Group Code	COURSE				
CH	CHEMICAL	ENGINEERING			
MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING			
180	200 Minutes	180 Minutes			

MENTION YOUR DIPLOMA CET NUMBER	BOOKLET VERSION CODE	SERIAL NUMBER
	A4	
	AI	900100

COSTER

DOs:

- This question booklet is issued to you by the invigilator after the 2nd bell i.e., after 9.50 am.
- Check whether the DCET Number has been entered and shaded in the respective circles on the OMR answer sheet.
- The version code and serial number of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- The Version Code and Serial Number of this question booklet should be entered on the Nominal Roll without any mistakes.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- 2. The 3rd bell rings at 10.00 am, till then;
 - Do not remove the seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet or start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- In case of usage of signs and symbols in the questions, the regular textbook connotation should be considered
 unless stated otherwise.
- This question booklet contains 180 (items) questions and each question will have one statement and four different options / responses & out of which you have to choose one correct answer.
- 3. After the 3rd Bell is rung at 10.00 am, remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

ಸರಿಯಾದ ಕ್ರಮ			ರು				ತಪ್ಪು	ಕ್ರಮಗ	leb v	VRON	G MET	HOD			
COF	RRECT	METH	HOD	8	B	©	D	A	B	©	Ø	A	•	•	0
A	•	©	D	•	B	©	D	A	•	©	D				

- Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 7. Last bell will ring at 1.00 pm, stop marking on the OMR answer sheet.
- 8. Hand over the OMR answer sheet to the room invigilator as it is.
- After separating the top sheet (Office copy), the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self-evaluation.

PART - A

APPLIED SCIENCE

1.	Whi	ich of the following is the supplementa	ry unit of	SI System?
	(A)	Candela	(B)	Kelvin
	(C)	Radian	(D)	Mole
2.		main scale of Slide Calipers is divided ded into 20 equal parts. The least cour		neter, the length of Vernier is 19 mm and is
	(A)	0.01 cm	(B)	0.001 cm
	(C)	0.05 cm	(D)	0.005 cm
3.	Whi	ch one of the following is not a vector of	quantity?	
	(A)	Velocity	(B)	Acceleration
	(C)	Speed	(D)	Force
4.		magnitude of resultant of two forces ction is	P and G	acting in the same line and in opposite
	(A)	P+Q	(B)	P – Q
	(C)	PQ	(D)	Q P
5.		forces 3N and 5N are acting at a poi	int making	g an angle of 60°. The magnitude of the
	(A)	15 N	(B)	2 N
	(C)	7 N	(D)	8 N
6.	Toro	que produces		
	(A)	rotational motion	(B)	linear motion
	(C)	both rotational and linear motion	(D)	neither rotational nor linear motion
-	2010		D b 1	Mark.

Space For Rough Work					
increases	(D)	zero			
remains constant	(B)	decreases			
he case of liquids, as the temperature incre	eases,	the surface tension generally			
10 × 10³ Pa	(D)	20 × 10 ³ Pa			
2 × 10 ³ Pa	(B)	40 × 10 ³ Pa			
nsity of water 1000 Kg/m 3 and g = 10 m/s 2) i	s				
e pressure at the bottom of a swimming	pool 2	Om wide and the water 2m deep (given			
decreases with depth	(D)	independent of depth			
remains zero	(B)	increases with depth			
ssure at any point inside a liquid		under 1885 by after tomorphism (C. 1997).			
2	(D)	1 (1980) (1983)			
0.01	(B)	0.5			
wire is					
e length of a wire increases by 1% on suspe	nding	a load of 2 N from it. The tensile strain in			
directly proportional to strain	(D)	inversely proportional to strain			
independent of strain	(B)	zero			
hin elastic limit, stress is					
Rotation of steering wheel	(D)	Pedalling of bicycle			
Kicking of football	(B)	Opening and closing of tap			
ich one of the following is not related to co	uple?				
i		ch one of the following is not related to couple?			

The property of a liquid to oppose the relative motion between different layers is called (A) density elasticity (B) (C) viscosity (D) capillarity 14. An expression for coefficient of viscosity is (if F = viscous force; A = Area, V = difference in Velocity, x = distance between two layers) (B) $\eta = -\frac{FV}{Ax}$ (A) $\eta = -\frac{FA}{xV}$ (D) $\eta = -\frac{FxA}{V}$ (C) $\eta = -\frac{Fx}{\Delta V}$ 15. The expression that represents Charle's law is (A) PV = constant (B) VT = constant (D) $\frac{V}{T} = constant$ (C) $\frac{P}{V}$ = constant 16. The pressure of a gas at 27°C is one atmospheric pressure. Keeping the volume constant, if the temperature is raised to 60°C, then its pressure will be 1.5 atmospheric pressure (A) 1.11 atmospheric pressure (B) (C) 2.2 atmospheric pressure (D) 2 atmospheric pressure Hot water at 80°C will exchange heat with surroundings maintained at 25°C till the temperature 17. of water becomes (A) 80°C (B) 50°C (C) 55°C 25°C (D)

Radiator in automobiles works on the principle of

(A) Conduction

(B) Convection

(C) Radiation

(D) Evaporation

19.	In the expression $C_p - C_v = R$, notation R represents					
	(A)	Resultant force	(B)	Planck's constant		
	(C)	Universal gas constant	(D)	Resonance		
20.	Phy	sical quantity that represents the energy o	f the n	nechanical wave is		
	(A)	Wave length	(B)	Frequency		
	(C)	Amplitude	(D)	Wave period		
21.	Whi	ch one of the following is not an example of	of simp	ole harmonic motion?		
	(A)	Swinging of cradle	(B)	Oscillations of simple pendulum		
	(C)	Vibrations of tuning fork	(D)	Motion of hands of clock		
22.	In th	ne equation for velocity of sound in air, wh	ich of	the following options does not hold good		
	acc	ording to Laplace?				
	(A)	Poor conductivity of air	(B)	Rapid pressure changes		
	(C)	Maintaining constant temperature	(D)	Rise and fall of temperature		
23.	Dist	ance between two consecutive nodes in a	statio	nary wave is equal to		
	(A)	Wavelength of individual wave	(B)	Difference of wavelengths of two waves		
	(C)	Sum of wavelengths of two waves	(D)	Half of wavelength of individual wave		
24.	Whe	en the tension on the sonometer wire is	incre	ased by 15 N, its frequency is doubled		
	The	original tension is				
	(A)	Zero	(B)	5 N		
	(C)	10 N	(D)	15 N		

25.	. Two identical waves superpose on one another, then the beat frequency is					
	(A)	Zero	(B)	One		
	(C)	Ten	(D)	Infinity		
26.	Dan	nage to the suspension bridge by marching	g milita	ary troops is due to		
	(A)	Reverberation	(B)	Resonance		
	(C)	Beats	(D)	Noise		
27.	A tu	ning fork produces waves in a medium. T	he par	rameter that changes with temperature of		
	the	medium is				
	(A)	Wavelength	(B)	Frequency		
	(C)	Amplitude	(D)	Period		
28.	The	electromagnetic radiation used to detect t	he arti	ificial gems from the original gems is		
	(A)	Microwave	(B)	Radio wave		
	(C)	Ultraviolet ray (UV ray)	(D)	X-ray		
29.	Duri	ing excitation of an atom from ground state	o excit	ted state, the number of photons absorbed		
	by t	he single atom is				
	(A)	2	(B)	1 or for amore were to mile to		
	(C)	3 In genoup is all at 27 years bearing also	(D)			
30.	In N	ano-technology, the manipulation of atom	is don	e in the range of		
	(A)	1 nano meter – 100 nano meter	(B)	1 micro meter – 100 micro meter		
	(C)	1 pico meter – 100 pico meter	(D)	1 millimeter – 100 millimeter		

	Space For Rough Work				
	(C)	Fuel Cell	(D)	Alkaline Battery	
	(A)	Primary Battery	(B)	Secondary Battery	
35.	The	batteries which are recharged and reused	are ca	alled	
	(C)	Tinning	(D)	Refining	
	(A)	Alloying	(B)	Galvanizing	
34.	The	process of coating tin over iron and steel	is knov	wn as	
	(C)	Weak Electrolyte	(D)	Non-Electrolyte	
	(A)	Strong Electrolyte	(B)	Neutral Solution	
33.	Ace	tic acid is an example for			
	(C)	Simple Microscope	(D)	Simple Telescope	
	(A)	Endoscopy	(B)	Biometric Machine	
32.	Opti	ical Fibre is used in			
	(C)	Landline communication	(D)	Satellite communication	
	(A)	Manual communication	(B)	X-ray communication	
J	LIVE	telecust of a programme can be viewed b	,		

36.	PAF	C is a type of		
	(A)	Primary Cell	(B)	Secondary Cell
	(C)	Solar Cell	(D)	Fuel Cell
37.	The	easily fusible material which is formed wh	en Flu	x reacts with gangue is
	(A)	Slag	(B)	Alloy
	(C)	Polymer	(D)	Mineral
38.	Whi	ch of the below given polymers is obtaine	d by co	ondensation polymerization?
	(A)	Poly ethene	(B)	Nylon
	(C)	PVC	(D)	Poly propane
39.	Whi	ch of the following is not a composite mate	erial?	
	(A)	Fibreglass	(B)	Concrete
	(C)	Ceramic	(D)	Bronze
40.	The	pH value of Lemon juice is about		
	(A)	2.4	(B)	8.2
	(C)	10.2	(D)	14

PART - B

ENGINEERING MATHEMATICS

41. The value of
$$\cos 50^{\circ} \sin 10^{\circ}$$
 is $\sin 50^{\circ} \cos 10^{\circ}$

(A)
$$\frac{1}{\sqrt{2}}$$

(C)
$$\frac{-1}{2}$$

(B)
$$\frac{\sqrt{3}}{2}$$

(D)
$$\frac{1}{2}$$

42. The values of x & y from the simultaneous equations 3x + 4y = 7 and 7x - y = 6 are.

(A)
$$x = 1, y = 1$$

(B)
$$x = -1, y = -1$$

(C)
$$x = 1, y = -1$$

(D)
$$x = -1, y = 1$$

43. If $\begin{vmatrix} x & 3 \\ 3 & x \end{vmatrix} = 0$ then the value of x is

$$(A) \pm 1$$

44. If $A = \begin{bmatrix} -1 & 3 \\ 4 & -5 \end{bmatrix}$, then $2A^T$ is

(A)
$$\begin{bmatrix} -2 & 6 \\ 8 & -10 \end{bmatrix}$$

(B)
$$\begin{bmatrix} -1 & 4 \\ 3 & -5 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -2 & 8 \\ 6 & 8 \end{bmatrix}$$

(D)
$$\begin{bmatrix} -2 & 8 \\ 6 & -10 \end{bmatrix}$$

45. If A is a given square Matrix then

(A) adj A =
$$\frac{A^{-1}}{|A|}$$

(B) adj A =
$$\frac{|A|}{|A^{-1}|}$$

(C) adj
$$A = |A| \cdot A^{-1}$$

(D)
$$AA^{-1} = adj A. | A |$$

46. The characteristic Equation of the Matrix $A = \begin{bmatrix} -5 & 6 \\ -2 & 1 \end{bmatrix}$ is

(A)
$$\lambda^2 - 6\lambda + 12 = 0$$

(B)
$$\lambda^2 - 4\lambda + 17 = 0$$

(C)
$$\lambda^2 + 4\lambda + 7 = 0$$

(D)
$$\lambda^2 - 4\lambda + 7 = 0$$

47. The unit vector in the direction of $\stackrel{\rightarrow}{a}$ = 3i + 4j – 2k is

(A)
$$\hat{a} = \frac{3i + 4j - 2k}{\sqrt{26}}$$

(B)
$$\hat{a} = \frac{3i + 4j - 2k}{\sqrt{29}}$$

(C)
$$\hat{a} = i + j - 2k$$

(D)
$$\hat{a} = \frac{3i + 4j - 2K}{\sqrt{21}}$$

48. If $\overrightarrow{a} = \mathbf{i} + \lambda \mathbf{j}$ and $\overrightarrow{b} = 2\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ then ' λ ' is Equal to

(A)
$$\frac{-2}{3}$$

(B)
$$\frac{2}{3}$$

(C)
$$\frac{3}{2}$$

49. Area of the triangle whose adjacent sides are $\stackrel{\rightarrow}{a}$ = 2i – j + 2k and $\stackrel{\rightarrow}{b}$ = 3i – j is

(A)
$$\sqrt{41}$$
 sq.units

(B)
$$\frac{\sqrt{41}}{2}$$
 sq.units

(C)
$$\frac{3}{2}$$
 sq. units

(D)
$$\frac{\sqrt{65}}{2}$$
 sq.units

- 50. The number of possible outcomes in the sample space when two dice of different colours are rolled is
 - (A) 36

(B) 6

(C) 9

- (D) 12
- 51. Sin θ is positive and $\tan\theta$ is negative when θ is in
 - (A) I quadrant

(B) Il quadrant

(C) III quadrant

(D) IV quadrant

52. The value of

$$\frac{\tan (\pi - \alpha)}{\tan (-\alpha)} + \frac{\cos (\frac{\pi}{2} - \alpha)}{\sin (2\pi - \alpha)} + \frac{\csc (\frac{3\pi}{2} + \alpha)}{\sec (\pi + \alpha)}$$
 is

(A) -1

(B) 2

(C) - 2

(D) 1

53. The value of sin (105°) is

(A)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$

(B)
$$\frac{\sqrt{3}-1}{2\sqrt{2}}$$

(C)
$$\frac{1-\sqrt{3}}{2\sqrt{2}}$$

(D)
$$\frac{\sqrt{3}}{2\sqrt{2}}$$

- 54. The value of $\frac{1-\cos A + \sin A}{1+\cos A + \sin A}$ is
 - (A) tan A

(B) tan (A/2)

(C) cot (A/2)

- (D) cot A
- 55. If $\sin A = \frac{1}{3}$, then the value of $\sin 3A$ is
 - (A) $-\frac{3}{27}$

(B)

(C) $\frac{-4}{27}$

(D) $\frac{23}{27}$

56. The value of 2 cos 3A. sin 2A is

(A) sin 5A + sin A

(C) sin 5A - sin A

cos 5A + cos A (B)

(D) cos 5A - cos A

57. The polar form of 1 + i is

(A) $\sqrt{2} \left[\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right]$

(C) $\sqrt{2} \left[\sin \frac{\pi}{4} + i \cos \frac{\pi}{4} \right]$

(B) $\sqrt{2} \left[\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right]$

(D) $\sqrt{2}\left[-\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right]$

58. $\lim_{X \to -3} \frac{x^2 - 5x + 6}{x^2 - 3x} =$

(A) $\frac{-5}{3}$

(C) $\frac{-1}{3}$

(B) $\frac{1}{3}$

(D) $\frac{5}{3}$

59. $\lim_{X \to a} \frac{\sqrt{x^3 - \sqrt{a^3}}}{x - a} =$

(A) $\frac{3}{2}\sqrt{a}$

(C) √a

(B) $\frac{3}{2\sqrt{a}}$

(D) $\frac{1}{\sqrt{a}}$

60. $\lim_{\theta \to 0} \frac{\cos 3\theta - \cos \theta}{\theta \sin 2\theta} =$

(A) $tan 2\theta$

2

(B)

(C) -2

(D) 1

61. Equation of the straight line passing through the point (1, 3) and having slope - 2 is

(A)
$$2x - y + 5 = 0$$

(B)
$$x + 2y + 5 = 0$$

(C)
$$x - 2y - 5 = 0$$

(D)
$$2x + y - 5 = 0$$

62. Equation of the straight line passing through the origin and perpendicular to the line 5x - 4y - 1 = 0 is

(A)
$$5x - 4y = 0$$

(B)
$$4x + 5y = 0$$

(C)
$$5x - 4y + 1 = 0$$

(D)
$$4x + 5y + 1 = 0$$

63. If $y = \frac{x^2 - 5}{x^2 + 3}$, then $\frac{dy}{dx} =$

(A)
$$\frac{4x^3 - 4x}{(x^2 + 3)^2}$$

(B)
$$\frac{16x}{(x^2+3)^2}$$

(C)
$$\frac{4x}{(x^2+3)^2}$$

(D)
$$\frac{-16x}{(x^2+3)^2}$$

64. If $y = \sin^{-1} (\cos x)$, then $\frac{dy}{dx} =$

$$(A) \quad \frac{1}{\sqrt{1-x^2}}$$

(B)
$$\frac{-\sin x}{\sqrt{1-x^2}}$$

65. If $y = \sqrt{y \log x}$, then $\frac{dy}{dx} =$

(A)
$$\frac{1}{x(2y-1)}$$

(B)
$$\frac{1}{x}$$

(C)
$$\frac{1}{x(1-2y)}$$

(D)
$$\frac{1}{xy}$$

66. If $x = a cos^2\theta$ and $y = b sin^3\theta$, then $\frac{dy}{dx} =$

(A)
$$-\frac{3b}{2a}\sin\theta$$

(B)
$$-\frac{3b}{2a}$$

(C)
$$\frac{2a}{b} \cos \theta$$

(D)
$$\frac{-2a}{3b\sin\theta}$$

67. If $y = x^y$, then $\frac{dy}{dx}$

(A)
$$\frac{y^2}{x(1-\log x)}$$

(B)
$$\frac{y^2}{x(1 + \log y)}$$

(C)
$$\frac{y^2}{x (1 - y \log x)}$$

(D)
$$\frac{y^2}{x(1+\log x)}$$

68. If $y = \sin^2 x$, then $\frac{d^2 y}{dx^2} =$

69. The Equation of tangent to the curve $y = \sin x$ at the point $(\pi, 0)$ is

(A)
$$x + y + 1 = 0$$

(B)
$$x - y - 1 = 0$$

(C)
$$x + y - \pi = 0$$
.

(D)
$$x - y + \pi = 0$$
.

70. The rate of change of radius of the sphere is 9cm/s. Then the rate of change of volume of the sphere when the radius is 2 cm is equal to

(A) $144\pi \text{ cm}^3/\text{s}$

(B) $9\pi \text{ cm}^3/\text{s}$

(C) $56\pi \text{ cm}^3/\text{s}$

(D) $64\pi \text{ cm}^3/\text{s}$

71.
$$\int \frac{1}{1+\cos x} \, dx =$$

(A) tan x + sec x + c

(C) - cot x + cosec x + c

72. $\int \left(\sqrt{x} + \cot x\right) dx =$

(A) $\frac{2}{3} x^{3/2} + \log \sin x + c$

(C) $\frac{2}{3} x^{3/2} - \log \sin x + c$

73. $\int \frac{e^{\log x}}{x} dx =$

(A) $e^{x} + c$

(C) $x \log e^x + c$

74. $\int \log x. dx =$

(A) x log x + x + c

(C) $x + \log x + c$

75. $\int \frac{x}{\sqrt{1+x^2}} dx =$

(A) $\sqrt{1+x^2} + c$

(c) $\frac{1}{\sqrt{1+x^2}} + c$

(B) $\tan x - \sec x + c$

(D) $\cot x - \csc x + c$

(B) $\frac{3}{2} x^{\frac{2}{3}} + \log \sec c x + c$

(D) $\frac{3}{2} x^{\frac{2}{3}} - \log \sec x + c$

(B) $\log (e^x) + c$

(D) $e^{\log x} + c$

(B) $x \log x - x + c$

(D) $x - \log x + c$

(B) $\sqrt{1-x^2} + c$

 $(D) \quad \frac{1}{\sqrt{1-x^2}} + C$

76.
$$\int_{-2}^{1} (x + 1) (x - 1) dx =$$

(A) O

(B) 1

(C) -1

(D) - 2

77. The area bounded by the curve $y = \sin^2 x$, the x-axis and the ordinates x = 0 and $x = \frac{\pi}{2}$ is

(A) $\frac{\pi}{4}$ sq. units

(B) $\frac{\pi}{2}$ sq. units

(C) $\frac{\pi}{3}$ sq. units

(D) $\frac{\pi}{6}$ sq. units

78. The order and degree of a differential equation $4\left(\frac{dy}{dx}\right)^3 + 8xy + \left(\frac{d^2y}{dx^2}\right)^2 - 7 = 0$ respectively are

(A) 1 and 3

(B) 2 and 2

(C) 2 and 3

(D) 2 and 1

79. The differential equation formed from the equation $y^2 = 4ax$ by eliminating arbitrary constant is

 $(A) \quad 2x \frac{dy}{dx} - y = 0$

(B) $2x \frac{dy}{dx} + y = 0$

(C) $y \frac{dy}{dx} - 2x = 0$

(D) $y \frac{dy}{dx} + 2x = 0$

80. For the differential equation $\frac{dy}{dx}$ + (tan x). y = cos x, the integrating factor is

(A) log x

(B) cot x

(C) cosec x

(D) sec x

CHEMICAL ENGINEERING

- 81. Atomic weight of an element is nothing but _____
 - (A) mass of proton

(B) mass of neutron

(C) mass of electron

- (D) mass of proton + neutron + electron
- 82. Equivalent weight of an element is _____
 - (A) number of parts by mass of the element combined with 1.008 parts by mass of hydrogen
 - (B) number of parts by mass of the element combined with 8.0 parts by mass of oxygen
 - (C) both A & B
 - (D) none of the above
- 83. When one mole of carbon, completely converted into CO₂, the amount of heat liberated is x KJ and one mole of carbon completely converted into CO, the amount of heat liberated is y KJ
 - (A) x = y

(B) x > y

(C) x < y

- (D) none of these
- 84. The amount of heat either liberated or absorbed during the chemical reaction occurs in one step or multiple steps is always constant. This law was stated by _____
 - (A) Lavoisier

(B) Hess

(C) Gibb

- (D) Henry
- 85. For reversible reaction xA + yB ==== mC + nD. The chemical equilibrium constant

(A)
$$\frac{x^A + y^B}{m^C + n^D}$$

(B)
$$\frac{[A]^{x} \times [B]^{y}}{[C]^{m} \times [D]^{n}}$$

(C)
$$\frac{m^C + n^D}{x^A + y^B}$$

(D)
$$\frac{[C]^m \times [D]^n}{[A]^x \times [B]^y}$$

86.	The	correct order of conditions of spontaneou	s react	tion is
	(A)	$\Delta H = 0$, $\Delta G = 0$, $\Delta S = 0$	(B)	$\Delta H = -Ve$, $\Delta G = -Ve$, $\Delta S = +Ve$
	(C)	ΔH = +Ve, ΔG = +Ve, ΔS = +Ve	(D)	$\Delta H = -Ve$, $\Delta G = -Ve$, $\Delta S = -Ve$
87.	Equ	al volumes of all gases at same temperatu	re and	pressure
	(A)	occupy same volume	(B)	contain equal number of gas particles
	(C)	both A and B	(D)	none of these
88.	Whi	ch of the following reactions is not feasible		AND COMMON TO A PARTY OF THE PROPERTY OF THE PARTY OF THE
	(A)	$2H_2O + 2F_2 \rightarrow 4HF + O_2$	(B)	$2KBr + Cl_2 \rightarrow 2KCl + Br_2$
	(C)	$2KBr + I_2 \rightarrow 2KI + Br_2$	(D)	$2KI + Br_2 \rightarrow 2KBr + I_2$
89.		ch indicator is suitable for titration involve	es sod	ium carbonate solution against sulphuric
	acio			
	(A)	methylene blue	(B)	methyl orange
	(C)	methyl red	(D)	phenolphthalein
90.	Acid	d is a substance which accepts a pair of	electro	ons and a base which donates a pair of
	elec	ctrons. This acid-base theory was explained	by_	
	(A)	Arrhenius	(B)	Lowry-Bronsted
	(C)	G.N. Lewis	(D)	Henry
91.	Tetr	a ethyl lead is a chemical used as		

(B)

(D)

Fire extinguisher

Pain killer

(A) Anti knocking agent

(C) Mosquito repellent

92.	The	e organic acid present in red-ants is		
	(A)	Citric acid	(B)	Oxalic acid
	(C)	Formic acid	(D)	Benzoic acid
93.	Suc	cessive member of hydrocarbons in homolo	gous	series differ by group
	(A)	Functional	(B)	Aryl
	(C)	Methyl	(D)	Methylene
94.	The	e compound having molecular formula C ₄ H ₁₀ 0	O can	show
	(A)	Functional isomerism	(B)	Metamerism
	(C)	Position isomerism	(D)	All of the above
95.	IUP	AC name of the compound		
		H H H	Н	
		Header I	1	
	Н	- c - c - c -	С	- COOH is
			1	
		OH CI NH ₂	Н	
	(A)	3-Amino, 4-Chloro, 5-hydroxy pentanoic ac	id	
	(B)	1-Hydroxy, 2-Chloro, 3-amino-pentanoic aci	id	
	(C)	2, 3, 4-Amino, Chloro, hydroxy-ethanoic aci	id	
	(D)	1, 2, 3-Hydroxy, chloro, amino, butyl carbox	ylic a	cid
96.	Gen	nerally all the saturated hydrocarbons are		in water
	(A)	soluble	(B)	insoluble
	(C)	partially soluble	(D)	all of the above
_		Space For Pou	ıah V	Vork

97.	Mar	kowni Koff's rule explains addition of HCl v	vith Ch	H ₃ – CH – CH ₂ give the product
	(A)	CH ₃ - CH ₃ - CH ₂ CI	(B)	CH ₃ - CHCI - CH ₃
	(C)	CH ₃ – CH = CHCI + H ₂	(D)	CH ₃ - CH = CH ₂ - HCI
98.	Dim	ethyl ether and ethyl alcohol are the exam	ples of	isomers
	(A)	chain	(B)	functional
	(C)	position	(D)	geometrical
99.		polymerisation is the chemical reac		f formation of high molecular substances
	(A)	Addition	(B)	Condensation
	(C)	Homo	(D)	Graft
100.	Ceta	ane number of a diesel fuel is the measure	of its_	The art is amoral (20)
	(A)	Ignition delay	(B)	Oxidation stability
	(C)	Smoke point	(D)	Viscosity
101.	In a	gyratory crusher size reduction is effected	prima	rily by
	(A)	compression	(B)	impact
	(C)	attrition	(D)	cutting action
102.	Whi	ch of the following is a fine crusher?		
	(A)	Hammer mill	(B)	Edge runner mill
	(C)	Pin mill	(D)	Tube mill
103.	Star	ndard screens always have aper	tures	
	(A)	Rectangular	(B)	Triangular
	(C)	Square	(D)	Circular

104.	The	mill is not a revolving mill		
	(A)	pebble	(B)	compartment
	(C)	cage	(D)	tube
105	200	mesh seive size corresponds to	micro	ons
	(A)	24	(B)	74
	(C)	154	(D)	200
106.		ch of the following conveyors cannot be erials	recor	mmended for transportation of abrasive
	(A)	Belt conveyor	(B)	Apron conveyor
	(C)	Chain conveyor	(D)	Flight conveyor
107.	The	process by which fine solids is removed fro	om liqu	uids is termed as
	(A)	Decantation	(B)	Flocculation
	(C)	Sedimentation	(D)	Classification
108.	Whi	ch of the following is an example of axial-fl	ow im	pellers?
	(A)	Paddle	(B)	Turbine
	(C)	Propeller	(D)	None of the above
109.	Duri	ng grinding of the solid particles the tempe	erature	e of the solid particles
	(A)	remains constant	(B)	increases
	(C)	decreases	(D)	none of the above
110.	The	operating speed of a ball mill must be		
	(A)	less than the critical speed	(B)	equal to the critical speed
	(C)	higher than the critical speed	(D)	equal to or higher than the critical speed

111.	Flui	Fluidised bed is formed when the							
	(A)	fluid friction is zero							
	(B)	(B) gravity force is less than the fluid friction							
	(C)	pressure forces equal gravity forces							
	(D)	sum of the fluid friction and pressure force	es are	equal and opposite to gravity forces					
112.	For	an ideal fluid flow Reynolds number is							
	(A)	2100	(B)	100					
	(C)		(D)	•					
113.	Mor	mentum transfer in laminar flow of fluids re	sults d	ue to the					
	(A)	viscosity	(B)	density					
	(C)	velocity gradient	(D)	none of these					
114.		t tube indicates 5 cm of water (manometer The velocity of air in m/sec is) when	it is being used for measuring velocity of					
	(A)	5	(B)	14.1					
	(C)	56.22	(D)	28.2					
115.	In c	entrifugal pumps, cavitation occurs, when p	oressu	re of the impeller eye or vane becomes					
	(A)	less than atmospheric pressure	(B)	more than liquid vapour pressure					
	(C)	less than liquid vapour pressure	(D)	more than atmospheric pressure					
116.	In th	ne low Reynolds number region, the drag fo	orce or	n a sphere is proportional to					
	(A)	V	(B)	V ²					
	(C)	V ⁴	(D)	V 0.5					
117.	The	head loss in turbulent flow in a pipe varies							
	(A)	as velocity	(B)	as (velocity) ²					
	(C)	inversely as the square of diameter	(D)	inversely as the velocity					

118.	18. For liquid flow through a packed bed, the superficial velocity as compared to average veloc					
	thro	ough the channel in the bed is				
	(A)	more	(B)	less		
	(C)	equal	(D)	independent of porosity		
119.	Visc	cosity of a liquid decreases with	rise in	temperature		
	(A)	exponentially	(B)	linearly		
	(C)	logarithmically	(D)	none of these		
120	Whi	ich of the following produces maximum pre	essure	difference for transportation of gases?		
	(A)	Vacuum pumps	(B)	Blowers		
	(C)	Fans	(D)	Compressors		
121.	1 ba	r is almost equal to atmosphere				
	(A)	1	(B)	10		
	(C)	100	(D)	1000		
122	1 B1	TU =				
	(A)	453.6 calories	(B)	252 calories		
	(C)	288 calories	(D)	350 calories		
123.	Eler	ments in a periodic table are arranged in or	der of	their		
	(A)	atomic weight	(B)	metallic character		
	(C)	mass number	(D)	atomic number		
124.	Con	version of 1000 dyne to newton is				
	(A)	10 ⁺²	(B)	10-2		
	(C)	10-4	(D)	104		

		Space For	Rough	Work
	(C)	weight per cent only for ideal gases	(D)	mole per cent only for ideal gases
	(A)	weight per cent	(B)	mole per cent
131.	Vol	ume per cent for gases is equal to the		
	(C)	4.96 kg/m ³	(D)	2.827 kg/m ³
	(A)	5.87 kg/m ³	(B)	1.287 kg/m ³
130.	The	average molecular weight of air is 28.84	, then t	he density of air at NTP is
	(C)	170 g/l	(D)	160 g/l
	(A)	200 g/l	(B)	163 g/l
129.	Con	oversion of 5N H ₃ PO ₄ to g/l is		
	(C)	molarity	(D)	normality
	(A)	molality	(B)	formality
128.	The	number of gram equivalent weight of so	lute dis	
	(C)	142 gm	(D)	145 gm
		150 gm	(B)	180 gm
127.		molecular weight of sodium sulphate	(D)	to contend an well-reduced to the con-
407			(5)	The state of the second
		3 k.mol	(D)	6 k.mol
120.		culate the kilo-mole atoms of carbon which	(B)	8 k.mol
126				
		8.35 × 10 ⁻⁵	(D)	5.77 × 10 ⁻⁷
		10.78 × 10 ⁻⁵	(B)	2.075 × 10⁻⁵
125.		166 kg/m³, then the volumetric flow rate		
125.	A st	eam is flowing in a pipe at a flow rate of 4	1500 kg	/hr with dia of 12 inch and density of stear

132. O	ne micro is equal to cm		
(A) 10 ⁻²	(B)	10-4
(C) 10-6	(D)	10-8
133. Av	ogadro number is the number of molecules	in one	e of a gas
(A) gram	(B)	kilogram
(C) gm. mole	(D)	litre
	n aqueous solution of soda ash (Na ₂ CO ₃) omposition as weight % Na ₂ O	contair	ns 20% by weight soda ash. Express the
(A) 116.98 kg	(B)	11.698 kg
(C) 15.678 kg	(D)	18.23 kgs
	B grams of H ₂ SO ₄ is dissolved in water to pre- olution is	pare 1	litre of solution. Then the Normality of the
(A) 1N	(B)	4 N
(C) 5 N	(D)	2 N
136. Or	ne newton is equal to dynes		
(A) 10 ²	(B)	10 ³
(C) 10 ⁴	(D)	105
137. W	eight of 56 litres of Ammonia at N.T.P. is		gm
(A)) 2.5	(B)	42.5
(C) 56	(D)	2800
138. Th	e value of gas constant R in J/mol.°K is		
(A)	0.008314	(B)	1.9872
(C)	8.3145	(D)	0.08206

139.	The	ratio of Total mass of mixture is		
	(A)	Weight fraction	(B)	Average weight fraction
	(C)	Average mole fraction	(D)	Average molecular weight
140.	The	molecular weight of sodium hydroxide is		
	(A)	40 gm	(B)	45 gm
	(C)	30 gm	(D)	20 gm
141.	PVC	c is a material		
	(A)	Thermoplastic	(B)	Thermosetting
	(C)	Fibrous	(D)	Chemically active
142.	Mos	st commonly used rubber vulcanisation age	ent is	
	(A)	Sulphur	(B)	Bromine
	(C)	Platinum	(D)	Alumina
143.	The	monomer of natural rubber is		
	(A)	DMT	(B)	Isoprine
	(C)	2 methyl-1-propene	(D)	Both B & C
144.	Pro	perties of a polymer is affected by the		
	(A)	Chain length	(B)	Inter molecular forces
	(C)	Branching and cross linking	(D)	Both A & B
145.	Plas	stic tubes and pipes are generally made by		moulding
	(A)	injection	(B)	transfer
	(C)	extrusion	(D)	compression

146	146. Which of the following is the lowest cost plastic commercially available?					
	(A)	Polythene	(B)	Teflon		
	(C)	Bakelite	(D)	PVC		
147.	Con	densation polymerisation is not involved in	the n	nanufacture of		
	(A)	Teflon	(B)	Polythene		
	(C)	Terylene	(D)	Nylon		
148	. Hot	drink cups are usually made of				
	(A)	Polystyrene	(B)	Polythene		
	(C)	Poly propylene	(D)	PVC		
149	. Ebo	nite is a				
	(A)	highly vulcanised rubber	(B)	natural rubber		
	(C)	unvulcanised raw rubber	(D)	adhesive		
150	. Poly	propylene is preferred to polythene becau	ise the	e former is		
	(A)	Non-inflammable	(B)	Harder		
	(C)	Stronger	(D)	Both B & C		
151.	McL	eoid gauge is used to measure the				
	(A)	point velocity	(B)	flow rate		
	(C)	vacuum	(D)	pressure		
152	. Wor	king principle of mercury in glass thermom	eter is	procedure (pro-		
	(A)	volumetric expansion	(B)	pressure rise with temperature		
	(C)	linear expansion	(D)	none of these		
153.		controller has the maximum stabilisin	g time	and the state of t		
	(A)	P	(B)	PD		
	(C)	PI	(D)	PID		

154. Bourdon gauges are used for measuring pressure (kg/cm²)						
(A)	< atmospheric	(B)	> 2 (gauge)			
(C)	< 2 (gauge)	(D)	> 10 (absolute)			
155. Wh	nich of the following fluid flow measuring de	vices	can measure the largest flow rate			
(A)	V-notch	(B)	Rota-meter			
(C)	Orificemeter	(D)	Weir			
156. W	nich of the following is not classified as a the	ermoel	ectric pyrometer?			
(A)	Resistance thermometer	(B)	Thermocouple			
(C)	Optical pyrometer	(D)	Radiation pyrometer			
157	is a desirable static characteristic of i	nstrun	nents			
(A)	Drift	(B)	Dead zone			
(C)	Static error	(D)	Reproducibility			
158	input increases linearly with time					
(A)	Step	(B)	Ramp			
(C)	Impulse	(D)	Sinusoidal			
159. Th	e unit of time constant of a system is the sa	me as	that of			
(A)	velocity	(B)	time			
(C)	(time) ⁻¹	(D)	none of these			
160. Ex	ample for final control element is a					
(A)	valve	(B)	switch			
(C)	signal	(D)	none of these			

161.	161. Which area is used in case of heat flow by conduction on through a cylinder?						
	(A)	Logarithmic mean area	(B)	Arithmetic mean area			
	(C)	Geometric mean area	(D)	None of these			
162.	The	S.I. unit of thermal conductivity is					
	(A)	w/(m ² .k)	(B)	w/(m.k)			
	(C)	w/m	(D)	w/k			
163.	. Max	kimum heat transfer rate is obtained in		flow			
	(A)	Laminar	(B)	Turbulent			
	(C)	Creeping	(D)	Transition region			
164.	Film	n-wise condensation occurs on		Rand details			
	(A)	clean and dirt free	(B)	rough and dirty			
	(C)	contaminated cooling	(D)	Oily			
165.	Film	boiling is usually not desired in commercia	al equ	ipments because			
	(A)	The heat transfer rate is low in view of the	large	temperature drop			
	(B)	It is difficult to maintain					
	(C)	It is not economic					
	(D)	none of these					
166.	The	number of kg vaporised per kg of steam fe	ed to t	he evaporator is defined as			
	(A)	capacity	(B)	rate of evaporation			
	(C)	economy	(D)	rate of vaporisation			
167.	In a	multiple effect evaporator, which of the fol	lowing	g is most suitable flow?			
	(A)	Forward feed	(B)	Backward feed			
	(C)	Mixed feeds	(D)	Parallel feed			

168.	A 2.	-4 heat exchanger involves		
	(A)	only counter flow of fluid		
	(B)	only parallel flow of fluid		
	(C)	both counter and parallel flow of fluids		
	(D)	smaller pressure drop compared to 1-2 h	eat exc	changer
169.	Who	en warm and cold liquids are mixed, the h	eat trai	nsfer is mainly by
	(A)	conduction	(B)	convection
	(C)	radiation	(D)	both A & C
170.	A p	erfect black body is perfect of r	adiatio	n (in the later)
	(A)	Absorber	(B)	Emitter
	(C)	Both A & B	(D)	Neither A nor B
171.	In p	aper industry, paper is dried in a	_ drye	r Leithmannin a Arlina
	(A)	tunnel	(B)	heated cylinder
	(C)	tray	(D)	none of the above
172.	Moi	sture in a solid exerting an equilibrium va	pour p	pressure equal to that of the pure liquid at
	the	same temperature is called the	moistu	re
	(A)	critical	(B)	free
	(C)	bound	(D)	unbound
173.	Ref	ractory bricks are usually dried in a	dr	yer
	(A)	tray	(B)	conveyor
	(C)	tunnel	(D)	festoon
174.		at sensitive materials like certain phar	maceu	ticals and food stuffs can be dried in
	(A)	freeze	(B)	tray
	(C)	rotary	(D)	indirect tray
	(C)	rotary	(D)	indirect tray

175.	In th	ne constant rate period, the rate of drying o	curve f	for batch drying			
(A) cracks develop on the surface of the solid							
	(B)	rate of drying decreases abruptly					
	(C)	surface evaporation of unbound moisture	occur	rs			
	(D)	none of these					
176.	Stic	ky material can be dried in					
	(A)	tray	(B)	rotary			
	(C)	fluidised bed	(D)	none of these			
177.	Dry	ing of a solid involves					
	(A)	only heat transfer	(B)	only mass transfer			
	(C)	both heat and mass transfer	(D)	none of these			
178.		and moisture is that liquid which exerts an e	equilib	rium vapour pressure that of the	ne		
	pure liquid at the given temperature						
	(A)	less than	(B)	more than			
	(C)	equal to	(D)	none of the above			
179.	Whi	ich of the following is not a continuous drie	r?				
	(A)	spray	(B)	tunnel			
	(C)	drum	(D)	tray			
180.	180. Drying operation under vacuum is carried out to						
	(A)	dry those materials which have very high	unbou	and moisture content			
	(B)	dry materials having high bound moisture	conte	ent			
	(C)	increase drying temperature					
	(D)	decrease drying temperature					

SPACE FOR ROUGH WORK