Group Code	COURSE			
CR	CERAMICS			
MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING		
180	200 Minutes	180 Minutes		

SERIAL NUMBER	BOOKLET VERSION CODE	MENTION YOUR DIPLOMA CET NUMBER
210102	A1	

DOs:

- This question booklet is issued to you by the invigilator after the 2nd bell i.e., after 9.50 am.
- 2. Check whether the DCET Number has been entered and shaded in the respective circles on the OMR answer sheet.
- The version code and serial number of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- The Version Code and Serial Number of this question booklet should be entered on the Nominal Roll without any mistakes.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- 2. The 3rd bell rings at 10.00 am, till then;
 - Do not remove the seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet or start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- In case of usage of signs and symbols in the questions, the regular textbook connotation should be considered unless stated otherwise.
- This question booklet contains 180 (items) questions and each question will have one statement and four different options / responses & out of which you have to choose one correct answer.
- 3. After the 3rd Bell is rung at 10.00 am, remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 4. Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

ಸರಿಯಾದ ಕ್ರಮ			Letter .	ತಪ್ಪು	ಕ್ರಮಗ	teb v	VRON	G MET	HOD	Man Car		
CORRECT METHOD	8	B	©	0	A	B	©	Ø	A	•	•	0
A O C D	•	B	©	0	A	•	©	(D)				

- Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 7. Last bell will ring at 1.00 pm, stop marking on the OMR answer sheet.
- 8. Hand over the OMR answer sheet to the room invigilator as it is.
- After separating the top sheet (Office copy), the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self-evaluation.

PART - A

APPLIED SCIENCE

1.	Which of the following is the supplementary unit of SI System?							
	(A)	Candela	(B)	Kelvin				
	(C)	Radian	(D)	Mole				
2.		main scale of Slide Calipers is divided into ded into 20 equal parts. The least count is		neter, the length of Vernier is 19 mm and is				
	(A)	0.01 cm	(B)	0.001 cm				
	(C)	0.05 cm	(D)	0.005 cm				
3.	Whi	ich one of the following is not a vector qua	ntity?					
	(A)	Velocity	(B)	Acceleration				
	(C)	Speed	(D)	Force				
4.		magnitude of resultant of two forces P	and Q	acting in the same line and in opposite				
	(A)	P+Q	(B)	P – Q				
	(C)	PQ	(D)	QP				
5.		o forces 3N and 5N are acting at a point ultant is	making	g an angle of 60°. The magnitude of the				
	(A)	15 N	(B)	2 N				
	(C)	7 N	(D)	8 N				
6.	Toro	que produces						
	(A)	rotational motion	(B)	linear motion				
	(C)	both rotational and linear motion	(D)	neither rotational nor linear motion				

7.	Whi	ch one of the following is not related to co	uple?					
	(A)	Kicking of football	(B)	Opening and closing of tap				
	(C)	Rotation of steering wheel	(D)	Pedalling of bicycle				
8.	With	nin elastic limit, stress is						
	(A)	independent of strain	(B)	zero				
	(C)	directly proportional to strain	(D)	inversely proportional to strain				
9.		length of a wire increases by 1% on suspe wire is	nding	a load of 2 N from it. The tensile strain in				
	(A)	0.01	(B)	0.5				
	(C)	2	(D)	1				
10.	Pres	ssure at any point inside a liquid						
	(A)	remains zero	(B)	increases with depth				
	(C)	decreases with depth	(D)	independent of depth				
11.	The	pressure at the bottom of a swimming p	oool 2	Om wide and the water 2m deep (given				
	density of water 1000 Kg/m 3 and g = 10 m/s 2) is							
	(A)	2 × 10 ³ Pa	(B)	40 × 10 ³ Pa				
	(C)	10 × 10 ³ Pa	(D)	20 × 10 ³ Pa				
12.	In th	ne case of liquids, as the temperature incre	ases, 1	the surface tension generally				
	(A)	remains constant	(B)	decreases				
	(C)	increases	(D)	zero				

13. The property of a liquid to oppose the relative motion between different layers is called (A) density (B) elasticity (C) viscosity (D) capillarity 14. An expression for coefficient of viscosity is (if F = viscous force; A = Area, V = difference in Velocity, x = distance between two layers) (A) $\eta = -\frac{FA}{xV}$ (D) $\eta = -\frac{FxA}{V}$ (C) $\eta = -\frac{Fx}{\Delta V}$ 15. The expression that represents Charle's law is (A) PV = constant (B) VT = constant (D) $\frac{V}{T} = constant$ (C) $\frac{P}{V}$ = constant 16. The pressure of a gas at 27°C is one atmospheric pressure. Keeping the volume constant, if the temperature is raised to 60°C, then its pressure will be (A) 1.11 atmospheric pressure (B) 1.5 atmospheric pressure (C) 2.2 atmospheric pressure (D) 2 atmospheric pressure 17. Hot water at 80°C will exchange heat with surroundings maintained at 25°C till the temperature of water becomes (A) 80°C (B) 50°C (C) 55°C 25°C (D) 18. Radiator in automobiles works on the principle of

Space For Rough Work

(B)

(D)

Convection

Evaporation

(A) Conduction

(C) Radiation

19.	In th	ne expression $C_p - C_v = R$, notation R repres	sents	
	(A)	Resultant force	(B)	Planck's constant
	(C)	Universal gas constant	(D)	Resonance
20.	Phy	sical quantity that represents the energy o	f the n	nechanical wave is
	(A)	Wave length	(B)	Frequency
	(C)	Amplitude	(D)	Wave period
21.	Whi	ch one of the following is not an example of	of simp	ole harmonic motion?
	(A)	Swinging of cradle	(B)	Oscillations of simple pendulum
	(C)	Vibrations of tuning fork	(D)	Motion of hands of clock
22.	In th	ne equation for velocity of sound in air, wh	ich of	the following options does not hold good
	acco	ording to Laplace?		
	(A)	Poor conductivity of air	(B)	Rapid pressure changes
	(C)	Maintaining constant temperature	(D)	Rise and fall of temperature
23.	Dist	ance between two consecutive nodes in a	statio	nary wave is equal to
	(A)	Wavelength of individual wave	(B)	Difference of wavelengths of two waves
	(C)	Sum of wavelengths of two waves	(D)	Half of wavelength of individual wave
24.	Whe	en the tension on the sonometer wire is	incre	ased by 15 N, its frequency is doubled.
	The	original tension is		
	(A)	Zero	(B)	5 N
	(C)	10 N	(D)	15 N

25.	Two	identical waves superpose on one anothe	r, then	the beat frequency is
	(A)	Zero	(B)	One
	(C)	Ten	(D)	Infinity
26.	Dan	nage to the suspension bridge by marching	g milita	ry troops is due to
	(A)	Reverberation	(B)	Resonance
	(C)	Beats	(D)	Noise
27.	A tu	ning fork produces waves in a medium. T	he par	ameter that changes with temperature of
	the	medium is		
	(A)	Wavelength	(B)	Frequency
	(C)	Amplitude	(D)	Period
28.	The	electromagnetic radiation used to detect t	he arti	ficial gems from the original gems is
	(A)	Microwave	(B)	Radio wave
	(C)	Ultraviolet ray (UV ray)	(D)	X-ray
29.	Duri	ing excitation of an atom from ground state	to excit	ted state, the number of photons absorbed
	by t	he single atom is		
	(A)	2	(B)	1
	(C)	3	(D)	0
30.	In N	ano-technology, the manipulation of atom	is don	e in the range of
	(A)	1 nano meter – 100 nano meter	(B)	1 micro meter – 100 micro meter
	(C)	1 pico meter – 100 pico meter	(D)	1 millimeter – 100 millimeter

CR

	Space For Rough Work						
	(C)	Fuel Cell	(D)	Alkaline Battery			
	(A)	Primary Battery	(B)	Secondary Battery			
35.	35. The batteries which are recharged and reused are called						
	(C)	Tinning	(D)	Refining			
	(A)	Alloying	(B)	Galvanizing			
34.	The	process of coating tin over iron and steel i	s knov	vn as			
	(C)	Weak Electrolyte	(D)	Non-Electrolyte			
	(A)	Strong Electrolyte	(B)	Neutral Solution			
33.	Ace	tic acid is an example for					
	(C)	Simple Microscope	(D)	Simple Telescope			
	(A)	Endoscopy	(B)	Biometric Machine			
32.	Opti	cal Fibre is used in					
	(C)	Landline communication	(D)	Satellite communication			
	(A)	Manual communication	(B)	X-ray communication			
J	LIVE	telecust of a programme can be viewed by					

36.	PAF	C is a type of			
	(A)	Primary Cell	(B)	Secondary Cell	
	(C)	Solar Cell	(D)	Fuel Cell	
37.	The	easily fusible material which is formed	when Flu	ux reacts with gangue is	
	(A)	Slag	(B)	Alloy	t t
	(C)	Polymer	(D)	Mineral	
38.	Whi	ch of the belOW given polymers is obta	ined by c	ondensation polymerization?	
	(A)	Poly ethene	(B)	Nylon	
	(C)	PVC .	(D)	Poly propane	1
39.	Whi	ch of the following is not a composite r	naterial?		
	(A)	Fibreglass	(B)	Concrete	
	(C)	Ceramic	(D)	Bronze	
40.	The	pH value of Lemon juice is about			
	(A)	2.4	(B)	8.2	1
	(C)	10.2	(D)	14	

PART - B

ENGINEERING MATHEMATICS

- 41. The value of cos 50° sin 10° is sin 50° cos 10°
 - (A) $\frac{1}{\sqrt{2}}$
 - (C) $\frac{-1}{2}$

- (B) $\frac{\sqrt{3}}{2}$
- (D) $\frac{1}{2}$
- 42. The values of x & y from the simultaneous equations 3x + 4y = 7 and 7x y = 6 are.
 - (A) x = 1, y = 1

(B) x = -1, y = -1

(C) x = 1, y = -1

- (D) x = -1, y = 1
- 43. If $\begin{vmatrix} x & 3 \\ 3 & x \end{vmatrix} = 0$ then the value of x is
 - (A) \pm 1

(B) ± 3

(C) ± 9

- (D) ± √6
- 44. If $A = \begin{bmatrix} -1 & 3 \\ 4 & -5 \end{bmatrix}$, then $2A^T$ is
 - (A) $\begin{bmatrix} -2 & 6 \\ 8 & -10 \end{bmatrix}$

(B) $\begin{bmatrix} -1 & 4 \\ 3 & -5 \end{bmatrix}$

(c) $\begin{bmatrix} -2 & 8 \\ 6 & 8 \end{bmatrix}$

(D) $\begin{bmatrix} -2 & 8 \\ 6 & -10 \end{bmatrix}$

45. If A is a given square Matrix then

(A) adj A =
$$\frac{A^{-1}}{|A|}$$

(B) adj
$$A = \frac{|A|}{|A^{-1}|}$$

(C) adj
$$A = |A| \cdot A^{-1}$$

(D)
$$AA^{-1} = adj A. | A |$$

46. The characteristic Equation of the Matrix $A = \begin{bmatrix} -5 & 6 \\ -2 & 1 \end{bmatrix}$ is

(A)
$$\lambda^2 - 6\lambda + 12 = 0$$

(B)
$$\lambda^2 - 4\lambda + 17 = 0$$

(C)
$$\lambda^2 + 4\lambda + 7 = 0$$

(D)
$$\lambda^2 - 4\lambda + 7 = 0$$

47. The unit vector in the direction of $\stackrel{\rightarrow}{a}$ = 3i + 4j - 2k is

(A)
$$\hat{a} = \frac{3i + 4j - 2k}{\sqrt{26}}$$

(B)
$$\hat{a} = \frac{3i + 4j - 2k}{\sqrt{29}}$$

(C)
$$\hat{a} = i + j - 2k$$

(D)
$$\hat{a} = \frac{3i + 4j - 2K}{\sqrt{21}}$$

48. If $\overrightarrow{a} = i + \lambda j$ and $\overrightarrow{b} = 2j + 3k$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ then ' λ ' is Equal to

(A)
$$\frac{-2}{3}$$

(B)
$$\frac{2}{3}$$

(C)
$$\frac{3}{2}$$

49. Area of the triangle whose adjacent sides are $\stackrel{\rightarrow}{a} = 2i - j + 2k$ and $\stackrel{\rightarrow}{b} = 3i - j$ is

(A)
$$\sqrt{41}$$
 sq.units

(B)
$$\frac{\sqrt{41}}{2}$$
 sq.units

(C)
$$\frac{3}{2}$$
 sq. units

(D)
$$\frac{\sqrt{65}}{2}$$
 sq.units

- 50. The number of possible outcomes in the sample space when two dice of different colours are rolled is
 - (A) 36

(B) 6

(C) 9

- (D) 12
- 51. Sin θ is positive and $\tan\theta$ is negative when θ is in
 - (A) I quadrant

(B) Il quadrant

(C) III quadrant

(D) IV quadrant

52. The value of

$$\frac{\tan (\pi - \alpha)}{\tan (-\alpha)} + \frac{\cos (\frac{\pi}{2} - \alpha)}{\sin (2\pi - \alpha)} + \frac{\csc (\frac{3\pi}{2} + \alpha)}{\sec (\pi + \alpha)} \text{ is}$$

(A) - 1

(B) 2

(C) - 2

(D) 1

- 53. The value of sin (105°) is
 - (A) $\frac{\sqrt{3}+1}{2\sqrt{2}}$

(B) $\frac{\sqrt{3}-1}{2\sqrt{2}}$

(C) $\frac{1-\sqrt{3}}{2\sqrt{2}}$

- (D) $\frac{\sqrt{3}}{2\sqrt{2}}$
- 54. The value of $\frac{1-\cos A + \sin A}{1+\cos A + \sin A}$ is
 - (A) tan A

(B) tan (A/2)

(C) cot (A/2)

- (D) cot A
- 55. If $\sin A = \frac{1}{3}$, then the value of $\sin 3A$ is
 - (A) $-\frac{3}{27}$

(B)

(C) $\frac{-4}{27}$

(D) $\frac{23}{27}$

56. The value of 2 cos 3A. sin 2A is

- (A) sin 5A + sin A
- (C) sin 5A sin A

- (B) cos 5A + cos A
- cos 5A cos A (D)

57. The polar form of 1 + i is

- (A) $\sqrt{2} \left[\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right]$
- (C) $\sqrt{2} \left[\sin \frac{\pi}{4} + i \cos \frac{\pi}{4} \right]$

- (B) $\sqrt{2} \left[\cos \frac{\pi}{4} i \sin \frac{\pi}{4} \right]$
- (D) $\sqrt{2}\left[-\cos\frac{\pi}{4} i\sin\frac{\pi}{4}\right]$

- 58. $\lim_{X \to -3} \frac{x^2 5x + 6}{x^2 3x} =$
 - (A) $\frac{-5}{3}$
 - (C) $\frac{-1}{3}$

- (B) $\frac{1}{3}$
- (D) $\frac{5}{3}$

- 59. $\lim_{x \to a} \frac{\sqrt{x^3} \sqrt{a^3}}{x a} =$
 - (A) $\frac{3}{2}\sqrt{a}$
 - (C) √a
- 60. $\lim_{\theta \to 0} \frac{\cos 3\theta \cos \theta}{\theta \sin 2\theta} =$
 - (A) $tan 2\theta$
 - (C) -2

- (B) $\frac{3}{2\sqrt{a}}$
- (D) $\frac{1}{\sqrt{a}}$
- (B) 2
- (D)

61. Equation of the straight line passing through the point (1, 3) and having slope - 2 is

(A)
$$2x - y + 5 = 0$$

(B)
$$x + 2y + 5 = 0$$

(C)
$$x - 2y - 5 = 0$$

(D)
$$2x + y - 5 = 0$$

62. Equation of the straight line passing through the origin and perpendicular to the line 5x - 4y - 1 = 0 is

(A)
$$5x - 4y = 0$$

(B)
$$4x + 5y = 0$$

(C)
$$5x - 4y + 1 = 0$$

(D)
$$4x + 5y + 1 = 0$$

63. If $y = \frac{x^2 - 5}{x^2 + 3}$, then $\frac{dy}{dx} =$

(A)
$$\frac{4x^3 - 4x}{(x^2 + 3)^2}$$

(B)
$$\frac{16x}{(x^2+3)^2}$$

(c)
$$\frac{4x}{(x^2+3)^2}$$

(D)
$$\frac{-16x}{(x^2+3)^2}$$

64. If $y = \sin^{-1} (\cos x)$, then $\frac{dy}{dx} =$

$$(A) \quad \frac{1}{\sqrt{1-x^2}}$$

(B)
$$\frac{-\sin x}{\sqrt{1-x^2}}$$

(C) 1

65. If $y = \sqrt{y \log x}$, then $\frac{dy}{dx} =$

(A)
$$\frac{1}{x(2y-1)}$$

(B)
$$\frac{1}{x}$$

(C) $\frac{1}{x(1-2y)}$

(D)
$$\frac{1}{xy}$$

66. If $x = a cos^2\theta$ and $y = b sin^3\theta$, then $\frac{dy}{dx} =$

(A)
$$-\frac{3b}{2a} \sin \theta$$

(B)
$$-\frac{3b}{2a}$$

(C)
$$\frac{2a}{b} \cos \theta$$

(D)
$$\frac{-2a}{3b\sin\theta}$$

67. If $y = x^y$, then $\frac{dy}{dx}$

(A)
$$\frac{y^2}{x(1-\log x)}$$

(B)
$$\frac{y^2}{x(1+\log y)}$$

(C)
$$\frac{y^2}{x (1 - y \log x)}$$

$$(D) \qquad \frac{y^2}{x(1+\log x)}$$

68. If $y = \sin^2 x$, then $\frac{d^2y}{dx^2} =$

(A) 2 cos 2x

(B) 2 sin 2x

(C) 2 sin x cos x

(D) 2x sin x

69. The Equation of tangent to the curve $y = \sin x$ at the point $(\pi, 0)$ is

(A)
$$x + y + 1 = 0$$

(B)
$$x - y - 1 = 0$$

(C)
$$x + y - \pi = 0$$
.

(D)
$$x - y + \pi = 0$$
.

70. The rate of change of radius of the sphere is 9cm/s. Then the rate of change of volume of the sphere when the radius is 2 cm is equal to

(A) $144\pi \text{ cm}^3/\text{s}$

(B) $9\pi \text{ cm}^3/\text{s}$

(C) $56\pi \text{ cm}^3/\text{s}$

(D) $64\pi \text{ cm}^3/\text{s}$

71.
$$\int \frac{1}{1+\cos x} \, \mathrm{d}x =$$

- (A) $\tan x + \sec x + c$
- (C) cot x + cosec x + c

72.
$$\int \left(\sqrt{x} + \cot x\right) dx =$$

- (A) $\frac{2}{3} x^{3/2} + \log \sin x + c$
- (C) $\frac{2}{3} x^{3/2} \log \sin x + c$

73.
$$\int \frac{e^{\log x}}{x} dx =$$

- (A) e^x + c
- (C) $x \log e^{x} + c$

74.
$$\int \log x. dx =$$

- (A) $x \log x + x + c$
- (C) $x + \log x + c$

75.
$$\int \frac{x}{\sqrt{1+x^2}} dx =$$

- (A) $\sqrt{1+x^2} + c$
- (c) $\frac{1}{\sqrt{1+x^2}} + c$

- (B) $\tan x \sec x + c$
- (D) $\cot x \csc x + c$

(B)
$$\frac{3}{2} x^{\frac{2}{3}} + \log \sec c x + c$$

(D)
$$\frac{3}{2} x^{\frac{2}{3}} - \log \sec x + c$$

- (B) $\log (e^x) + c$
- (D) $e^{\log x} + c$
- (B) $x \log x x + c$
- (D) x log x + c

(B)
$$\sqrt{1-x^2} + c$$

$$(D) \quad \frac{1}{\sqrt{1-x^2}} + C$$

76.
$$\int_{-2}^{1} (x + 1) (x - 1) dx =$$

(A) O

(B) 1

(C) -1

(D) - 2

77. The area bounded by the curve $y = \sin^2 x$, the x-axis and the ordinates x = 0 and $x = \frac{\pi}{2}$ is

(A) $\frac{\pi}{4}$ sq. units

(B) $\frac{\pi}{2}$ sq. units

(C) $\frac{\pi}{3}$ sq. units

(D) $\frac{\pi}{6}$ sq. units

78. The order and degree of a differential equation $4\left(\frac{dy}{dx}\right)^3 + 8xy + \left(\frac{d^2y}{dx^2}\right)^2 - 7 = 0$ respectively are

(A) 1 and 3

(B) 2 and 2

(C) 2 and 3

(D) 2 and 1

79. The differential equation formed from the equation $y^2 = 4ax$ by eliminating arbitrary constant is

(A) $2x \frac{dy}{dx} - y = 0$

(B) $2x \frac{dy}{dx} + y = 0$

(C) $y \frac{dy}{dx} - 2x = 0$

(D) $y \frac{dy}{dx} + 2x = 0$

80. For the differential equation $\frac{dy}{dx}$ + (tan x). y = cos x, the integrating factor is

(A) log x

(B) cot x

(C) cosec x

(D) sec x

PART - C

CERAMICS TECHNOLOGY

81.	. The earliest theory about the origin of the earth is known as				
	(A)	Nebular hypothesis	(B)	Martin hypothesis	
	(C)	Einstein hypothesis	(D)	Newton hypothesis	
82.	The	age of the earth is studied and estimated b	ру		
	(A)	Darwin	(B)	Kelvin	
	(C)	Joly and Clarke	(D)	All of these	
83.	The	average density of the earth is of the order	r		
	(A)	5.52	(B)	6.52	
	(C)	7.52	(D)	8.52	
84.	Whi	ch mineral possesses cubic cleavage?			
	(A)	Fluorite	(B)	Galena	
	(C)	Mica	(D)	Calcite	
85.	Mag	imas are			
	(A)	Molten silicates	(B)	Molten carbides	
	(C)	Molten polymers	(D)	Molten metals	
86.	The	symmetry developed in a crystal may be s	tudied	and defined with reference to	
	(A)	A plane	(B)	An axis	
	(C)	A point	(D)	All of these	
87.	The	branch of Petrology involving the studies	of ston	nes alone may be called as	
	(A)	Lithology	(B)	Methodology	
	(C)	Stonology	(D)	Physiology	

88.	Igne	eous rocks are broadly classified into			
	(A)	Acid rocks	(B)	Basic rocks	
	(C)	Ultra basic rocks	(D)	All of these	
89.	The	factors which are responsible for the form	ation o	of metamorphic rocks are	
	(A)	Temperature	(B)	Pressure	
	(C)	Chemically reactive substance	(D)	All of these	
90.	Whi	ch of the following is widely used to specif	y direc	ctions and planes in a crystal?	
	(A)	Miller indices	(B)	Killer indices	
	(C)	Siller indices	(D)	Eiller indices	
91.		term clay is applied to those natural perty of	earthy	y deposits which possess the singula	ar
	(A)	Elasticity	(B)	Plasticity	
	(C)	Ductility	(D)	Malleability	
92.	The	term 'allophane' is used to cover non-crys	talline	mutual solutions of	
	(A)	Silica, alumina and water	(B)	Clay, boron and salt	
	(C)	Feldspar, quartz and soda	(D)	Alumina, dolomite and water	
93.	Whi	te burning clays are			
	(A)	Kaolins	(B)	Ball clays	
	(C)	Both A and B	(D)	None of these	
94.	The	stable form of Silica at room temperature	is		
	(A)	α-quartz	(B)	β -quartz	
	(C)	γ-quartz	(D)	δ -quartz	

95.	A m	ineral used in place of feldspar is		
	(A)	Nepheline syenite	(B)	Methyl syenite
	(C)	Poly syenite	(D)	Alkaline syenite
96.	Carl	bides are extremely		
	(A)	Hard	(B)	Soft
	(C)	Brittle	(D)	None of these
97.	Whi	ch of the following is used in nuclear react	ors?	
	(A)	Boron nitride	(B)	Silicon carbide
	(C)	Calcium carbide	(D)	Aluminium silicide
98.	Cer	amets are the combination of		
	(A)	Metal and Ceramic	(B)	Ceramic and Polymer
	(C)	Metal and alloys	(D)	None of these
99.	Exa	mple for inorganic deflocculants is		
	(A)	NaOH	(B)	Na ₂ CO ₃
	(C)	Li ₂ CO ₃	(D)	All of these
100.	Exa	mple for organic binder is		
	(A)	Cellulose	(B)	Corn flour
	(C)	Gum arabic	(D)	All of these
101.	Whi	ch one of the following is a primary fuel?		
	(A)	Fuel oil	(B)	Kerosene
	(C)	Coal	(D)	Coke oven gas

102	. Was	shing of coal				
	(A)	reduces its ash content	(B)	Increases its heating value		
	(C)	increases its efficiency	(D)	All of the above		
103. Gobar gas contains in higher percentage.						
	(A)	Methane	(B)	Carbon-di-oxide		
	(C)	Hydrogen	(D)	Oxygen		
104.	Whi	ch one is used as jet engine fuel?				
	(A)	Petrol	(B)	Diesel		
	(C)	Kerosene	(D)	LPG		
105.	The	important furnace auxiliaries are				
	(A)	Damper	(B)	Burner		
	(C)	Control valve	(D)	All of these		
106.		ch of the following temperature measure perature in furnaces?	ring d	evices is widely used to i	measure	the
	(A)	Resistance thermometer	(B)	Radiation pyrometer		
	(C)	Iron constantan thermocouple	(D)	Bio-metallic thermometer		
107.	Soft	and non-abrasive materials can be made i	nto fin	es by		
	(A)	Attrition	(B)	Compression		
	(C)	Cutting	(D)	Impact	1	
108.	Whi	ch of the following screens has maximum o	apacit	ty?		
	(A)	Grizzlies	(B)	Trommels		
	(C)	Shaking screens	(D)	Vibrating screens		

109.	Whi	ch of the following clay mixing devices is va	acuum	operated for de-airation?
	(A)	Banbery Mixer	(B)	Pug-Mill
	(C)	Muller Mixer	(D)	Kneader
110.	The	method of shaping ceramic articles by pour	iring a	liquid slip into a porous mould
	(A)	Tape casting	(B)	Casting
	(C)	Gel casting	(D)	Robo casting
111.	Glaz	re is a thin vitreous coating applied to		
	(A)	Metallic body	(B)	Ceramic body
	(C)	Plastic body	(D)	Wood body
112.	Glaz	e possesses one of the following propertie	es:	
	(A)	Fusibility	(B)	Refractoriness
	(C)	Conductivity	(D)	None of the above
113.	Silic	a belongs to		
	(A)	Network former	(B)	Network modifier
	(C)	Intermediator	(D)	Opacifier
114.	Opa	city in glaze is due to addition of		
	(A)	Silica	(B)	Tin oxide
	(C)	Alumina	(D)	Ferrous oxide

115.	Frit	is a			
	(A)	synthetic glassy material	(B)	Natural material	
	(C)	Toxic material	(D)	None of these	
116.	Whi	ch coat is applied before glazing?			
	(A)	Ground coat	(B)	Cover coat	
	(C)	Engobe	(D)	Slush coat	
117.	The	process of sudden cooling is			
	(A)	Quenching	(B)	Toughening	
	(C)	Melting	(D)	Annealing	
118.	Whi	ch one of the enamel application method	s is moi	re suitable?	
	(A)	Dipping	(B)	Pouring	
	(C)	Electro-static spraying	(D)	Brushing	
119.) gms a	and dry weight of 30 gms. Find its % o	f
	mois	sture content.			
	(A)	20%	(B)	30%	
	(C)	40%	(D)	60%	
120.	Wha	at is the density of a clay sample having a	weight	of 100 gms and volume of 40 cc?	
	(A)	2.0 gm/cc	(B)	2.5 gm/cc	
	(C)	3.0 gm/cc	(D)	3.5 gm/cc	

	Space For Rough Work					
	(C)	Same	(D)	None of these		
	(A)	Decreases	(B)	Increases		
126.	Сар	pacitance of the capacitor due to ageing				
	(C)	Refractory	(D)	All of the above		
	(A)	Abrasion	(B)	Wear		
125.	Alur	mina is a basic compound for 'technical cera	mics'.	It shows versatility in one of the following:		
	(C)	1000°C – 1050°C	(D)	900°C – 1000°C		
	(A)	1225°C – 1310°C	(B)	2000°C – 2100°C		
124.	Elec	ctrical porcelain firing temperature ranges		100,000,000		
	(C)	Melting into non-melting	(D)	Fine into dusty		
		Toxic into non-toxic	(B)	Insoluble into soluble		
123.		ing is a process of converting				
	(C)	30%	(D)	35%		
	(A)	20%	(B)	25%		
		ms. What is its porosity?				
122.	A al	lazed tile having dry weight 22 gms, satu	rated	weight - 25 gms and suspended weight		
	(C)	107.14 Kg/cm ²	(D)	200 Kg/cm ²		
	(A)	100 Kg/cm ²	(B)	105.21 Kg/cm ²		
	withstanding load of 100 Kgs.					

127.	Res	istivity of the thermistor due to heating		
	(A)	Increases	(B)	Decreases
	(C)	Same	(D)	All of the above
128	Thre	ead guides are used in		
	(A)	Chemical	(B)	Textile
	(C)	Mechanical	(D)	Rubber
129.	Glas	ss Ceramics are formed by		
	(A)	Nucleation and crystal growth	(B)	Sintering
	(C)	Soaking	(D)	Annealing
130.	Wea	ar resistant wares belong to		
	(A)	Oxide	(B)	Non-oxide
	(C)	Both (A) and (B)	(D)	Neither (A) nor (B)
131.	Glas	ss is an inorganic product of fusion which is	coole	ed to rigid conditions by
	(A)	without crystallizing	(B)	with crystallizing
	(C)	graphitizing	(D)	neutralizing
132.	Wha	at is the rank of SiO_2 in the formation of gla	ss amo	ong other raw materials?
	(A)	1	(B)	2
	(C)	3	(D)	4

133.	Турі	cally glass has fracture.			
	(A)	Even		(B)	Conchoidal
	(C)	Uneven		(D)	Hackly
134.	In g	eneral cullet is crushed to the si	ze of		before mixing it with the batch.
	(A)	Ten-inch size		(B)	Five-inch size
	(C)	One-inch size		(D)	Fifteen-inch size
135.	Whi	ch is the most nearly ideal fuel f	or glass ma	nufac	ture?
	(A)	Natural gas		(B)	Coke oven gas
	(C)	Coal gas		(D)	Biogas
136.	The	crown of glass tank furnace is o	constructed	by	
	(A)	Magnesite refractory bricks		(B)	Dolomite refractory bricks
	(C)	Super duty silica bricks		(D)	Super duty alumina bricks
137.	The	machine used to drop the lump	of glass at	a regu	ular interval into a forming mould is called
	(A)	Dog feeder		(B)	Gob feeder
	(C)	Lump feeder		(D)	Horse feeder
138.	The	word anneal means			
	(A)	Cooling		(B)	Freezing
	(C)	Continued heating		(D)	Non-continued heating

139.	Glas	ss is readily attacked by		
	(A)	Sulphuric acid	(B)	Nitric acid
	(C)	Hydrofluoric acid commercial 60%	(D)	Phosphoric acid
140.	Glas	ss breaks only in		
	(A)	Tension	(B)	Compression
	(C)	Extension	(D)	None of these
141.	Whi	ch of the following is defect of glass?		
	(A)	Stones	(B)	Knots
	(C)	Seeds	(D)	All of these
142.	The	instrument used for the measurement of re	efracti	ve index is
	(A)	Ammeter	(B)	Refractometer
	(C)	Voltmeter	(D)	Energymeter
143.	Glas	ss is a		
	(A)	Poor conductor of heat	(B)	High conductor of heat
	(C)	Non-conductor of heat	(D)	Good conductor of heat
144.	Whi	ch one of the following is an optical materi	al?	
	(A)	Fused alumina	(B)	Fused fire clay
	(C)	Fused silica	(D)	Fused magnesite
145.	Mou	ıld used for shaping of molten glass is		
	(A)	Cast iron mould	(B)	Paste mould
	101	Roth (A) and (R)	(D)	None of these

146.	C ₃ S	is nothing but		
	(A)	CaO . 3SiO ₂	(B)	3 CaO . SiO ₂
	(C)	CaO . SiO ₂	(D)	CaO ₃ . SiO ₂
147.	Mor	e number of cement industries are located	in Gul	barga District of Karnataka because of
	(A)	Manpower	(B)	Large deposition of limestone
	(C)	Climate	(D)	Highly populated
148.	Quid	ck setting cement is nothing but the one th	at	
	(A)	takes less time to set	(B)	hardens rapidly
	(C)	develops strength rapidly	(D)	None of the above
149.	The	formation of tricalcium silicate commences	s at	
	(A)	1200°C	(B)	1300°C to 1400°C
	(C)	1700°C	(D)	2000°C
150.	Eva	poration of combined water from clay is		reaction.
	(A)	Exothermic	(B)	Endothermic
	(C)	Reduction	(D)	Oxidation
151.	The	temperature at which the clinker emerges	from t	he kiln is about
	(A)	600 - 800°C	(B)	1000 - 1100°C
	(C)	1200 - 1400°C	(D)	1800 - 2000°C
152.	The	limit of CaO percentage in the cement is		
	(A)	60 - 67%	(B)	50 - 55%
	(C)	75 - 80%	(D)	85 - 90%

153.	. The	final setting time of cement is determined	by		
	(A)	Vicat apparatus with plunger	(B)	Vicat apparatus with square needle	
	(C)	Vicat apparatus with annular collar	(D)	Le-Chatlier apparatus	
154.	. The	initial setting time of quick setting cement	is		
	(A)	Less than 5 minutes	(B)	20 minutes	
	(C)	30 minutes	(D)	60 minutes	
155.	. Blai	n's air permeability apparatus is to check _		of cement.	
	(A)	Hardness	(B)	Fineness	
	(C)	Soundness	(D)	Strength	
156.	Refr	actories are mainly used for one of the follo	owing:		
	(A)	Binding purpose	(B)	Asthetic purpose	
	(C)	Temperature withstanding purpose	(D)	Building construction	
157.	Clas	sification of refractories based on chemica	l natu	re can be made as	
	(A)	Acidic, basic, neutral			
	(B)	Acidic, basic, normal			
	(C)	Low temperature, medium temperature, h	igh ter	nperature	
	(D)	Medium duty, heavy duty, super duty			
158.	The	fusion point of silicon carbide is			1
	(A)	1715°C	(B)	2050°C	t
	(C)	2700°C	(D)	3000°C	-
159.	Insu	lating refractory materials have			
	(A)	Low crushing strength	(B)	High chemical resistance	
	(C)	High thermal conductivity	(D)	Low porosity	

160.	160. Generally glass tank refractory blocks are made by								
	(A)	Pressing	(B)	Hand moulding					
	(C)	Fusion caste	(D)	Hot press					
161.	Sele	ect the proper statement.							
	(A)	Slag resistance is high in dense refractories.							
	(B)	Hand moulded refractories show high den	Hand moulded refractories show high density						
	(C)	Spalling resistance is low with dense refra	ctorie						
	(D)	By addition of 'grog' we can avoid polymo	rphisn	n of silica.					
162.	Non	-coking coal can be directly used in							
	(A)	Blast furnace	(B)	Bessemer Converter					
	(C)	Corex process	(D)	Muffle furnace					
163.	Blas	t furnace is used							
	(A)	To reduce iron ore to iron	(B)	To convert steel from iron					
	(C)	To produce slag	(D)	None of these					
164.	Add	ition of 'alloying elements' is carried in							
	(A)	Glass tank furnace	(B)	Steel convertor					
	(C)	Cupola furnace	(D)	Pot furnace					
165.	The	copper nozzle, through which hot air blast	is inje	ected inside blast furnace:					
	(A)	Tuyer's	(B)	Bosch					
	(C)	Bustle pipe	(D)	Tap hole					
166.	The	device for molten steel temperature meas	ureme	nt and sampling:					
	(A)	Thermometer	(B)	Sublance					
	(C)	Tundish	(D)	Metal rod					

167.	Hig	her level of sulphur in steel causes			
	(A)	decreased ductility and toughness	(B)	increased machinability	
	(C)	decreased brittleness	(D)	decreased malleability	
168	Bes	semer convertor is used to make			
		Pig iron	(B)	Steel	
		Scrap iron	(D)	Iron ore	
	(0)	Scrap iron	(D)	non ore	
169.	The	PCE value of high heat duty refractory			
	(A)	19 – 28	(B)	> 33	
	(C)	30 – 33	(D)	28 – 30	
170	Era	cture of refractory due to its uneven expans	sion b	ocause of boot	
170.					
		Spalling	(B)	Fusion	
	(C)	Cold crushing strength	(D)	Permanent linear change	c
171.	Mar	nagement is an art of getting work done thi	rough	people with satisfaction for	4
	(A)	Employees	(B)	Employer	1
	(C)	Customer	(D)	All of the above	
172	۸dn	ninistration consists of			
1/2.		Goals and policies	(B)	Staffing	
				Skills	
	(C)	Technical knowledge	(D)	SKIIIS	
173.	Job	production is the manufacturing systems of	of		
	(A)	Mass production		1	
	(B)	No. of pieces produced when need arises			
	(C)	Produced periodically			
	(D)	Draduced continuously			

174.	174. Forms used in purchase department					
	(A)	Requisition	(B)	Procurement		
	(C)	Tender	(D)	All of the above		
175.	Dec	entralised store is used				
	(A)	In small factories	(B)	In medium factories		
	(C)	In large factories	(D)	None of these		
176.	Stor	re ledger consists of				
	(A)	similar to bincard with honey valves	(B)	similar to bincard without honey valves		
	(C)	similar to material using requisition	(D)	similar to material return note		
177.	In c	oncept of JIT, which is not related to				
		Insurance buying	(B)	Eliminating all wastes		
	(C)	Continuous improvement	(D)	Optimise process		
178.	Sca	tter plots consist of				
		A line graph	(B)	A curve graph		
		A graph without having lines	(D)	All of the above		
179.	ISO	stands for				
	(A)	International Specification of Organization	1			
	(B)	International Susceptible of Organization				
	(C)	International Organization for Standardiza	ation			
	(D)	All of the above				
100						
180		ventive maintenance is undertaken				
	(A)	after machine fails	(B)	before machine fails		
	(C)	during machine fails	(D)	All of the above		

SPACE FOR ROUGH WORK