair of amino group(by its +l effect towards nitrogen) NH CH₃

Ans: 4] C_6H_5 –NH-CH₃

34] Azo dyes contain –

1] - CO - NH - 2] - S - S - S - 3] - N = N - 4] - O + O - 4]

C5H11

H₃C

Methyl orange(azo dye)

Ans: 3] – N = N –

The conversion of 351 m nitrophenol into resorcinol involves-1] diazotization, reduction and hydrolysis 2] hydrolysis, diazotization and reduction 3] reduction, diazotization and hydrolysis 4] hydrolysis, □ reduction and diazotization. 73

Explanation:

$HO - C_6H_4 - NO_2 \rightarrow HO - C_6H_4 - NH_2 \rightarrow HO - C_6H_4 - NH_2 \rightarrow HO - C_6H_4 - N_2CI \rightarrow HO - C_6H_4 - OH$

Ans: OH 3] reduction, hydrolysis

diazotization and

36] the number of moles of CH_3I consumed by a 2° amine during exhaustive methylation is-

1] One 2] Two 3] Three 4] zero

Explanation:

2° amine(R_2NH) $\xrightarrow{1mole CH_3I}$ \rightarrow 3° amine $\xrightarrow{1mole CH_3I}$ \rightarrow Quaternary ammonium salt.

Ans: 2] Two moles

A method of preparing strained ring is Freund (intramolecular Wurtz) reaction.

38] Which of the following gives cyclopentane on dry distillation followed by Clemmensen reduction?

 calcium acetate
 calcium propanoate + calcium acetate
 calcium acetate + calcium formate
 calcium adipate

Ans: 4] calcium adipate

39] The cycloalkane which has highest heat of combustion per mole of CH_2 is-

cyclopropane
 cyclobutane
 cyclopentane
 cyclohexane

Explanation: Most unstable cycloalkane has highest heat of combustion per mole of CH₂

Ans: 1] cyclopropane

40] An alkane that gives only one type of monochloroalkane on mixing with Cl_2 in presence of sunlight is –

1] neopentane(2,2-dimethyl propane)
 2] propane
 3] pentane
 4] isopentane

Explanation: Only one type of monochloro derivative is formed if all hydrogen atoms are identical.

41] Which of the following is strongest base?

A functional group which opposes delocalisation of lone-pair of amino group increases basic nature. Both 3 and 4 are stronger than aniline & 4 is strongest due to +M effect of methoxy(-OCH₃) group.

NH₂

Ans:

4]

42] Total number of isomers (including formed stereoisomers) when isopentane gets monochlorinated is -1] five **2] Two** H 3] Three 4] Four

HaC

CHEMISTRY

43] When treated with nitrous acid the amine that smells like spirit after liberating a colorless gas is

1] CH_3 -NH-CH₃ 3] C_6H_5 -NH₂

2] $CH_{3}CH_{2}-NH_{2}$ 4] $(CH_{3})_{3}N$

Explanation: Aliphatic 1° amines give alcohol & liberate nitrogen gas when treated with nitrous acid. $CH_3CH_2-NH_2+HNO_2 \rightarrow$ $CH_3CH_2-OH + N_2 + H_2O$ Ans: 2] CH_3CH_2 -NH₂

44] The reaction of chloroform with alcoholic KOH and benzenamine gives 1] $C_6H_5 - CN$ 2] $C_6H_5 - NC$ He 3] $C_6H_5 - N_2CI$ 4] $C_6H_5 - NH - C_6H_5$

The reaction given is carbylamine test.

Ans: 2] C_6H_5 NC

H₃C

C5H11

45] Which of the following is strongest base?

1] $C_6H_5NH_2$ 2] $C_6H_5 - NH - CH_3$ 3] $C_6H_5 - N - (CH_3)_2$ 4] $C_6H_5 - CH_2NH_2$

Aralkyl amines are stronger bases than aromatic amines. The lone-pair on nitrogen is not delocalised.

Ans: 4] $C_6H_5 - CH_2 - NH_2$

46] Which of the following is NOT meant for either the preparation or identification of amines?

Methylation
 nitrous acid test
 Hofmann bromamide reaction
 Lucas' test

Lucas' test is used to distinguish 1°, 2° and 3° alcohols.

4] Lucas' test

C5H11

47] (A) + Br_2 + 4KOH \rightarrow CH₃NH₂+ (B) + 2KBr+2H₂O. The compounds A and B are –

1] CH_3NC and 3KBr2] CH_3CONH_2 and 3KBr3] CH_3CONH_2 and K_2CO_3 4] CH_3NC and K_2CO_3

Explanation: The reaction is Hofmann bromamide reaction. $CH_3CONH_2(A) + Br_2 + 4KOH \rightarrow$ $CH_3NH_2 + K_2CO_3(B) + 2KBr+2H_2O$

Ans: 3] CH_3CONH_2 and K_2CO_3

48] The difference between benzene and cyclohexa-1,3,5-triene is

hybridisation of carbon
 bond-angle
 carbon-carbon bond lengths
 number of π-electrons

benzene cyclohexa-1,3,5-triene

Ans:-3] carbon-carbon bond lengths

49] one of the following is NOT related to the uses of aniline-

1] azo dyes
 2] sulpha drugs
 3] refrigerant
 4] paracetamol

H₃C

A refrigerant must have a boiling-point less than the target temperature.
Aniline has very high boiling point , it can not be used as refrigerant.

Ans:- 3] refrigerant

H₃C

The product 'C' is-1] p-bromoacetanilide 2] o-bromoacetanilide 3] p-aminophenol 4] p-bromoaniline

Ans: 4] p-bromoaniline

51] Identify the major product 'X' in the following equation

PEROXIDE

► X

 $CH_2 = CH - CH_2 - CH_3 + HBr$

1] 2-bromobutane
 2] 1,2-dibromobutane
 3] 1-bromobutane
 4] 1-bromobutene

The reaction proceeds against Markownikov's rule due to the presence of peroxide (Kharasch effect)

CH = CH-CH - CH + HBr

PEROXIDE CH -CH -CH -CH CH -CH -CH Br

1-bromobutane

Ans: 3] 1-bromobutane

52] The total number of stereo isomers of the final product in the given equation is

 \mathbf{Br}_2 in \mathbf{CCl}_4 alc.KOH,heat Ρ CH₃-CH₂-CH-CH₃ Q major product Br **1] two** Hoc 2] three 3] six 4] four

alc.KOH,heat

 CH_3 -CH= CH-CH_3

major product

 $CH_{3}-CH_{2}-CH-CH_{3}$ Br $Br_{2} in CCl_{4}$ $CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}$ Br = Br

 $2^n = 2^2 = 4$ isomers Ans:- 4] four

H₃C

CHEMISTRY

