## **MOVING CHARGES AND MAGNETISM**

- 1. The potential difference of 2.0 kV is applied across the horizontal plates of a parallel plate capacitor with a plate separation 1 *cm*. There exists a normal magnetic field asshown in the figure. A particle with a specific charge +1 x 10<sup>-4</sup> *C/kg* moves with a speed of 2 x 10<sup>6</sup> *ms*<sup>-1</sup> between the plates without deflection. The magnetic field in the region is ( $g = 10 ms^{-2}$ ):
  - a. 0.1 *T* b. 0.05 *T*
- 2. A charge *q* of mass *m* enters the region of magnetic field *B* with a velocity *v* as in the figure. If the charge comes out of the region in a time  $\pi m/6qB$ , the width of the region *d* is:
  - a. *mv*/4*qB* c. *mv*/3*qB*
  - b. mv/2qB d. mv/qB
- 3. The magnetic field at point O in the figure is:
  - a.  $11\mu_0 I/24R$
  - b.  $7\mu_0 I/24R$
  - c.  $\mu_0 I/6R$
  - d.  $\mu_0 I/2R$
- 4. A wire of uniform cross-section is made a circular coil of radius *a* and is connected to a potential difference

of *V*. If the resistance of the wire is *R*, the magnetic field at *O* is:

- a.  $\mu_0 V/2Rr$
- b.  $\mu_0 V/Rr$
- c.  $3\mu_0 V/32Rr$
- d. zero
- 5. The magnetic field at point *O* in the figure is:
  - a.  $\frac{\mu_0 I}{4R} \left\{ \frac{3}{2} \frac{\sqrt{2}}{\pi} \right\}$ b.  $\frac{\mu_0 I}{2R} \left\{ \frac{3}{2} + \frac{\sqrt{2}}{\pi} \right\}$ c.  $\frac{3\mu_0 I}{8R}$ d.  $\frac{\mu_0 I}{4R} \left\{ \frac{3}{2} + \frac{\sqrt{2}}{\pi} \right\}$











6. The magnetic field in a region is given by:  $\vec{B} = 5\hat{i} + \hat{j} - 2\hat{k}$ . If the acceleration of the particle at an instant is  $2\hat{i} + 4\hat{j} + c\hat{k}$ , the value of *c* is:

c. 28

c.  $4\pi\sqrt{h/g}$ 

d. 12

Î,

d.  $2\pi\sqrt{2h/g}$ 

b. 7



a.  $2\pi\sqrt{h/g}$  b.  $\pi\sqrt{h/g}$ 

8. A charge with a velocity  $\vec{v} = 3\hat{i} - \hat{j} + \hat{k}$  enters a region of uniform magnetic field  $B = B_0(\hat{i} + 4\hat{j} + \hat{k})$ . The nature of path of the particle is:



- 10. A spherical shell of radius *R* has a charge *Q* distributed uniformly over it. The shell is spinning with a uniform angular velocity of  $\omega$  about its diameter. The magnetic moment of the shell is:
  - a.  $QR^2\omega/3$  b.  $4QR^2\omega/3$  c.  $2QR^2\omega/3$  d. zero
- 11. A half toroid of an area of cross section *A* toroidal radius of *R* carries a current *I*. The number of turns in the half toroid is *N*. The magnetic moment of the half toroid is:
  - a.  $NIA/\pi$  b.  $NIA/2\pi$  c.  $2NIA/\pi$  d.  $NIA^2/\pi R^2$

12. The loop shown in the fig. is placed in X–Y plane. If there exists a uniform magnetic field  $\vec{B} = a\hat{i} + b\hat{j} + c\hat{k}$ . The magnitude of the torque on the loop is:

- a.  $2.57Id^2\sqrt{a^2-b^2}$
- b.  $2.57Id^2\sqrt{a^2+b^2}$
- c.  $2.57Id^2(b-a)$
- d.  $2.57Id^2(b+a)$



13. A steady current *I* flows through a wire *PQR* having a shape of right triangle with *PQ* = 3*x*, *PR* = 4*x* and right angled at *P*. If the magnitude of the magnetic field at *P* is  $k \frac{\mu_0 I}{48\pi x'}$ , the value of *k* is:



- 15. Two protons move parallel to each other with equal speed of 300 km/s. The ratio of magnetic and electrical interaction between them is:
  - a. 10<sup>6</sup> b. 10<sup>-6</sup> c. 10<sup>3</sup> d. 10<sup>-3</sup>

16. A tightly wound spiral with *N* turns carries a current *I*. The inner and the outer radius of the spiral are *a* and *b* respectively. The magnetic field at the center is:

a. 
$$\frac{\mu_0 NI}{2(b-a)} \log \frac{b}{a}$$
 b. 
$$\frac{\mu_0 NI}{2(b-a)} \log \frac{a}{b}$$
 c. 
$$\frac{\mu_0 NI}{2(b-a)}$$
 d. 
$$\frac{\mu_0 NI}{2} \left(\frac{1}{a} - \frac{1}{b}\right)$$

- 17. A proton and an  $\alpha$  particle accelerated by the same potential difference from rest enter into a region of uniform magnetic field normal to the field. The ratio of radii of the path of the proton to that of  $\alpha$  particle will be:
  - a.  $1: \sqrt{2}$  b.  $\sqrt{2}: 1$  c. 1: 2 d. 2: 1

18. Two infinitely long straight wires carrying currents  $I_1$  and  $I_2$  are placed in X - Y plane as shown in the figure. The equation of set of all points with zero magnetic field are:

- a. straight line with unit positive slope
- b. straight line with slope  $I_1/I_2$
- c. straight line with slope  $I_2/I_1$
- d. straight line with unit negative slope
- 19. The current density in a straight uniform wire of radius *R* varies with the distance *r* from the axis  $asj(r) = kr^2$ . The magnetic field at a distance *s* from axis inside the wire is:
  - a.  $2\mu_0 ks^3$  b.  $\mu_0 ks^3/2$  c.  $\mu_0 ks^3/4$  d.  $4\mu_0 ks^3$



| 20. In the figure, a conductor of length $l$ is moving with a velocity in a magnetic field $B$                                 |                                                                                                                    |                  |         |            |                     |               |          |                     |                     |        |                   | with a velocity  | v.Which |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|---------|------------|---------------------|---------------|----------|---------------------|---------------------|--------|-------------------|------------------|---------|
|                                                                                                                                | on                                                                                                                 | e of th          | e follo | wing stat  | ements              | is true:      |          | ×Ē                  | ×                   | ×      | :                 | ×                |         |
|                                                                                                                                | a.                                                                                                                 | P is a           | t highe | er potenti | al w. r.            | t. Q          |          | ×                   | e x                 | ×      | æ                 | ×                |         |
|                                                                                                                                | b.                                                                                                                 | Q is a           | ıt high | er potent  | ial w. r            | . t. P        |          | ×                   | X                   | V x    | а<br>;            | K.               |         |
|                                                                                                                                | c. The p. d. between $P$ and $Q$                                                                                   |                  |         |            |                     | is zero       |          |                     | x                   | N<br>X | 2                 | ĸ                |         |
|                                                                                                                                | d. The p. d. between $P$ and $Q$ is $Bl$                                                                           |                  |         |            |                     |               |          | ~                   |                     |        |                   |                  |         |
| 21.                                                                                                                            | A long solenoid carrying a current produces a magnetic field of <i>B</i> along its axis. If the current is doubled |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | and the number of turns per <i>cm</i> are halved, the new magnetic field is:                                       |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | a.                                                                                                                 | В                |         |            |                     | b. 2 <i>B</i> |          |                     | c. 4B               | 1      |                   | d. 0.5 <i>B</i>  |         |
| 22.                                                                                                                            | The current in the winding on a toroid is 2.0 A. There are 400 turns and the mean circumferential lengthis         |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | 40 <i>cm</i> . If the inside magnetic field is 0.1 <i>T</i> , the relative permeability is nearly:                 |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | a. 10                                                                                                              |                  |         |            |                     | b. 20         |          |                     | c. 30               |        |                   | d. 40            |         |
| 23.                                                                                                                            | . If the energy gained by the proton after acceleration in a cyclotron is $E$ , the energy attained by the $a$     |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | particle in the cyclotron will be:                                                                                 |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | a.                                                                                                                 | 4 E              |         |            |                     | b. 2 <i>E</i> |          |                     | <b>c</b> . <i>E</i> |        |                   | d. 0.25 E        |         |
| 24. If the magnetic field at the center of a circular current loop of radius 3 <i>cm</i> is <i>B</i> , the magnetic field at a |                                                                                                                    |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | distance of 4 <i>cm</i> on the axis of the loop will be:                                                           |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | a. 27 <i>B</i> /125                                                                                                |                  |         |            | b. 54 <i>B</i> /125 |               |          | c. 27 <i>B</i> /250 |                     |        | d. 9 <i>B</i> /25 |                  |         |
| 25.                                                                                                                            | A voltmeter of resistance 2000 $\Omega$ has a range of 4 V. To increase its range to 10 V, the value of the series |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | resistance is:                                                                                                     |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                | a.                                                                                                                 | a. 3000 <b>Ω</b> |         |            |                     | b. 800 Ω      |          |                     | c. 6000 <b>Ω</b>    |        |                   | d. 5000 <b>Ω</b> |         |
|                                                                                                                                |                                                                                                                    |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
| Kevs                                                                                                                           |                                                                                                                    |                  |         |            |                     |               |          |                     |                     |        |                   |                  |         |
|                                                                                                                                |                                                                                                                    |                  | 1       | D          | ć                   | D             |          | -                   | 16                  |        | 01                |                  |         |
|                                                                                                                                |                                                                                                                    |                  | 1       | В<br>В     | 6<br>7              | В<br>А        | 11<br>12 | C<br>B              | 16<br>17            | A<br>A | 21<br>22          | A<br>D           |         |
|                                                                                                                                |                                                                                                                    |                  | 3       | A          | 8                   | D             | 13       | C                   | 18                  | C      | 22                | C                |         |
|                                                                                                                                |                                                                                                                    |                  | 4       | D          | 9                   | В             | 14       | В                   | 19                  | С      | 24                | А                |         |
|                                                                                                                                |                                                                                                                    |                  | 5       | D          | 10                  | Α             | 15       | В                   | 20                  | В      | 25                | D                |         |