Episode No – 7 Telecast date: 04-04-2017 Faculty: H.S. Venkataramaiah

ALGEBRA

* The set of all values of x for which $x^2-1x+21+x<0$ is (a)(- 2, ∞) (b)(2, ∞) (c)(- 2, + 2) (d)(- ∞ , 2) Ans: C If the expression $x^2+2[a+b+c]x+3[ab+bc+ca]$ is perfect square then * (a) a≠ b = c (b)a ≠ b (c)b ≠ c (d)a = b = cAns: D Solution set for $3^{x/2} + 2^x > 25$ is * (a) R - {4} (b) $R^++\{-4\}$ (c)(4, ∞) (d)(- ∞ ,4) Ans: D

- * The length of rectangle is 3 times breadth. If minimum perimeter is 160cm, then (a) B > 20 (b) L < 20 (c) $B \ge 20$ (d) $L \le 20$ Ans: C
- * Number of integral values of x satisfying inequality $\left(\frac{3}{4}\right)^{-x^{2}+10+6x} < \frac{27}{64}$ is

(a) 6 (b) 5 (c) 7 (d) 8

Ans: C

- Let p,q \in {1,2,3,4} No. of equations of the form px²+qx+1=0 having real roots is * (a) 15 (b) 7 (c) 7 (d) 8 Ans: C
- If sum of roots of the equation $x^2 + px + q = 0$, is equal to sum of their squares then.... * (a) $p+q^2=0$ (b) $p^2+q^2=2q$ (c) $p^2+p=2q$ (d) $p^2+p+2q=0$ Ans: C
- * $ax^{2}+bx+c=0$, is connected by the relation 4a+2b+c=0, ab>0a, b, $c \in R$ has Roots (a) Rational (b) Irrational (c) Complex Roots (d) Can't say Ans: A
- The set of values of α for which (α +2) x^2 -2 αx α =0 has two roots equidistant from unity is / are * (c){-1,1} (a) [-1, 1] (d)Ø

(b)(-1,1)

Ans: D

- How many terms are there in the expansion of $(4x + 7y)^{10} + (4x 7y)^{10}$ *
 - a) 5
 - b) 6
 - c) 11
 - d) 22

Ans:B

- The equation whose roots are twice roots of the equation $x^2-3x+3=0$ is *
 - a) $x^{2}+6x-12=0$
 - b) $x^{2}+12x-6=0$
 - c) $x^2-6x+12=0$
 - d) $x^2-12x-6=0$

Ans: C

- * If a,b,c are in A.P & (b-c) x²+(c-a)x+a-b=0 sum of squares of roots is
 - a) 1
 - b) 2
 - c) 3
 - d) 4

Ans: B

* Real values of x satisfying $2[x^2 + \frac{1}{x^2}] - 9[x + \frac{1}{x}] + 14 = 0$ is

- a) 1
- b) 2
- c) 3
- d) 4

Ans: A