TEST - 2015

	COURSE	DAY: SUNDAY
LE	ELECTRICAL & ELECTRONICS	TIME: 10.00 A.M. TO 1.00 P.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
180	200 MINUTES	180 MINUTES

MENTION YOUR	QUESTION BOO	KLET DETAILS		
DIPLOMA CET NUMBER	VERSION CODE	SERIAL NUMBER		
	A – 2	142814		

DOs:

- 1. Check whether the Diploma CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 09.50 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- 2. The 3rd Bell rings at 10.00 a.m., till then;
 - Do not remove the paper seal of this question booklet.
 - · Do not look inside this question booklet
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 180 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- 2. After the 3rd Bell is rung at 10.00 a.m. remove the paper seal of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by acomplete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 180 minutes:
 - · Read each question (item) carefully
 - Choose one correct answer from out of the four available responses (options / choices) given under each question / item. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose only one response for each item.
 - Completed darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- 4. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same
- 5. After the last Bells is rung at 1.00 p.m. stop marking on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
- 6. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 7. After separating the top sheet, the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 8. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

PART - A APPLIED SCIENCE

- 1. One Pascal is equal to
 - 10 dynes/cm² 1.
 - 100 dynes / cm²

- 1 dyne / cm² 2.
- 0.1 dyne / cm²
- 2. To calm down turbulent sea, sailors use oil to
 - Decrease surface tension
- 2. Increase surface tension

3. Decrease viscosity

- 4. Increase cohesive force
- 3. The thrust on the bottom of the container having a base area of 20 m² filled with water to a height of 3 m is $\underline{}$ (given $g = 10 \text{m/s}^2$)
 - $6 \times 10^{5} N$ 1.
- 2. $6 \times 10^4 \text{ N}$
- $6 \times 10^{3} \text{ N}$ 3.
- 4. $6 \times 10^2 \text{ N}$
- Amount of heat required to raise the temperature of 1 kg of water through 1°C is
 - 1. One calorie
- 2. One joule
- - One kilo-calorie 4. One kilojoule
- 5. Absolute scale of temperature has its zero at
 - 0°C 1.
- 2. -100°C
- 273°C 3.
- 4. $-273^{\circ}C$
- 6. In case of an ideal gas, the value of pressure or volume co-efficient is
- 2. $-\frac{1}{273}$ 3.
 - 273
- 4. -273
- 7. The distance travelled by the disturbance per unit time in a given direction is
 - 1. Wave amplitude

2. Wave velocity

3. Wave frequency

- Wavelength
- 8. The speed of the transverse wave along the stretched string is given by

- 3. $V = \sqrt{\frac{1}{T}}$ 4. $V = \frac{\sqrt{m}}{T}$

9.	Absorption co-efficient of sound wave is given by $\underline{\hspace{1cm}}$. Where E_m is energy absorbed by the										
	given medium $E_{\it ow}$ is the energy absorbed by open window.										
	1. $a = \frac{E_m}{E_{ow}}$ 2. $a = \frac{E_{ow}}{E_m}$	3.	$a = E_m \times E_{ow}$	$4. a = E_m + E_{ow}$							
10.	The rich quality of a musical note depends on										
	1. Fundamental frequency	2.	Loudness								
	3. Larger number of over tones	4.	Pitch								
11.	Waxing and waning are the characteristics of										
	1. Periodic motion 2. Oscillations	3.	Beats	4. Frequency							
12.	Velocity of sound in air varies										
	1. Inversely as the square root of the densi	ty of t	he medium								
	2. Directly as the square root of the density	-									
	3. Directly as the density of medium										
	4. Inversely as the density of medium										
13.	The vibrations of a body of decreasing amplitu	ıde are	e called								
	1. Undamped free vibrations	2.	Damped free vi	brations							
	3. Resonant vibrations	4.	Forced vibration	ns							
14.	Another name for field emission is										
	1 Cold cathode emission	2.	Thermionic em	nission							

3. Photoelectric emission 4. Secondary emission

15. In case of photoelectric emission, the rate of emission of electron is

- 1. Independent of frequency of radiation
- 2. Dependent on frequency of radiation
- 3. Dependent on wavelength of incident radiation
- 4. Independent of intensity of radiation

16. Emission of radiation from radioactive element is

1. Slow 2. Fast 3. Spontaneous 4. Very slow

17.	In t	he spectrum of scatter dent light are called	ed light the lines co	orresp	onding to wavelength greater than that o
	1.	Stokes lines		2.	Antistokes lines
	3.	Fluorescent lines		4.	Incident lines
18.	Res	olving power of telescop	e is given by		
	1.	$\frac{d}{1.22\lambda}$	$2. \frac{1.22\lambda}{d}$	3.	$\frac{1.22d}{\lambda} \qquad \qquad 4. \frac{\lambda}{1.22d}$
19.	Тос	observe diffraction patte	rn the obstacle shou	ld be	
	1.	Very big		2.	Dark
	3.	Absent		4.	Comparable with the wavelength of light
20.		en double refraction occ nes to one a		ay aı	nd ordinary rays will have vibrations in the
	1.	Parallel	2. Independent	3.	Perpendicular 4. At 45°
21.	Max	well's electromagnetic	theory could explain		
	1.	Photo electric effect		2.	Interference of light
	3.	Compton effect		4.	Black body radiation
22.	The	contrast between brigh	t and dark bands of	an ir	nterference pattern is
	1.	Low	2. High	3.	No change 4. Gradually decreases
23.	A n	on-electrolyte solution i	is		
	1.	Sugar solution		2.	Salt solution
	3.	Water		4.	Copper sulphate solution
24.	In a	ılkalies the concentratio	on of <i>OH</i> ions is		
	1.	More than 10 ⁻⁷ g ions	s / litre	2.	Less than 10 ⁻⁷ g ions / litre
	3.	Equal to 10 ⁻⁷ g ions /	litre	4.	More than 10 ⁷ g ions / litre

25.	An e	xample of derived un	it is					
	1.	Meter	2.	Second	3.	Netwon	4.	Candela
								*
26.	The 1	prefix used for 10 ⁻¹⁵ is	3					
	1.	Femto	2.	Pico	3.	Peta	4.	Nano
27.	An e	xample of dimension	ess	constant is				
	1.	Strain	2.	Efficiency	3.	Force	4.	Pi
.28.		ain scale is divided in the contract ofcm.	ito h	alf mm and havin	ıg a V	Vernier containing	10	divisions has a least
	1.	0.05	2.	0.005	3.	0.02	4.	0.025
29.	Acco	rding to Newton's sec	ond :	law of motion $F = 1$	Kma.	The value of K is		
	1.	0.1	2. –	0	3.	10	4.	1
30.	The	velocity of a freely fal	ling	body is maximum				
	1.	At the beginning			2.	Just before it tou	che	s ground
	3.	Exactly half way			4.	After it touches g	roui	nd
31.	Wet	clothes are dried in w	ashi	ng machine by the	e pro	perty of		
	1.	Inertia of rest			2.	Inertia of direction	on	
	3.	Inertia of motion			4.	Inertia of time		
32.		rce of 1.2 x 10 ⁻² N act body is	s for	3 seconds on a bo	dy of	mass 0.04kg at re	st. T	he velocity gained by
	1.	0.9 m/s	2.	9 m/s	3.	0.09 m/s4		9.2 m/s
33.	An e	xample of vector quar	ntity	is				
	1.	Volume	2.	Energy	3.	Density	4.	Force

34.	Handle of the door is fixed away from the end where it is fixed with hinges to										
	1.	Increase the moment of force	2.	Decrease the moment of force							
	3.	Keep the door firm	4.	Lock it easily							
35.	Resu	ltant of two equal forces perpendicular to e	ach o	other acts at an angle to first force	e						
	1.	90° 2. 180°	3.	30° 4. 45°							
36.	The r	resultant of two forces acting on a body can	not be	e e							
	1.	Greater than first force									
	2.	Zero									
	3.	Lesser than first force									
	4.	Lesser than the difference between two for	orces								
37.	Towi	ng of a boat by two forces is an illustration	of								
	1.	Lami's theorem	2.	Law of triangle of forces							
	3.	Law of parallelogram of forces	4.	Law of polygon of forces							
38.	Shoc	k absorber is an example for									
	1.	Compressive stress	2.	Tensile stress							
	3.	Shear stress	4.	Shear strain							
39.	Facto	or of safety of a structure is									
	1.	Within 2	2.	Equal to zero							
	3.	Vary between 5 and 10	4.	More than 10							
40.	In ca	se of liquids as the temperature increases,	the v	viscosity of liquid decreases due to							
	1.	Increase in the rate of diffusion of gases									
	2.	Decrease in the rate of diffusion of gases									
	3.	Increase in the potential energy of molecular	cules								
	4.	Increase in the kinetic energy of molecu	ıles								

PART - B

APPLIED MATHEMATICS

- If $x \sin 30^{\circ} Sec 30^{\circ} \tan 30^{\circ} = \tan^2 60^{\circ}$, then the value of x is
 - 1. $\frac{22}{3}$
- 2. $\frac{-22}{3}$
- 3. $\frac{11}{6}$
- 4. $\frac{3}{22}$

- 42. The value of $sin 225^{\circ} + cos(-135^{\circ})$ is
 - $\sqrt{2}$ 1.
- 2. $-\sqrt{2}$
- 3. $\frac{1}{\sqrt{2}}$
- 4. $\frac{-1}{\sqrt{2}}$
- The simplified value of $\frac{\sin(180^{\circ}-A)\cot(90^{\circ}-A)\cos(360^{\circ}-A)}{\tan(180^{\circ}+A)\tan(90^{\circ}+A)\sin(-A)}$ is 43.
 - 1. sin A
- $2. -sin A \qquad \qquad 3. \qquad 1$
- 4. cosec A

- The simplified value of $\frac{\sin 2A}{1+\cos 2A}$ is
 - 1. 2tan A
- 2. sin A
- 3. cot A
- 4. tan A

- 45. If $\tan A = \frac{3}{4}$ and $\tan B = \frac{1}{7}$, then the value of (A+B) is
 - 1. $\frac{\pi}{6}$

- 2. $\frac{25}{23}$
- 3. $\frac{\pi}{4}$
- 4. $\frac{23}{25}$

- The value of $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ}$ is 46.
 - 1. 0

- 2. cos 50°
- 4. $\sin 50^{\circ}$

47.	The value of	cos ⁻¹	tan 135°	is

1. 0° 2. 180° 3. 45° 4. 90°

The centroid of the triangle formed by the vertices (-10, 6), (2, -2) and (2, 5) is 48.

1. (-2, 3) 2. (2, 3)

3. $\left(-3, \frac{9}{2}\right)$ 4. (-6, 9)

A point (-4, 3) divides the line AB externally in the ratio of 1:2. Given A(-1, -3) then the point B 49.

(6, -3)1.

2. (-10, 15) 3.

(2, 9)

4. (2, -9)

50. The area of triangle formed by the point, (3, -1), (2, 0) and (K, 4) is 10 Sq. Units, then the value of K

12 1.

2. 7

3. -22 22

51. The slope of the line joining the points (-2, 3) and (4, -6) is

1.

2. $\frac{-3}{2}$

3. $\frac{2}{3}$

The equation of straight line passing through (4, -1) and having equal intercepts is 52.

1. x + y - 1 = 0

2. x+y-5=0 3. x+y-3=0

4. x+y+3=0

53. The equation of the line passing through (5, -2) and parallel to the line 3x+2y+7=0 is

3x + 2y - 11 = 01.

3x-2y+11=0

3. 3x - 2y - 19 = 0 2x-3y-16=0

- 54. The value of $\lim_{x \to -2} \frac{x+2}{x^5+32}$ is
- 2. 80
- 3. $\frac{-1}{80}$
- 4. -80

- 55. The value of $\lim_{x \to 0} \frac{2x tan3x}{\sin 2x + 3x^2}$ is
 - 1. $\frac{-1}{5}$ 2. 0
- 3. $\frac{1}{2}$
- 4. $-\frac{1}{2}$

- 56. If $y = e^x \log x$, then $\frac{dy}{dx}$ at x = 1 is
 - 1. e^x 2. e
- 3. 1
- 4. 0

- 57. If $y = tan^{-1}\sqrt{\frac{1+\cos x}{1-\cos x}}$, then $\frac{dy}{dx}$ is

 - 1. 2 2. -2
- 3. $\frac{-1}{2}$
- 4. $\frac{1}{2}$

- 58. If $\sqrt{x^3} + \sqrt{y^3} = \sqrt{a^3}$, then $\frac{dy}{dx}$ is
 - 1. $\sqrt{\frac{x}{y}}$ 2. $-\sqrt{\frac{x}{y}}$
- 3. $\sqrt{\frac{y}{r}}$
- 4. $-\sqrt{\frac{y}{x}}$

- 59. The second derivative of y = log(sec x tan x) is
 - 1. -sec x tan x
- 2. $\sec x \tan x$ 3. $-\sec x$
- 4. sec x

- 60. Water flows into the cylindrical tank of radius 7mt at the rate of 294 cubic mt/sec, then the rate of height of water rising in the tank is
 - 1. $\frac{\pi}{6}$ mt / sec

2. $\frac{6}{\pi}$ mt / sec

3. 14406 mt / sec

- 4. $\frac{21}{\pi}$ mt / sec
- The maximum value of the function $y = x + \frac{1}{x}$ is
 - 0 1.

- 3.

- The value of $\int tan^2x \ dx$ is
 - 1.
- $tan \ x-x+c$ 2. $x-tan \ x+c$ 3. $(sec^2x)^2+c$ 4. $-cot \ x-x+c$

- 63. The value of $\int \frac{\cos x}{1+\sin x} dx$ is
 - 1. $log(sec^2x + sec x tan x) + c$
- 2. log(sin x)+c

3. log(1+sin x)+c

4. $\frac{(1+\sin x)^2}{2}+c$

- 64. $\int \sin^2 x \sin 2x \ dx \text{ is}$
 - 1. $\frac{\sin^2 x}{2} + c$ 2. $\frac{\sin^4 x}{2} + c$
- 3. $\sin^2 x + c$ 4. $\frac{-\sin^4 x}{2} + c$

65.
$$\int_{-1}^{61} (2x+1)(5-x) dx$$
 is

10

- 2. $\frac{26}{3}$
- 3. $\frac{-26}{3}$ 4. $\frac{11}{3}$

66.
$$\int_{0}^{\frac{\pi}{4}} tan^{2}x \ sec^{2}x \ dx$$
 is

1. $\frac{1}{3}$

- 2. $\frac{4}{3}$
- 3. $\frac{1}{2}$
- 4. $\frac{-1}{3}$

The RMS value of $y^2 = x^2 - 2x$ over the interval [1, 3] is

- 2. $\sqrt{\frac{2}{3}}$
- 4. $\frac{1}{\sqrt{3}}$

The differential equation of $y^3 = 5 \alpha x$ by eliminating arbitrary constant a is

1. $\frac{dy}{dx} - \frac{y}{3x} = 0$

 $2. \quad \frac{dy}{dx} + \frac{y}{3x} = 0$

 $3. \qquad \frac{dy}{dx} - \frac{3y}{x} = 0$

4. $\frac{dy}{dr} - \frac{5y}{3r} = 0$

The integrating factor of the differential equation $x \frac{dy}{dx} - (1-x)y = x^3$ is

1. $\frac{e^x}{r}$

- 3. $e^{\frac{x^2-2x}{2}}$ 4. $e^{\frac{2x-x^2}{2}}$

- 70. If $\begin{vmatrix} 2x+1 & -5x \\ 1 & 3 \end{vmatrix} = 0$, then x is
 - 1. $\frac{3}{11}$
- 2. $\frac{-3}{11}$
- 3. $\frac{11}{3}$ 4. $-\frac{11}{3}$
- 71. For the simultaneous linear equations 2x+y+z=1, x+y+2z=0 and 3x+2y-z=2, the value of Δx is

- 2. -11

- 72. If $A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 7 \\ -4 & 1 \end{bmatrix}$ then $(A+B)^T$ is
 - 1. $\begin{bmatrix} 1 & 1 \\ 10 & 5 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 10 \\ 1 & 5 \end{bmatrix}$ 3. $\begin{bmatrix} -1 & 10 \\ -1 & 5 \end{bmatrix}$ 4. $\begin{bmatrix} -1 & -1 \\ 10 & 5 \end{bmatrix}$

- 73. If $A = \begin{bmatrix} 1 & -3 \\ -5 & 7 \end{bmatrix}$, then adj A is
 - 1. $\begin{bmatrix} 1 & -5 \\ -3 & 7 \end{bmatrix}$ 2. $\begin{bmatrix} 7 & -5 \\ -3 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} -1 & -5 \\ -3 & -7 \end{bmatrix}$ 4. $\begin{bmatrix} 7 & 3 \\ 5 & 1 \end{bmatrix}$

- 74. The cofactor of O in $A = \begin{bmatrix} 3 & -2 & 5 \\ 1 & 6 & 0 \\ 2 & 7 & -4 \end{bmatrix}$ is
 - 1. -25
- 2. 25
- -17

4. 0

- 75. If $(\sqrt{3} + 1)^3 = 10 + 6\sqrt{3}$, then the value of $(\sqrt{3} + 1)^3 (\sqrt{3} 1)^3$ is
 - 12√3 1.
- 20
- 4. $20 + \sqrt{3}$

- The middle term in the expansion of $\left(x^3 + \frac{1}{x^2}\right)^6$
 - $10 x^{3}$
- 2. $20 x^3$ 3. $\frac{20}{r^3}$
- 4. 20

- 77. If $\vec{a} = i + 3j 2k$ and $\vec{b} = 2i j + 3k$, then $\vec{a} \cdot \vec{b}$ is
 - 1. -5

- 2. 11
- 7
- 4. -7
- The work done by the force 2i j + 6k when it displaces the particle from (5, 3, -2) to (7, -4, 8) is 78.
 - 1. 72

- 2. 48
- 3. -71
- The sine of the angle between the vectors $\overrightarrow{a} = i + j + k$ and $\overrightarrow{b} = 2i 3j 4k$ is
 - 1. $\sqrt{\frac{62}{87}}$
- 2. $\sqrt{\frac{87}{62}}$
- 3. $\frac{-5}{\sqrt{87}}$ 4. $\sqrt{\frac{10}{63}}$
- 80. If $\cos \theta = \frac{5}{13}$ and θ is acute angle, then the value of $3\cos \theta 2\sin \theta$ is
 - 1. $\frac{9}{13}$

- 2. 3
- 4. -3

PART - C

ELECTRICAL AND ELECTRONICS ENGINEERING

81.	The	instantaneous value	of cu	rrent i = 30 Sin 30	t. Th	en the r.m.s. value	will	beamps
	1.	30	2.	21.21	3.	15	4.	12.21
								*
82.	Two	vectors are represen	ted t	by $\overline{A} = 60 \underline{20}^{\circ} \overline{B} =$	= 30 <u> 1</u> :	o then A ÷ B is _		
	1.	2 <u> 5</u> °	2.	90 <u> 35</u> °	3,	2 <u> 35</u> °	4.	20 <u> 5</u> °
83.		value of impedance o	of an	AC circuit is (3 +	j4) ol	nms. Then the ma	gnitu	nde of impedance will
	1.	7	2.	25	3.	3	4.	5
84.	Powe	er factor of an RC circ	uit is	·	144			
	1.	Zero lagging			2.	Between 0-1 lead	ding	
	3.	Unity			4.	Between 0-1 lag	ging	
85.	The	power consumed by a	а 3-р	hase circuit is give	en by	wat	S	
	1.	$\sqrt{3} V_L I_L$	2.	$3 V_{ph} I_{ph} \cos \theta$	3.	$3 V_L I_L$	4.	$3 V_{ph} I_{ph} Sin \theta$
86.	The	leakage current in a	PN J	unction is due to				
	1.	Minority Carriers			2.	Majority Carrier	s	
	3.	Electrons only			4.	Holes Only		
87.	The	power gain of a trans	istor	is expressed in				
	1.	Percentage	2.	Decibels	3.	Nibbles	4.	Watts

88. In an opto coupler the I/P is given to													
1.	Transistor	2.	LDR	3.	LED	4.	LCD						
89. For a Silicon diode, the value of forward bias voltage is typicallyvolts													
1.	Greater than 0.3			2.	Depends on width	of c	lepletion layer						
3.	0.7			4.	Less than 0.3								
90. In medi	um scale Integration	the	number of compo	nents	s on a chip varies	from	1						
1.	10-100			2.	100-10000								
3.	0-10			4.	Greater than 1000	00							
91. The valu	e of binary division	1100	0 ₍₂₎ ÷ 100 ₍₂₎ is equa	al to .									
1.	111	2.	101	3.	1001	4.	110						
92. Two swi	tches connected in s	serie	s represents the e	quiva	lent logic for	• • • • • •	. gate						
1. 1	NOR	2.	AND	3.	OR	4.	XOR						
93. The bool	ean expression (A + A	AB)	$\left(\overline{^{ ext{A} \cdot ext{B}}} ight)$ can be simpl	ified :	as								
1.	$A\overline{\overline{B}}$	2.	0	3.	1	4.	ĀB						
94. The lowe	est power dissipation	is o	bserved in		logic family								
1. 7	TTL	2.	DTL	3.	CMOS	4.	ECL						

V	-		-	Space For Po	es ar lie 1	Work		
	3.	Race around condit	ion		4.	Stable condition		
	1.	Face around conditi	ion		2.	Hold condition		
102.	Togg	ling more than ones i	nao	clock cycle is called	i			
	1.	A \oplus B \oplus C	2.	A + B + C	3.	AB + BC + CA	4.	A (B+C)
101.	The	Boolean expression fo	r su	m output of a full a	dder	is		
	1.	RC	2.	1.1 RC	3.	1.21 RC		
100.	The n	oulse width of a 555 ti	mer	connected in mone	ostab	le mode is		
	1.	Circular	2.	Parabolic	3.	Elliptical	4.	Squaring circuit
99. S		tt-trigger is also calle						
	1.	R_f/R_i	2.	$1 - K_f / K_i$	3.	$1 + \overline{R_i}$	4.	$1 + K_i / K_f$
		D / D		. D / D		R_f		P / P
98. T	he gai	in of a non-inverting	op-A	mp is equal to		********		
	1.	2 Class - B	2.	2 Class - A	3.	2 Class - C	4.	2 Class - AB
97. A	push	-pull Amplifier requir	es	amplifier	s			
	1.	V_m	2.	$2V_m$	3.	$V_m/2$	4.	$V_m/\sqrt{2}$
96. PI	IV of a	a diode in a centre tap	ped	full wave rectifier	is			
		···		•				
	1.			37			4.	45
95. Tl	he nu	mber $100101_{(2)}$ is equ	iival	ent to octal numbe	r			

103.	Whic	ch of the following is n	ot a	shift register	•••••			
	1.	SISO	2.	PISO	3.	SIPO	4.	PIPI
104.	Total	count given by a 3 bi	t asy	nchronous counte	r is			
	1.	16	2.	8	3.	3 ²	4.	10
105.	IC 74	42 is a						
	1.	Decoder	2.	Encoder	3.	Flipflop	4.	Shift Register
106.	2 N :	1 multiplexer uses	•••••	select lir	ies	*		
	1.	N - 1	2.	N + 1	3.	N	4.	N/2
107.	A 4 b	it DAC ladder networ	k co	mprises of followin	g valı	ues of resistors	****	••.
	1.	R and R	2.	2R and 3R	3.	5R and 4R	4.	R and 2R
108.	Which	n one of the following	is a	data distributor?				
	1.	Multiplexer	2.	Demultiplexer	3.	Demodulator	4.	Power modulator
109.	Lap v	vinding is suitable for	•••••	current an	đ	voltage in	a D	C generator.
	1.	High, low	2.	Low, high	3.	Low, low	4.	High, high
110.	E.M.	F. commutation is ach	ieve	d by				
	1.	Main poles			2.	Damper winding		
	3.	Interpoles			4.	Carbon brushes		

111.		shunt generator the terminal voltage 20A load current. Then the armature			stance is 50Ω and it sup
	1.	28 2. 42	3.	60	4. 24
112.	The ra	atio E_b/V in a DC motor is the indicate	ation of its		
	1.	Speed regulation	2.	Voltage regulation	n
	3.	Efficiency	4.	Power output	
113.	As the	e load is increased, the speed of a DC s	shunt motor		•••.
	1.	Remains constant	2.	Decreases	
	3.	Increases	4.	Slightly reduces	
114.	By flu	x control method of speed control of a	DC shunt m	notor we can obtai	n speed
	1.	Above the normal speed only	2.	Below the norma	l speed only
	3.	Above and below normal speeds	4.	Not possible at a	11.
115.	Stepp	er motor is a device			
	1.	Analog 2. Increment	al 3.	Mechanical	4. Hydraulic
116.	The a	rmature reaction in an alternator pri	marily affec	ts	
	1.	Terminal voltage / phase	2.	Frequency	2017
	3.	Generated voltage / phase	4.	Rotor speed	
117.	At lea	ding power factor, the armature flux	in an altern	ator	the rotor flux
	1.	Opposes 2. Aids	3.	Distorts	4. Doesnot affect

118.		ng excitation of altern e load.	ator	constant, if steam	supp	ly is increased the	n it w	vill supply
	1.	Same portion	2.	Lesser portion	3.	Half	4.	Greater portion
119.	In pe	rforming short circuit	test	t of a transformer				
	1.	HV side is usually s	hort	circuited	2.	LV side is usual	ly sh	ort circuited
	3.	Short circuit cannot	be o	done.	4.	Both HV and LV	are :	short circuited
120.	The n	o-load primary curre	at Io	is about	of	full load primary	curre	ent.
	1.	3–5 %	2.	15–30 %	3.	30–40 %	4.	40-60 %
121.		most essential conditi			on of	two single-phase	tran	sformers is that, they
	1.	Polarity			2.	kVA rating		
	3.	Voltage ratio			4.	Percentage Impe	edan	ce
122.	In a	3φ Induction motor th	ie re	lative speed of a st	tator :	flux with respect t	o rot	tor flux is
	1.	25 %	2.	50 %	3.	Zero	4.	75 %
123.	,	Induction motor with input	h sli	ip 'S' will have the	rotor	output equal to .		times the
	1.	S	2.	1 + S	3.	1/S	4.	(1–S)
124.	The ra	atio of N/Ns in an Ind	uctio	on motor is its				
	1.	Rotor efficiency			2.	Motor efficiency		
	3.	Stator efficiency			4.	Over all efficience	су	

125.	The sp	peed of a squirrel cage	e ind	uction motor car	n be var	ried by		
	1.	Changing the numb	er of	poles	2.	Cascade connect	ion	
	3.	Rheostatic connecti	on		4.	Ward Leonard sy	stem	
126.	Starti	ng current of a star-c	lelta	starter is		times I _{sc}		
	1.	$\sqrt{2}$	2.	$\frac{1}{\sqrt{3}}$	3.	3	4.	$\sqrt{3}$
127.	In a	motor, ro	otor f	ield and stator f	ield rota	ite at same speed.		
	1.	DC			2.	Universal		
	3.	Synchronous			4.	Asynchronous		
128.	V - cu	rves of a synchronou	s mo	tor show the rel	ation be	tween		
	1.	$P_{\mathbf{F}} / I_{\mathbf{a}}$				I _f / I _a		
	3.	I _L / P _F			4.	I _a / I _L		
129.	A mo	oving iron instrument	has	so	cale			
	1.	Linear	2.	Logarithmic	3.	Non-linear	4.	Squared
130.	Torq	ue to weight ratio of a	ın in	strument indica	tes			
	1.	Sensitivity	2.	Selectivity	3.	Accuracy4		Fedility
131.	The	primary current of a (CT de	pends on		•••••		
	1.	Applied voltage	2.	Power	3.	Load current	4.	Torque

132.	2. In a two wattmeter method of measuring power, if one of the wattmeter reads zero, then the power factor of the circuit is							
	1.	Unity	2.	0.5 lagging	3.	Zero lagging	4.	Zero leading
133.	LVDT	can be used to measu	ге	•••••				
	1.	Acceleration	2.	Torque	3.	Speed	4.	Displacement
134.	Ande	erson bridge is used fo	r the	e measurement of .				
	1.	Inductance	2.	Resistance	3.	Capacitance	4.	Conductance
135.	If mo	dulation index m>1 th	nen i	t causes		****		
	1.	Good amplification			2.	Severe distortion	n	
	3.	No amplification			4.	It cannot be defi	ned	
136.	Fibre	optic cable uses		for tra	nsmi	ssion		
	1.	Sound waves			2.	Heat waves		
	3.	UV rays			4.	Light waves		
137.	Hollov	w metal pipe which car	rry n	nicrowave is				
	1.	Waveguide			2.	Can't carry wave	es	
	3.	Rail waves			4.	Current guide		
138.	Klystr	on microwave tube is	havi	ng	. and	ca	avity	
	1.	Buncher, clutcher			2.	Buncher and car	tcher	
	3.	Catcher, blaster			4.	Amplifier oscilla	tor	

139.	The da	ata rate of fast interne	t is		•••••									
	1.	10 mbps	2.	50 mbps	3.	100 mbps	4.	200 mbps						
140.	40. Repeater operates atlayer of OSI model													
	1.	Presentation	2.	Datalink	3.	Transport	4.	Physical						
141.	141. When the water is below the sea level then it is called tide													
	1.	WEB	2.	HUB	3.	SUBB	4.	EBB						
142.	Basic	fuel for a fuel cell is												
	1.	Hydrogen	2.	Nitrogen	3.	Oxygen	4.	Carbon dioxide						
143.	Load f	actor is the ratio of		***************************************										
	1.	Maximum demand Average demand			2.	Average demand	_							
	3.	RMS demand Average demand			4.	Annual demand Monthly demand								
144.		Serve	es a	s a regulating rese	rvoir	storing water tem	рога	rily						
	1.	Surge tank			2.	Spill ways								
	3.	Fore bay			4.	Sea bay								
145.	Diver	sity factor is always		********										
	1.	Greater than 1			2.	Less than 1								
	3.	Equal to 1			4.	Zero								

146.	146. In an R-firing circuit the firing angle can be controlled from													
	1.	0 – 180°	2.	0 - 90°	3.	90 - 180°	4.	0 - 360°						
147.	147. The power line disturbance undervoltage is also called													
	1.	Black out	2.	Fuse out	3.	Kick out	4.	Brown out						
148. DC to DC converters are also called														
	1.	Choppers		Inverters		Chippers	4.	Cyclo converters						
149.	DI dt pr	rotection for a thyristo	r is p	provided by										
	1.	Resistance	2.	Conductance	3.	Inductance	4.	Capacitance						
150.	Singl	e-phase half wave cor	itrol	led rectifier uses		SCRS								
	1.	2	2.	4	3.	6	4.	8						
151.	Flyba	ck converter is an isol	ated	converter which is	s bas	ed on		. converter to follow						
	1.	Buck	2.	Boost	3.	Buck - boost	4.	Cyclo						
152.	A line	ar regulated power su	pply	has	e	fficiency compared	l to S	SMPS						
	1.	Less	2.	More	3.	Equal	4.	Zero						
153.	A cycle	o converter is		***********										
	1.	AC to DC converter			2.	AC to AC convert	er w	ithout a DC link						
	3.	AC to AC converter v	vith	DC link	4.	DC TO DC conver	rter	with AC link						

154.	A fully	controlled Converter is used for		
	1.	SMPS	2.	AC motor drives
	3.	DC motor drives	4.	Voltage regulators
155.	Α	circulates energy stored in the	load	inductance into the load itself
	1.	Free wheeling diode	2.	SCR
	3.	Triac	4.	Diac
156.	The p	phenomena of current interruption before na	atura	l current zero is
	1.	Voltage chopping	2.	Current chopping
	3.	Power splitting	4.	Current splitting
157.	If the 1. 3.	length of the arc increases, its resistance Remains same Increases	2. 4.	Decreases Becomes zero
158.	A rela	ay performs the function of		**
	1.	Fault detection	2.	Fault correction
	3.	Fault clearance	4.	Short circuiting
159.	Buch	nholz's relay is a relay		
	1.	Bulb relay	2.	Gas actuated relay
	3.	It is not a relay	4.	Power relay
160.	Spee	d-time curve of a mainline service can be ap	prox	imated as curve
	1.	Rectangular 2. Square	3.	Trapezoidal 4. Circular

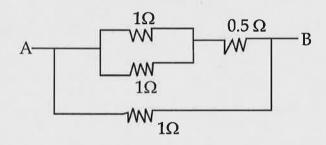
161.	1. Pantograph collector is used when the vehicle runs at speed											
	1.	Medium	2.	Low	3.	Constant	4.	High				
162.	Plugg	ging can be achieved in	ı Inc	luction motors by .								
	1.	Reversing static field	đ		2.	Reversing rotatory fiel	d					
	3.	Primary controlling			4.	Auto transformer cont						
	0.				••							
163		need fr	-0011	ent starting and st	onnir	or of electric motors						
105.												
	1.	Lifts and Hoists	2.	Conveyors	3.	Rolling mills	4.	Crushers				
164.	164. The electrode of a direct arc furnace is made of											
	1.	Tungsten	2.	Copper	3.	Graphite	4.	Aluminium				
165.	The s	pot welding makes use	e of		. elec	trode		8				
	1.	Tipped	2.	Circular	3.	Projected	4.	Elliptical				
166.	Which	n of the following lam	ps s	hould always be m	ount	ed vertically						
	1.	Nitrogen vapour lam	р		2.	Sodium vapour lamp						
	3.	Mercury vapour lam	p		4.	CFL						
167.	A refr	igerator works on the	prin	ciple of								
	1.				2.							
		Increasing				Maintaining constant						
	3.	Keeping zero			4.	Reducing						

168.	Recip	procal of Resistance is	call	ed				
	1.	Inductance	2.	Conductance	3.	Capacitance	4.	Admittance
169.	Slope	e of the line drawn for	Ohr	n's law represents.		•		
	1.	Voltage	2.	Current	3.	Resistance	4.	Power
170	1 kW	Th of Electrical energy	is e	gual to		Joules		
170.		36 × 10 ⁵					4	3.6 × 105
	1.	30 * 10	4.	3000 * 10	Э.	30 ^ 10	т.	3.0 ^ 10
171.	Two	similar charges of 1 c	oulo:	mb are placed in ai	r 1 m	t apart, the force e	xper	ienced isN
	1.	90 × 10 ⁹	2.	8.85 × 10 ¹²	3.	1 × 10 ⁹	4.	9 × 10 ⁹
172.	Elec	tric intensity 'E' is giv	en b	y N	1/C			
	1.	F/Q	2.	Q/F	3.	Q ² /E	4.	E/Q ²
173.	The	time constant of a caj	pacit	or voltage actually	rises	to	o	f its final steady state
	valu	e						
	1.	Maximum value	2.	0.5	3.	0.632	4.	0.75
174.	The	capacity of a cell is m	easu	ıred in		•		
	1.	Watt hour	2.	Watts	3.	Amperes	4.	Amp-hour
0								

175. Trickle charging of a storage battery helps to.....

1. Prevent sulphation

- 2. Keep it fresh and fully charged
- 3. Maintain proper electrolyte level
- 4. Increase capacity


176. Which of the following material is having zero temperature coefficient of resistance

- 1. Copper
- 2. Silicon
- 3. Rubber
- 4. Eureka

177. Diode Rectifier is a circuit

- 1. Unilateral
- 2. Bilateral
- 3. Linear
- 4. Bidirectional

178. The equivalent resistance between points A and B is

- 1. 1Ω
- $2. 2.5\Omega$
- 3. 0.5Ω
- 4. 1.5Ω

179. Relative permeability of air is

- 1. $4\pi \times 10^{-7}$
- 2. 8.854×10^{12}
- 3. 1
- 4. 0

180. The formula for dynamically induced e.m.f. is given by

- 1. Blv Cos θ
- 2. BIL Sin θ
- 3. Bly Sin θ
- 4. BIL Cos θ

-5-