THERMODYNAMICS \& THERMOCHEMISTRY

 SYNOPSIS:Some important terms, their types and their meaning in Thermodynamics;

- System; Closed, open \& isolated.
- Process: Isobaric($\Delta P=0$),Isochoric $(\Delta V=0)$, Adiabatic $(\Delta q=0)$.
-Work(w), heat(q) \& their sign conventions

$$
\mathbf{W}_{\text {(irrev) }}=-\mathrm{P}_{\text {(ext) }} \Delta \mathrm{V} .
$$

- $W_{(R e v)}=-2.303 n R T \log V_{2} / V_{1}$

$$
=-2.303 n R T \log P_{1} / P_{2}
$$

- Internal energy: (U or E) \& Enthalpy (H)

$$
H=U+P V
$$

$$
\Delta H=\Delta U+P \Delta V \text { or } \Delta H=\Delta U+R T \Delta n .
$$

- ${ }^{\text {st }}$ Law of thermodynamics:

$$
\Delta U=q+w
$$

- Exothermic reactions: $\mathrm{H}_{\mathrm{P}}<\mathrm{H}_{\mathrm{R}}$;

$$
\Delta H=H_{p}-H_{R}=-V e
$$

-Endothermic reaction: $H_{p}>H_{R}$;

$$
\Delta H=H_{P}-H_{R}=+V e
$$

-Enthalpy of reaction ($\left.\Delta \mathrm{H}_{\text {reaction }}\right)$

$$
=\sum \Delta H_{p}-\sum \Delta H_{R} .
$$

- $\left(\Delta H_{\text {reaction }}\right)=\sum$ Bond energies of reactants
- \sum Bond energies of products.

Various forms of heat of reactions and their calculations;

1. Heat of formation $\left(\Delta H_{f}\right)$: Lesser the value of ΔH_{f} of a compound greater the stability.
2. Heat of combustion.
3. Heat of solution.
4. Heat of transition.
5. Heat of phase change
6. Heat of neutralization:

- Constant $=-57.1 \mathrm{~kJ}$ or -13.4 kCal for strong acids and bases
- For weak acids or bases
$=-57.3+\Delta H_{(\text {Dissociation })}$.
$>$ Laws of thermo chemistry: Lavoiser \& Laplace law and Hess's Law and their applications in calculation of $\Delta \mathrm{H}_{\text {(reaction) }}$
>Entropy(S):
Measure of disorderness; entropy increases from solid \rightarrow liquid \rightarrow gases.

$$
\Delta S=\frac{q}{T} \quad q \text { in Joules \& } T \text { in Kelvin }
$$

- Gibb's free energy(G) G= H -TS $\Delta G=\Delta H-T \Delta S$.
- Prediction of spontaneity of reactions based on above equation
- If $\Delta G^{0}=-\mathrm{Ve}$

Spontaneous

- If $\Delta G^{0}=+V e$

Non Spontaneous

- If $\Delta \mathrm{G}^{0}=\mathbf{0}$

Equilibrium.

- For exothermic reactions at lower temperature $\Delta \mathrm{G}^{0}$ becomes -Ve
- For endothermic reactions at higher temperature ΔG^{0} becomes -Ve
- $\Delta G^{0}=-2.303$ RT $\log K_{p}$
- $\Delta \mathrm{G}^{0}=-\mathrm{nFE}{ }^{0}{ }_{\text {(Cell) }}$

QUESTIONS

1. Which of following value of $\Delta H_{f}{ }^{0}$ represents that product is least stable?

$$
\begin{array}{ll}
\text { 1. }-94.0 \mathrm{kJmol}^{-1} & \text { 2. }-231.6 \mathrm{kJmol}^{-1} \\
\text { 3. }+21.4 \mathrm{kJmol}^{-1} & \text { 4. }+64.8 \mathrm{kJmol}^{-1}
\end{array}
$$

Larger the value of ΔH_{f} of a compound lesser the stability.

> Ans : (4)

K_{A}

2. The heat of combustion of yellow and red phosphorus are -9.91 kJmol^{-1} and -8.78
kJmol^{-1} respectively. The heat of formation of yellow P to red P is

$$
\begin{array}{lll}
\text { 1. } & -18.69 \mathrm{~kJ} & 2 .+1.13 \mathrm{~kJ} \\
\text { 3. } & +18.69 \mathrm{~kJ} & 4 .-1.13 \mathrm{~kJ}
\end{array}
$$

For Combustion of $P_{\text {yellow }}=\Delta H=-9.91$
For Combustion of $P_{\text {red }}=\Delta H=-8.78$

$$
\begin{aligned}
P_{\text {vellow }} \rightarrow P_{\text {red }} & =[-9.9-(-8.78)] \\
& =-9.9+8.78=-1.13 \mathrm{~kJ}
\end{aligned}
$$

Ans: (4)
3. If enthalpy of vaporisation of water is $186.5 \mathrm{~J} \mathrm{~mol}^{-1}$ at $100^{\circ} \mathrm{C}$ then its entropy of vaporisation will be

1. $0.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \quad$ 2. $1.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2. $1.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \quad$ 4. $2.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

$$
\Delta S=\frac{\Delta H_{\text {vap }}}{T_{\text {bop }}}=\frac{186.5}{373}=0.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

Ans: (1)

A

4. According to the reaction $\mathrm{C}_{6} \mathrm{H}_{6}+15 / 2 \mathrm{O}_{2} \rightarrow$ $3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2} \Delta \mathrm{H}=-3264.6 \mathrm{KJ} \mathrm{mol}^{-1}$, the energy evolved when 3.0 g of benzene is burnt in air will be
5. $163.23 \mathrm{KJ} \mathrm{mol}^{-1} \quad 2.326 \mathrm{KJ} \mathrm{mol}^{-1}$
6. $32.64 \mathrm{KJ} \mathrm{mol}^{-1} \quad$ 4. $3.264 \mathrm{KJ} \mathrm{mol}^{-1}$
$\mathrm{C}_{6} \mathrm{H}_{6}+15 / 2 \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}\left(\Delta \mathrm{H}=-3.264 .6 \mathrm{KJ} \mathrm{mol}^{-1}\right)$
$78 \mathrm{~g} \rightarrow \quad-3264.6 \mathrm{KJ} \mathrm{mol}^{-1}$
$3 \mathrm{~g} \rightarrow \frac{-3264.6 \times 3}{78}$
$=-163.23 \mathrm{KJ} \mathrm{mol}^{-1}$
Ans (1)

$\mathbf{K}_{\mathbf{A}}$

5. In general exothermic reaction to be spontaneous
6. Temperature should be high
7. Temperature should be zero
8. Temperature should be low
9. Temperature has no effect

According to $\Delta G^{0}=\Delta H^{0}-T \Delta S$
Exothermic reaction ($\Delta \mathrm{H}=-\mathrm{ve}$) are favoured by low temperature.
Endothermic reaction ($\Delta H=+v e$) are favoured by high temperature.
6. The heat of neutralisation of strong base and strong acid is -57.0 KJ . The heat released when 0.5 mol of HNO_{3} solution is added to 0.2 mol . of NaOH solution is

1. $57.0 \mathrm{KJ} \quad$ 2. 11.40 KJ
2. 28.5 KJ
3. 34.945 KJ
0.2 mol of NaOH is limiting reagent.

Heat liberated for 0.2 mol of NaOH
$=0.2 \times 57.0 \mathrm{~kJ}=11.40 \mathrm{~kJ}$
Ans (2)

$\mathbf{K}_{\mathbf{A}}^{\mathbf{E}}$

7. The enthalpies of combustion of carbon and carbon monoxide are $-390 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and -278 kJ mol^{-1} respectively. The enthalpy of formation of carbon monoxide is
8. $668 \mathrm{~kJ} \mathrm{~mol}^{-1}$
9. $-112 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 4 .-668 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-390 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
$\Delta \mathrm{H}=-278 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H=$?

$$
=-390+278
$$

$$
=-112 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Ans (3)

$\mathbf{K}_{\mathbf{A}}$

8. The bond dissociation energy of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104,58 and 103 kCal respectively. The enthalpy of formation of HCl gas will be
9. $-44 \mathrm{kCal} \quad 2 .-88 \mathrm{kCal}$
10. $-22 \mathrm{kCal} \quad$ 4. -11 kCal
$1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{HCl} \quad \Delta \mathrm{H}=$?
$\Delta H_{\text {(reaction) }}=\left(1 / 2 B . E\right.$. of $\mathrm{H}_{2}+1 / 2 \mathrm{~B} . E$ of $\left.\mathrm{Cl}_{2}\right)-$ B.E. of HCl

$$
\begin{aligned}
& =(1 / 2 \times 104+1 / 2 \times 58)-103 \\
& =52+29-103 \\
& =-22 \mathrm{kCal}
\end{aligned}
$$

Ans (3)

$K_{\mathbf{K}}^{\mathbf{A}}$

9. The cell reaction is spontaneous if the cell potential is
10. Positive
11. Negative
12. Zero 4. Infinite
$\Delta G^{0}=-n F E^{0}$
If E^{0} is +ve only then $\Delta G=-v e$
(i.e. spontaneous)

Ans (1)

$\mathbf{K}_{\mathbf{A}}$

10. Intensive property among the following is
11. Volume
12. Mass
13. Density
14. Energy

Intensive property does not depend on the amount of the substance.

Ans (3)
11.A gas absorbs 250 J of heat and expands from 1 litre to 10 litre against the pressure of 0.5 atm at controlled temperature. The value of q, w and ΔE are 1. +250J, -455J, -205J 2. +250J, 455J, 205J 3. $-250 \mathrm{~J}, 205 \mathrm{~J}, 455 \mathrm{~J} \quad$ 4. $-205 \mathrm{~J},-250 \mathrm{~J},-455 \mathrm{~J}$ Here gas absorbs 250J of Heat Therefore, q is +ve i.e., 250J $\mathbf{w}=-P_{\text {ext }}\left(V_{2}-V_{1}\right)=-0.5(10-1)=-4.5$ Litre atm. $=-4.5 \times 1.0132 \times 10^{2} \mathrm{~J}=-455 \mathrm{~J}$ $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=250-455=-205 \mathrm{~J}$ Ans (1)

$K_{\mathbf{K}}^{\mathbf{A}}$

12. When a solid change to liquid, the entropy becomes
13. Zero 2. Becomes minimum
14. increases 4. remains same

When solid \rightarrow liquid \rightarrow Gas randomness increases.
Therefore entropy increases
Ans (3)

$\mathbf{K}_{\mathbf{A}}$

13. In a reaction involving only solids and liquids which of the following is true 1. $\Delta H<\Delta E \quad$ 2. $\Delta H=\Delta E$
14. $\Delta H>\Delta E \quad$ 4. $\Delta H=\Delta E+R T \Delta n$
$\Delta H=\Delta E+P \Delta V$
If only solids and liquids are involved no change in volume $\Delta V=0$
Therefore, $\Delta H=\Delta E$

> Ans (2)

A

14. One mole of a perfect gas expands isothermally to ten times its original volume. The change in entropy is
15. $0.1 R \quad$ 2. 2.303R 3.10.0 R 4. 100.0R

$$
q_{\mathrm{rev}}=+2.303 R \times T \log 10
$$

$$
\Delta S=\frac{q_{\text {rev }}}{T}=\frac{2.303 R T}{T}=2.303 R
$$

15. When enthalpy and entropy change for a chemical reaction are $-2.5 \times 10^{3} \mathrm{C}$ als and 7.4 Cals deg $^{-1}$ respectively. Predict that reaction at 298 K is
16. spontaneous 2. reversible 3. irreversible 4. non spontaneous

$$
\Delta G=\Delta H-T \Delta S
$$

$$
=-2.5 \times 10^{3}-298 \times 7.4
$$

$$
=-4.705 \times 10^{3} \mathrm{Cals}=-\mathrm{ve}
$$

THEORY OF DILUTE SOLUTION

 Synopsis$>$ Colligative properties: α to number of solute particles, but not on their nature.
Eg: osmotic pressure, relative lowering of vapor pressure, elevation in boiling point, depression in freezing point.
For example colligative property of same molar concentrations of $\mathrm{NaCl}<\mathrm{BaCl}_{2}<\mathrm{AlCl}_{3}<\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

1) Osmotic pressure:

- Osmosis: Flow of solvent molecules from dilute solution
- Osmotic pressure: External pressure required to stop the flow of solvent molecules
- Isotonic solutions: Two solutions having equal molar concentration, having equal osmotic pressure.

Hypotonic (lower osmotic pressure) sol ${ }^{\text {n }}$ Hypertonic (higher osmotic pressure) sol${ }^{\mathrm{n}}$. Reverse osmosis: Flow from concentrated solution to dilute solution

Semi permeable membranes and Examples.

$\mathbf{K}_{\mathbf{A}}$

Factors affecting osmotic pressure

$\pi V=n C R T$

$$
\text { Or } \quad \pi V=\frac{W}{M} \text { CRT }
$$

$$
\text { Or } \quad \pi=\frac{\mathbf{W}}{M V} R T
$$

For isotonic solution

$$
\frac{\mathbf{W}_{1}}{\mathbf{M}_{1}}=\frac{\mathbf{W}_{2}}{\mathbf{M}_{2}} \quad ' \mathbf{W}^{\prime} \text { in mass/litre }
$$

2. Relative lowering of vapour pressure

$$
\begin{aligned}
\text { RLVP } & =\frac{P^{0}-P}{P^{0}} \\
\text { Raoult's law } & =\frac{P^{0}-P}{P^{0}}=\frac{n_{2}}{n_{1}+n_{2}}
\end{aligned}
$$

Molecular mass $M_{2}=\frac{W_{2} M_{1}}{W_{1}(\text { RLVP })}$
By Ostwald Walker Method

$$
M_{2}=\frac{W_{2} M_{1}}{W_{1}} \frac{\text { (Gain in mass of } \mathrm{CaCl}_{2} \text { tube) }}{\text { (Loss in mass of Solvent tube) }}
$$

3. Elevation in Boiling point ($\Delta \mathrm{T}_{\mathrm{b}}$)

Boiling point of solution is $>$ that of solvent

$$
\Delta T_{b}=k_{b} m=\frac{1000 k_{b} W_{2}}{W_{1} M_{2}} \text { (Weights are in gram) }
$$

4. Depression in freezing point $\left(\Delta T_{f}\right)$

Freezing point of solution < that of solvent
$\Delta T_{f}=k_{f} m=\frac{1000 k_{b} W_{2}}{W_{1} M_{2}}$ (Weights are in gram)

Van't Hoff's Factor (i) $=\mathbf{M}_{\text {normal }}$
Van't Hoff's Factor $(i)=$
Observed colligative property
Calculated colligative property
$i<1$ for association molecules
$i>1$ for dissociation molecules

Types of Binary Solution

$\left.\begin{array}{|c|c|c|}\hline \text { Ideal } & \begin{array}{c}\text { Non ideal showing +ve } \\ \text { deviation }\end{array} & \begin{array}{c}\text { Non ideal showing -ve } \\ \text { deviation }\end{array} \\ \hline \begin{array}{c}\text { Interaction forces } \\ \mathrm{A}-\mathrm{A}=\mathrm{B}-\mathrm{B}=\mathrm{A}-\mathrm{B}\end{array} & \begin{array}{c}\text { Interaction forces } \\ \mathrm{A}-\text { AorB-B }>\mathrm{A}-\mathrm{B}\end{array} & \begin{array}{c}\text { Interaction forces } \\ \mathrm{A}-\mathrm{A} \text { or } \mathrm{B}-\mathrm{B}\end{array} \mathrm{A}_{\mathrm{A}} \mathrm{B}\end{array}\right]$

QUESTIONS

1) During osmosis flow of water through semi permeable membrane is
2) from both sides of S.P.M. with unequal flow rates
3) from solution having lower concentration only
4) from solution of higher concentration only
5) from both sides of S.P.M. with equal flow rate
H_{3} During osmosis solvents flows from lower concentration, reverse in reverse osmosis.

Ans (2)

$\mathbf{K}_{\mathbf{A}}$

2) Percentage of glucose which is isotonic with 1.5% urea is
3) 1.5%
4) 3.0%
5) 4.5%
6) 6.0%

M of 1.5% urea $=\frac{1.5 \times 1000}{100 \times 60}=0.25 \mathrm{M}$
0.25 M glucose $=\frac{0.25 \times 180 \times 100}{1000}=4.5 \%$

Ans (3)
3) At $25^{\circ} \mathrm{C}$ the highest osmotic pressure is exhibited by 0.1 M solution of

1) $\mathrm{CaCl}_{2} \quad$ 2) KCl
2) Glucose 4) Urea

No. of particle is maximum in CaCl_{2}

Ans (1)

$\mathbf{K}_{\mathbf{A}}^{\mathbf{A}}$

4) The osmotic pressure of 5% solution of cane sugar at $150^{\circ} \mathrm{C}$ (molar mass $=$ 342) is
$\begin{array}{ll}\text { 1) } 4 \mathrm{~atm} & \text { 2) } 5.07 \mathrm{~atm}\end{array}$
5) 3.55 atm
6) 2.45 atm

$$
\pi=R T C=0.082 \times 423 \times \frac{5 \times 1000}{100 \times 342}
$$

$=5.07 \mathrm{~atm}$
Ans (2)
5) A solution containing 10 g per dm^{3} of urea (Molar mass $=60$) is isotonic with a 5% solution of non volatile solute. The molar mass of the nonvolatile solute is

1. $350 \quad 2.200 \quad 3.250 \quad 4.300$
$\frac{W_{1}}{M_{1}}=\frac{W_{2}}{M_{2}}$

$$
M_{2}=\frac{5 \times 1000 \times 60}{100 \times 10}=300
$$

$\mathbf{K}_{\mathbf{A}}^{\mathbf{A}}$

6) A solution of acetone in ethanol
1. behaves like a near ideal solution
2. obeys Raoult's law
3. shows negative deviation from Raoult's law 4. shows positive deviation from Raoult's law

It is an example of Non-ideal solution

 showing -ve deviation> Ans (3)
7) 4 g of a non-volatile solute is dissolved in 36 g of water produces the relative lowering of vapor pressure of 0.1 . the molar mass of the solute is
$\begin{array}{llll}1.40 & 2.20 & 3.80 & 4.100\end{array}$

$$
M_{2}=\frac{W_{2} M_{1}}{W_{1}(R L V P)}=\frac{4 \times 18}{36 \times 0.1}=20
$$

Ans (2)

$\mathbf{K}_{\mathbf{A}}$

8) On mixing 10 ml ethanol with 40 ml water, the resulting solution will be
1. 50 ml
2. more than 50 ml
3. less than $\mathbf{5 0 m l}$
4. data is insufficient to decide

Ethanol + water is non-ideal solution showing +ve deviation. $\Delta \mathrm{V}_{(\text {mix })}+\mathrm{ve}$, volume increases.

Ans (2)

$\mathbf{K}_{\mathbf{A}}$

9) vant Hoff's factor for $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ in very dilute solution is
$\begin{array}{llll}1.1 & 2.10 & 3.5 & 4.1 / 5\end{array}$
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ Dissociates to 5 particles,
Therefore $i=5$
Ans (3)

K_{A}

10) In a solution A and B components shows negative deviation as

$$
\text { 1. } \Delta \mathrm{V}_{\text {mix }}>0
$$

$$
\text { 2. } \Delta \mathrm{H}_{\text {mix }}<0
$$

3. $A-B$ interactions is weaker than $A-A$ and B-B interactions
4. none of the above

For negative deviation solutions

$$
\Delta H=- \text { ve or }<0
$$

Ans (2)

$\mathbf{K}_{\mathbf{A}}$

11) Osmotic pressure of 6% urea is π_{1} and that of glucose is π_{2}, then π_{1} and π_{2} are related as
1. $\pi_{1}>\pi_{2}$
2. $\pi_{1}<\pi_{2}$
3. $\pi_{1}=\pi_{2}$
4. $\pi_{1}=1 / \pi_{2}$
M. of 6% urea $=6 \times 1000$

$$
=1
$$

100×60
M. of 6% glucose $=\frac{6 \times 1000}{100 \times 180}=0.33$

Therefore, $\pi_{1}>\pi_{2} \quad$ Ans (1)
12) The vapour pressure of pure liquid is 0.80 atm . When a non-volatile solute is added to this liquid the vapour pressure drops to 0.6 atm. The mole fraction of the solute in the solution is

1. $0.75 \quad$ 2. $0.20 \quad 3.0 .25 \quad$ 4. 0.85
$p^{0}-p$
0.8-0.6
$=0.25$
0.8

Ans (3)
13) Which of the following is not a colligative property?

1. Osmotic pressure
2. Elevation of boiling point
3. Depression of freezing point
4. Lowering of vapour pressure

Ans (4)
15) Solutions having same osmotic pressure
are called

1. hypertonic 2. hypotonic
2. isotonic 4. normal Ans (3)
17) The osmotic pressure of solution of benzoic acid dissolved in benzene is less than expected because
1. Benzoic acid is an organic solute
2. Benzene is non polar solvent
3. Benzoic acid gets associated in benzene
4. Benzoic acid dissociates in benzene Benzoic acid associates \&
No of particle decreases
18) The elevation in boiling point of 0.1 m aqueous solution of $\mathrm{NaCl}, \mathrm{CuSO}_{4}$, and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are in the ratio

$$
\begin{array}{ll}
\text { 1. 1:1:1 } & \text { 2. 1:2:3 } \\
3.1: 1: 1.5 & \text { 4. 2:6:7. }
\end{array}
$$

Van, Hoff's factor for NaCl is 2 ,for CuSO_{4} is 2 and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is 3 Ratio $=2: 2: 3=1: 1: 1.5$
19) The plant cell shrinks when placed in 1. a solution isotonic with cell sap
2. water
3. Hypertonic solution
4. Hypotonic solution Hypertonic solution- Higher osmotic pressure solution
Water from plant sap come out due to
osmosis-Shrinks
Ans (3)
20) For determination of molecular masses Raoult's law is applicable only to 1. Dilute solutions of electrolytes
2. Dilute solutions of non electrolytes
3.concentrated solutions of electrolytes
4. concentrated solutions of non electrolytes

Ans (2)
21. Second law of thermodynamics points out that

1. All spontaneous process are thermodynamically irreversible.
2. Entropy of universe is continuously increases
3. Both 1) \& 2) are correct
4. Only option (1) is correct Ans (3)
5. The amount of heat evolved when 500 cm^{3} of 0.1 M HCl is mixed with $200 \mathrm{~cm}^{3}$ of 0.2 M NaOH is

\author{

1. 2.292 kJ
 2. 1.292 kJ
 3. 0.292 kJ
 4. 3.392 kJ
}
$500 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~m} \mathrm{HCl}=\frac{500 \times 0.1}{1000}=0.05 \mathrm{~mol}$
$200 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~m} \mathrm{NaOH}=\frac{200 \times 0.2}{1000}=0.04 \mathrm{~mol}$
Limiting reagent is 0.04 mol NaOH
Heat released $=0.04 \times 57.3=2.292$ Ans (1)
