CET VIKASANA PROGRAMME – 2013

MOLECULAR BIOLOGY

 Molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material.

DNA

RNA

Protein

>DNA

- Two long strands makes the shape of a <u>double</u> <u>helix</u>.
- two strands run in opposite directions to each other and are therefore <u>anti-</u> <u>parallel</u>.
- Chemically, DNA consists of two long <u>polymers</u> of simple units called <u>nucleotides</u>, with <u>backbones</u> made of <u>base</u>, <u>sugars</u> and <u>phosphate</u> groups.

• RNA is a

biologically important type of molecule that consists of a long chain of <u>nucleotide</u> units.

 Each nucleotide consists of a <u>nitrogenous base</u>, a <u>ribose</u> sugar, and a <u>phosphate</u>.

<u>Ribonucleic acid</u> (RNA)

• Difference between RNA & DNA

RNA	DNA
RNA nucleotides contain ribose sugar	DNA contains deoxyribose
RNA has the base uracil	DNA has the base thymine
presence of a hydroxyl group at the 2' position of the ribose sugar.	Lacks of a hydroxyl group at the 2' position of the ribose sugar.
RNA is usually single- stranded	DNA is usually double- stranded

DNA replication

DNA replication, the basis for <u>biological</u> <u>inheritance</u>, is a fundamental process occurring in all living organisms to copy their <u>DNA</u>.

- In the process of "<u>replication</u>" each strand of the original double-stranded DNA molecule serves as template for the reproduction of the complementary strand.
- Two identical DNA molecules have been produced from a single double-stranded DNA molecule.

CENTRAL DOGMA OF MOLECULAR BIOLOGY

Double helical model was proposed by

a. Boysen and Jensen
b. Watson and Crick
c. Watson and Tatum
d. Schleiden and Schwann

Double helical model was proposed by

a. Boysen and Jensen
b. Watson and Crick
c. Watson and Tatum
d. Schleiden and Schwann

Who among the following conclusively proved that DNA is the genetic material?

a. O.T Avery. C. Macleod and McCarty b. Meselson and Stahl

- c. Hargobind Khorana. Holley and Nirenberg
- d. Tatum and Lederberg

Who among the following conclusively proved that DNA is the genetic material?

a. O.T Avery. C. Macleod and McCarty
b. Meselson and Stahl
c. Hargobind Khorana. Holley and
Nirenberg
d. Tatum and Lodorborg

d. Tatum and Lederberg

A nucleotide consists of

a. A nitrogen base and pentose sugar.
b. A nitrogen base and phosphate
c. A Pentose sugar and phosphate
d. A nitrogen base, pentose sugar & phosphate

BIOLOGY

A nucleotide consists of

a. A nitrogen base and pentose sugar.
b. A nitrogen base and phosphate
c. A Pentose sugar and phosphate
d. A nitrogen base, pentose sugar & phosphate

© scienceaid.co.uk

Bacterial transformation was discovered by:

a. Avery et al

- **b. Watson and Crick**
- c. Griffith
- d. Hershey and Chase

Bacterial transformation was discovered by:

a. Avery et al b. Watson and Crick c. Griffith d. Hershey and Chase

RNA contains the following sugar:

a. Glucoseb. Ribosec. Hexosed. Fructose

RNA contains the following sugar:

a. Glucose
b. Ribose
c. Hexose
d. Fructose

DNA is a polymer of:

a. Proteins
b. RNA
c. Carbohydrates
d. Nucleotides

DNA is a polymer of:

a. Proteins
b. RNA
c. Carbohydrates
d. Nucleotides

All of the following elements are present in DNA except:

a. Phosphorous
b. Carbon
c. Sulphur
d. Nitrogen

All of the following elements are present in DNA except:

a. Phosphorous
b. Carbon
c. Sulphur
d. Nitrogen

The four nitrogenous bases found in DNA which forms its language are:

a. UTAC b. ACTU c. AGTU d. ATCG

The four nitrogenous bases found in DNA which forms its language are:

a. UTAC b. ACTU c. AGTU d. ATCG

The base that is not found in DNA but found in RNA is:

a. Thymine
b. Uracil
c. Adenine
d. Guanine

The base that is not found in DNA but found in RNA is:

a. Thymine
b. Uracil
c. Adenine
d. Guanine

Which purine is found in RNA?

a.Guanine b. Cytosine c. Thymine d. Uracil

Which purine is found in RNA?

a.Guanine b. Cytosine c. Thymine d. Uracil

Which sequence has four pyrimidines ?

a. CATCAATGG
b. UAGCGGUAA
c. TGGATAACG
d. GCUAGACAA

Which sequence has four pyrimidines ?

a. CATCAATGG
b. UAGCGGUAA
c. TGGATAACG
d. GCUAGACAA

DNA consists of two complimentary chains of nucleotides. If the sequence of nucleotides in one chain is AGCTTCGA, then the sequence in the other chain is

a.TAGGATAT b. GATCCTAG c. TCGAAGCT d. GCTAAGCT

DNA consists of two complimentary chains of nucleotides. If the sequence of nucleotides in one chain is AGCTTCGA, then the sequence in the other chain is

a.TAGGATAT b. GATCCTAG c. TCGAAGCT d. GCTAAGCT

Which of the following is made up of single ring of atoms ?

a. Alanineb. Adeninec. Guanined. Thymine

Which of the following is made up of single ring of atoms ?

a. Alanine
b. Adenine
c. Guanine
d. Thymine

The two strands of DNA are:

a. Similar and parallel
b. Similar and antiparallel
c. Complementary and antiparallel
d. Complementary and parallel

The two strands of DNA are:

a. Similar and parallel
b. Similar and antiparallel
c. Complementary and antiparallel
d. Complementary and parallel

5' C-G-A-T-T-G-C-A-A-C-G-A-T-G-C 3' | | | | | | | | | | | 3' G-C-T-A-A-C-G-T-T-G-C-T-A-C-G 5'

DNA acts as a template for:

a. Proteins b. DNA c. RNA d. Both DNA and RNA

DNA acts as a template for:

a. Proteins b. DNA c. RNA d. Both DNA and RNA

Formation of RNA from DNA is called:

a. Transcription
b. Translation
c. Replication
d. Recombination

Formation of RNA from DNA is called:

a. Transcription
b. Translation
c. Replication
d. Recombination

Inheritable gene mutation takes place in

a. Nuclear DNA b. Mitochondrial DNA c. Chloroplast DNA d. All the above

Inheritable gene mutation takes place in

a. Nuclear DNA b. Mitochondrial DNA c. Chloroplast DNA d. All the above

BIOLOGY MRNA is synthesized on DNA in which direction:

a. $5' \Rightarrow 3'$ b. $3' \Rightarrow 5'$ c. $5' \Rightarrow 3'$ and $3' \Rightarrow 5'$ d. $3' \Rightarrow 5'$ and $5' \Rightarrow 3'$

BIOLOGY MRNA is synthesized on DNA in which direction:

a. $5' \Rightarrow 3'$ b. $3' \Rightarrow 5'$ c. $5' \Rightarrow 3'$ and $3' \Rightarrow 5'$ d. $3' \Rightarrow 5'$ and $5' \Rightarrow 3'$

Split genes were discovered by

a. Watson and Crick
b. Lederberg and Tatum
c. Jacob and Monad
d. Sharp and Roberts

Split genes were discovered by

a. Watson and Crick
b. Lederberg and Tatum
c. Jacob and Monad
d. Sharp and Roberts

Molecule into which the coded information is transcribed is:

a. mRNA b. tRNA c. rRNA d. hnRNA

Molecule into which the coded information is transcribed is:

a. mRNA b. tRNA c. rRNA d. hnRNA

The two strands of DNA are held together by _____ bonds:

a. Nitrogen
b. Hydrogen
c. Oxygen
d. Carbon

The two strands of DNA are held together by _____ bonds:

a. Nitrogen
b. Hydrogen
c. Oxygen
d. Carbon

Hydrogen bonds present between Cytosine and Guanine are:

a. 2 b. 3 c. 1 d. 4

KEA Hydrogen bonds present between Cytosine and Guanine are:

a. 2 b. 3 c. 1 d. 4

The ratio of purine and pyrimidine bases in a DNA molecule is always around one. This is known as:

a. Wobble hypothesis
b. Teminism
c. Chargaff's rule
d. Colinearity

The ratio of purine and pyrimidine bases in a DNA molecule is always around one. This is known as:

a. Wobble hypothesis
b. Teminism
c. Chargaff's rule
d. Colinearity

In a double stranded DNA molecule, the percentage of Cytosine is 18 what is the percent of Adenine ?

a. 64%
b. 32%
c. 18%
d. 46%

In a double stranded DNA molecule, the percentage of Cytosine is 18 what is the percent of Adenine ?

a. 64%
b. 32%
c. 18%
d. 46%

A short length of DNA molecule contains 120 Adenine and 120 Cytosine bases. The total number of nucleotides in this DNA segment is:

a. 60
b. 120
c. 240
d. 480

A short length of DNA molecule contains 120 Adenine and 120 Cytosine bases. The total number of nucleotides in this DNA segment is:

a. 60
b. 120
c. 240
d. 480

The replication of nuclear DNA occurs in:

a. G1 - phase
b. G2 - phase
c. S - phase
d. M - phase

The replication of nuclear DNA occurs in:

a. G1 - phase
b. G2 - phase
c. S - phase
d. M - phase

The process of multiplication of DNA from DNA is known as:

a. Replication
b. Mutation
c. Transcription
d. Translation

The process of multiplication of DNA from DNA is known as:

a. Replication b. Mutation c. Transcription d. Translation

The term triplet code and genetic code were proposed by:

- a. Watson and Crickb. Nirenbergc. Gamow
- d. Friederich Meischer

The term triplet code and genetic code were proposed by:

a. Watson and Crick
b. Nirenberg
c. Gamow
d. Friederich Meischer

Match the nucleotide triplets given in column 1 and their common names listed in column 2, choose the answer with correct combination of alphabets of the 2 columns

	Column 1(stop codon)		Column 2 (function)
А	UAA UAG UGA	р	Amber codon
В	UAA	q	Initiatior codon
С	UAG	r	Ochre codon
D	AUG	S	Terminator codon
A Match the nucleotide triplets given in column 1 and their common names listed in column 2, choose the answer with correct combination of alphabets of the 2 columns

	Column1(stop codon)		Column2(function)
А	UAA,UAG,UGA	р	Amber codon
В	UAA	q	Initiator codon
С	UAG	r	Ochre codon
D	AUG	S	Terminator codon

KEA Information flow or central dogma of molecular biology is:

a. RNA → Proteins → DNA b. Proteins → DNA → RNA c. RNA → DNA → Proteins d. DNA → RNA → Proteins

KEA Information flow or central dogma of molecular biology is:

a. RNA ⇒ Proteins ⇒ DNA b. Proteins ⇒ DNA ⇒ RNA c. RNA ⇒ DNA ⇒ Proteins d. DNA ⇒ RNA ⇒ Proteins

Central Dogma of Gene Expression.

Through the production of mRNA (transcription) and the synthesis of proteins (translation), the information contained in DNA is expressed.

Removal of introns and joining the exons in a defined order in a transcription unit is called:

a. Tailing
b. Transformation
c. Capping
d. Splicing

Removal of introns and joining the exons in a defined order in a transcription unit is called:

a. Tailing
b. Transformation
c. Capping
d. Splicing

Number of punctuation codons are:

a. 4
b. 2
c. 1
d. 5

Number of punctuation codons are:

a. 4
b. 2
c. 1
d. 5

Genetic code is degenerate because:

a. codons have same energy level b.Each codon has a different meaning

c. Each codon has many meanings
 d. Many codons have same meaning

meaning

BIOLOGY

Genetic code is degenerate because:

a. codons have same energy level b.Each codon has a different meaning

c. Each codon has many meaningsd. Many codons have same

DNA polymerase takes part in:

a. Transcription
b. Splicing
c. Replication
d. Teminism

DNA polymerase takes part in:

a. Transcription
b. Splicing
c. Replication
d. Teminism

The genes that keep changing their location on chromosomes are:

a. Jumping genes
b. Split genes
c. Duplicate genes
d. Pleiotropic genes

The genes that keep changing their location on chromosomes are:

a. Jumping genes
b. Split genes
c. Duplicate genes
d. Pleiotropic genes

Number of base pairs in each turn of ZDNA helix is:

a. 10
b. 11
c. 12
d. 15

Number of base pairs in each turn of ZDNA helix is:

a. 10
b. 11
c. 12
d. 15

Continuous DNA synthesis occurs during replication in:

a. The leading strand
b. The lagging strand
c. The strands where Okazaki fragments are formed
d. Both leading and lagging strands

Continuous DNA synthesis occurs during replication in:

a. The leading strand
b. The lagging strand
c. The strands where Okazaki fragments are formed
d. Both leading and lagging strands

Eukaryotic mRNA has:

a. G cap nucleotide
b. Poly A tail
c. Both G cap and poly A tail
d. Saturated fats

Eukaryotic mRNA has:

a. G cap nucleotide
b. Poly A tail
c. Both G cap and poly A tail
d. Saturated fats

Teminism is:

- a. Translation
- **b.** Transcription
- c. Reverse transcription
- d. Transduction

Teminism is:

a. Translation b. Transcription c. Reverse transcription d. Transduction

KEA Central dogma in protein synthesis of teminious organisms is:

a. gRNA → DNA → mRNA → Proteins
b. DNA → DNA → mRNA → Proteins
c. mRNA → gRNA → DNA → Proteins
d. DNA → gRNA → mRNA → Proteins

BIOLOGY Central dogma in protein synthesis of teminious organisms is:

a. gRNA⇒ DNA⇒ mRNA⇒ Proteins
b. DNA⇒ DNA⇒ mRNA ⇒ Proteins
c. mRNA⇒ gRNA⇒ DNA⇒ Proteins
d. DNA⇒ gRNA⇒ mRNA⇒ Proteins

The segment of DNA which participates in crossing over is:

a. Mutonb. Reconc. Cistrond. Replicon

The segment of DNA which participates in crossing over is:

a. Muton
b. Recon
c. Cistron
d. Replicon

What is true about ori?

a. One in all organisms b. Several in all organisms c.One in eukaryotes and several in prokaryotes d.One in prokaryotes and several in eukaryotes

What is true about ori?

a. One in all organisms b. Several in all organisms c.One in eukaryotes and several in prokaryotes d.One in prokaryotes and several in eukaryotes

Codogen is triplet of:

a. Template strand of DNA
b. Non-template strand of DNA
c. mRNA
d. tRNA

Codogen is triplet of:

a. Template strand of DNA
b. Non-template strand of DNA
c. mRNA
d. tRNA

Anticodons occur in:

a. tRNA b. mRNA c. mtDNA d. rRNA

Anticodons occur in:

a. tRNA b. mRNA c. mtDNA d. rRNA

Exons and Introns are present in:

a. Prokaryotic mRNA b. Eukaryotic mRNA c. The Lac operon d. Mt RNA

Exons and Introns are present in:

a. Prokaryotic mRNA b. Eukaryotic mRNA c. The Lac operon d. Mt RNA

Okazaki fragments give rise to:

a. Master strand b. Sense strand c. Lagging strand d. Leading strand

Okazaki fragments give rise to:

a. Master strand b. Sense strand c. Lagging strand d. Leading strand

Which RNA is called soluble RNA:

a. tRNA b. mRNA c. rRNA d. snRNA

Which RNA is called soluble RNA:

a. tRNA b. mRNA c. rRNA d. snRNA

Sequence of structural genes in lac operon concept is:

a. Lac Y, Lac Z and Lac A
b. Lac Z, Lac Y, Lac A
c. Lac A, Lac Y, Lac Z
d. Lac A, Lac Z, Lac Y

Sequence of structural genes in lac operon concept is:

a. Lac Y, Lac Z and Lac A b. Lac Z, Lac Y, Lac A c. Lac A, Lac Y, Lac Z d. Lac A, Lac Z, Lac Y

The operator gene of Lac operon is turned on when inducer molecule binds to:

a. Promoter site
b. Operator gene
c. mRNA
d. Repressor

The operator gene of Lac operon is turned on when inducer molecule binds to:

a. Promoter site
b. Operator gene
c. mRNA
d. Repressor