1) A weak monobasic acid is 1% dissociated in an aq. Solution. ρH of the solution =3.its morality is

1)1M 2) 0.1M 3) 0.01M 4) 0.001M

- 2) Which of the following gives an acidic solution in water
- 1)NH₄cl 2)NH₄No3 3)(NH₄)₂SO₄ 4)all the above

- 3) Number of H⁺ ions present in 1 mole of water at 25°C
- 1) 10^{-7} 2) 10^{7} 3) 6.022×10^{23} 4) 6.022×10^{16}
 - 4) [H^+] of a solution increases by 10 times, then its ρH

1)Increases by I unit
 2)Decreases by I unit
 3)Increases by 0.1 unit
 4)Decreases by 0.1 unit

5)Equal volumes of 2 solutions of ρH =3 and ρH = 5 are mixed. ρH of the resulting solution is 1) 4 2) 4.5 3) 5 6) 3.3

6) ρk_a of two acids of equal molarity are 4 and 5.
The strengths of the acids are in the ratio
1)4:5 2)10:1 3) 10:3.2 4)1:10

7)Which of the following solutions change its ρ H easily when few drops of dil.Hcl is added

- 1) Sodium phosphate + phosphoric acid
- 2) Sodium carbonate + carbonic acid
- 3) Sodium chloride + hydrochloric acid
- 4) Sodium citrate + citric acid

8) In an aqueous solution $[x^-]=[Hx] k_b$ of $x^-=10^{12}$. What is the ρ H of the buffer solutions 1) 12 2) 2 3) 13 4) 1

- The degree of dissociation of acetic acid is affected by
- 1) Dilution
- 2) Adding Hcl
- 3) Adding NaoH
- 4) All the above
- 10) To a saturated solution of Agcl little Hcl is added. Then
 - 1) Solubility of Agcl decreases
 - 2) Solubility of Agcl increases
 - 3) K_s of Agcl increases
 - 4) Solubility of Agcl does not change
- 11) Solubility of Agcl is maximum in

1) 0.1M Hcl
 2)0.1M Nacl
 3)Water
 4)0.1M NH₄OH

12) K_s of a sparingly soluble salt AB is $1+10^{-10}$. In a solution [A^+] is 10^{-4} M. AB will precipate when [B^-] is $1)10^{-3}M$ 2) $10^{-4}M$ 3) $10^{-5}M$ 4)all the above.

- 13) To a solution containing equal concentration of cl^-, Br^-, I^- . Dilute AgNo₃ solution is added. Which is precipitated first.
 - 1)Agcl 2)AgBr 3)AgI 4)all are precipitated together.

14) K_a for a weak acid is 10^{-5} . ρk_b for its conjugate base is $1)10^{-9}$ 2)5 3)9 4)7

15) In a solution containing mixture of NH₄cl and NH₄OH, the ratio [NH₄cl]:[NH₄OH] decreases by 10 times, than the *ρ*H
1)Increases by 1 unit 2) Increases by 10 unit
3)Decreases by 1 unit 4) Decreases by 10 unit.

16) ρ H of a sodium hydroxide solution is 10.

Then mass of NaoH/d m^3 is

1)2×10⁻³g 2)4×10⁻³g 3)10⁻¹⁰g

4)4× $10^{-9}g$

17) ρ H of 0.5 N H₂SO₄ is

- 1)0 2)0.3010 3) 1 4) 0.5
- 18) Difference between 0.1 N NaoH and 0.1

NH₄OH is

- 1)One is a conductor of electricity and other is not
- 2)One is corrosion and other is not
- 3)One contains undissociated molecules and other does not
- 4)One reacts with Hcl and other does not

- 19)When more and more water is added to the solution of a weak electrolyte, the value of the degree of dissociation approaches to..
 1)0 2) 1 3)100 4)∞
- 20) In the electrolysis of the fused Nacl, the product obtained at the cathode is
 1)0₂ 2)cl₂ 3)H₂ 4) none of the above
- 21) The solubility of a salt AB₂ IS 1.0×10^{-5} mol dm⁻³ .the value of solubility product is $1)4 \times 10^{-15}$ 2) 10^{-10} 3) 10^{-15} 4) 4×10^{-10}
- 22) ECE of a divalent metal is 2× 10⁻⁴. Atomic mass of the metal is
 1)19.3 2)38.6 3)77.2 4)9.65

23) *ρH* of a NaoH solution is 10. 10 dm³ of this solution contains.
1)0.1g NaoH
2)4g of NaoH
3)0.4g of NaoH
4)0.04g NaoH

- 24) Common salt is added to a saturated solution of soap. Soap is precipitated. This is because of
 - 1)Common ion effect
 - 2) Peptisation
 - 3) Coagulation
 - 4) None of these.

25) A buffer solution containing equal volumes 0.02M NH₄OH and 0.2M NH₄Cl has a ρ H=x ρk_b of NH₄OH=5, the value of x is 1) 4 2) 6 3) 8 4) 10