TEST - 2015

CD	COURSE	DAY: SUNDAY
CK	CERAMICS TECHNOLOGY	TIME: 10.00 A.M. TO 1.00 P.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
180	200 MINUTES	180 MINUTES

MENTION YOUR					QUESTION BOOKLET DETAILS				
DIPL	LOMA	CET	NUM	BER	VERSION CODE	SERIAL NUMBER			
					A – 4	190008			

DOs:

- 1. Check whether the Diploma CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 09.50 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- 2. The 3rd Bell rings at 10.00 a.m., till then;
 - Do not remove the paper seal of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 180 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- 2. After the 3rd Bell is rung at 10.00 a.m. remove the paper seal of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by acomplete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 180 minutes:
 - Read each question (item) carefully
 - Choose one correct answer from out of the four available responses (options / choices) given under each question / item. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose only one response for each item.
 - Completed darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the
 question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below: ① • ③ ④

- 4. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same
- 5. After the last Bells is rung at 1.00 p.m. stop marking on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
- 6. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 7. After separating the top sheet, the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 8. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

PART - A APPLIED SCIENCE

1.		he spectrum of scatt dent light are called	ered	light the lines	corresp	onding to wavele	ngth	greater than that	of
	1.	Stokes lines			2.	Antistokes lines	S		
	3.	Fluorescent lines			4.	Incident lines			
2.	Res	olving power of telesco	ope i	s given by					
	1.	$\frac{d}{1.22\lambda}$	2.	$\frac{1.22\lambda}{d}$	3.	$\frac{1.22d}{\lambda}$	4.	$\frac{\lambda}{1.22d}$	
3.	Тоо	bserve diffraction pat	tern	the obstacle sho	uld be				
	1.	Very big			2.	Dark			
	3.	Absent			4.	Comparable wit	h the	wavelength of ligh	t
4.		en double refraction one			ray an	d ordinary rays	will h	ave vibrations in t	he
	1.	Parallel	2.	Independent	3.	Perpendicular	4.	At 45°	
5.	Max	well's electromagnetic	c the	ory could explai	in				
	1.	Photo electric effect	t		2.	Interference of	light		
	3.	Compton effect			4.	Black body radia	ation		
6.	The	contrast between brig	ght a	and dark bands	of an in	terference patter	n is		
	1.	Low	2.	High	3.	No change	4.	Gradually decreas	es
7.	A ne	on-electrolyte solution	ı is						
	1.	Sugar solution			2.	Salt solution			
	3.	Water			4.	Copper sulphate	solu	tion	
						t71_			

8.	In a	lkalies the concentra	tion	of OH^- ions is						
	1.	More than 10^{-7} g io	ns /	litre	2.	Less than 10^{-7} g	ions	s / litre		
	3.	Equal to 10 ⁻⁷ g ions	s / li	tre	4.	More than 10 ⁷ g	ions	/ litre		
9.	An	example of derived ur	nit is							
	1.	Meter	2.	Second	3.	Netwon	4.	Candela		
10.	The	prefix used for 10 ⁻¹⁵ i	is							
	1.	Femto	2.	Pico	3.	Peta	4.	Nano		
11.	An	example of dimension	ıless	constant is						
	1.	Strain	2.	Efficiency	3.	Force	4.	Pi		
12.		nain scale is divided int ofcm.		half mm and havi	ng a '	Vernier containin	g 10	divisions has a least		
	1.	0.05	2.	0.005	3.	0.02	4.	0.025		
13.	According to Newton's second law of motion F = Kma. The value of K is									
	1.	0.1	2.	0	3.	10	4.	1		
14.	The	velocity of a freely fa	lling	body is maximum	ı	3				
	1.	At the beginning			2.	Just before it to	ıche	s ground		
	3.	Exactly half way			4.	After it touches	grou	nd		
15.	Wet	clothes are dried in	wash	ing machine by th	ie pro	perty of				
	1.	Inertia of rest			2.	Inertia of directi	on			
	3.	Inertia of motion			4.	Inertia of time				
16.		rce of 1.2 x 10 ⁻² N ac body is	ts fo	r 3 seconds on a b	ody of	f mass 0.04kg at re	est. 1	The velocity gained by		
	1.	0.9 m/s	2.	9 m/s	3.	0.09 m/s	4.	9.2 m/s		

17.	An ex	cample of vector quan	tity	is							
	1.	Volume .	2.	Energy	3.	Density	4.	Force			
18.	Hand	le of the door is fixed	awa	y from the end wh	nere i	t is fixed with hing	ges t	0			
	1.	Increase the momen	t of	force	2.	Decrease the mo	men	t of force			
	3.	Keep the door firm			4.	Lock it easily					
19.	Resu	ltant of two equal for	ces p	erpendicular to ea	ach o	ther acts at an ang	gle _	to first force			
	1.	90°	2.	180°	3.	30°	4.	45°			
20.	The resultant of two forces acting on a body cannot be										
	1.	Greater than first fo	rce								
	2.	Zero									
	3.	Lesser than first for	ce								
	4.	Lesser than the diffe	eren	ce between two fo	rces						
21.	Towing of a boat by two forces is an illustration of										
21.	1.	Lami's theorem			2.	Law of triangle of	f for	ces			
	3.	Law of parallelogram	of f	orces	4.	Law of polygon of	forc	es			
22.	Shoc	k absorber is an exar	nple	for							
	1.	Compressive stress			2.	Tensile stress					
	3.	Shear stress			4.	Shear strain					
23.	Facto	or of safety of a struct	ure	is							
	1.	Within 2			2.	Equal to zero					
	3.	Vary between 5 and	10		4.	More than 10					
24.	In ca	se of liquids as the t	emp	erature increases,	the v	viscosity of liquid	decr	eases due to			
	1.	Increase in the rate	of d	iffusion of gases							
	2.	Decrease in the rate	of o	diffusion of gases							
	3.	Increase in the pot	entia	al energy of molec	ules						

Increase in the kinetic energy of molecules

25	One	Pascal	is	egual	to
20.	Onc	I ascar	10	cquar	

10 dvnes/cm² 1.

2. 1 dvne / cm²

100 dynes / cm² 3.

4. 0.1 dvne / cm²

To calm down turbulent sea, sailors use oil to 26.

- Decrease surface tension 1.
- 2. Increase surface tension

Decrease viscosity 3.

Increase cohesive force 4.

27. The thrust on the bottom of the container having a base area of 20 m² filled with water to a height of 3 m is _____ (given
$$g = 10 \text{m/s}^2$$
)

- $6 \times 10^{5} N$ 1.
- 2. $6 \times 10^4 \text{ N}$ 3. $6 \times 10^3 \text{ N}$ 4. $6 \times 10^2 \text{ N}$

- 1. One calorie
- 2. One joule
- 3.
- One kilo-calorie 4. One kilojoule

- $0^{\circ}C$ 1.
- 2. -100°C
- 3. 273°C
- $4 273^{\circ}C$

- 2. $-\frac{1}{273}$
- 3. 273
- 4. -273

1. Wave amplitude Wave velocity

3. Wave frequency Wavelength

- 2. $V = \sqrt{\frac{m}{T}}$ 3. $V = \sqrt{\frac{1}{T}}$ 4. $V = \frac{\sqrt{m}}{T}$

Space For Rough Work

33.	Absorption co-efficient of sound wave is given by Where E_m is energy absorbed by the										
	given	medium $E_{\it ow}$ is the energy absorbed by op-	en w	indow.							
	1.	$a = \frac{E_m}{E_{ow}} $ 2. $a = \frac{E_{ow}}{E_m}$	3.	$a = E_m \times E_{ow}$	4.	$a = E_m + E_{ow}$					
34.	The	rich quality of a musical note depends on									
	1.	Fundamental frequency	2.	Loudness							
	3.	Larger number of over tones	4.	Pitch							
35.	Waxi	ng and waning are the characteristics of									
	1.	Periodic motion 2. Oscillations	3.	Beats	4.	Frequency					
36.	Veloc	Velocity of sound in air varies									
	1.	Inversely as the square root of the density	of th	e medium							
	2.										
	3.	Directly as the density of medium									
	4.	Inversely as the density of medium									
37.	The	ne vibrations of a body of decreasing amplitude are called									
	1.	Undamped free vibrations	2.	Damped free vib	ratio	ns					
	3.	Resonant vibrations	4.	Forced vibrations	8						
38.	Anot	her name for field emission is									
	1.	Cold cathode emission	2.	Thermionic emi	ssior	n					
	3.	Photoelectric emission	4.	Secondary emiss	sion						
39.	In ca	ase of photoelectric emission, the rate of en	se of photoelectric emission, the rate of emission of electron is								
	1.	Independent of frequency of radiation									
	2.	Dependent on frequency of radiation									
	3.	Dependent on wavelength of incident radi	ation								
	4.	Independent of intensity of radiation									

2. Fast 3. Spontaneous

Space For Rough Work

Emission of radiation from radioactive element is

40.

1.

Slow

4. Very slow

PART - B

APPLIED MATHEMATICS

41.
$$\int_{-1}^{1} (2x+1)(5-x) dx$$
 is

10 1.

- 2. $\frac{26}{3}$ 3. $\frac{-26}{3}$ 4. $\frac{11}{3}$

42.
$$\int_{0}^{\frac{\pi}{4}} tan^{2}x \ sec^{2}x \ dx$$
 is

- 1. $\frac{1}{3}$
- $2. \frac{4}{3}$
- 3. $\frac{1}{2}$ 4. $\frac{-1}{3}$

43. The RMS value of
$$y^2 = x^2 - 2x$$
 over the interval [1, 3] is

- 1. $\sqrt{\frac{5}{3}}$
- 2. $\sqrt{\frac{2}{3}}$ 3. $\frac{1}{3}$
- 4. $\frac{1}{\sqrt{3}}$

44. The differential equation of
$$y^3 = 5 ax$$
 by eliminating arbitrary constant a is

1. $\frac{dy}{dx} - \frac{y}{3x} = 0$

2. $\frac{dy}{dx} + \frac{y}{3x} = 0$

3. $\frac{dy}{dx} - \frac{3y}{x} = 0$

$$4, \quad \frac{dy}{dx} - \frac{5y}{3x} = 0$$

45. The integrating factor of the differential equation
$$x \frac{dy}{dx} - (1-x)y = x^3$$
 is

- 1. $\frac{e^x}{x}$
- 2. xe^x
- 3. $e^{\frac{x^2-2x}{2}}$ 4. $e^{\frac{2x-x^2}{2}}$

- 46. If $\begin{vmatrix} 2x+1 & -5x \\ 1 & 3 \end{vmatrix} = 0$, then x is
 - 1. $\frac{3}{11}$
- 2. $\frac{-3}{11}$
- 3. $\frac{11}{3}$ 4. $-\frac{11}{3}$
- 47. For the simultaneous linear equations 2x+y+z=1, x+y+2z=0 and 3x+2y-z=2, the value of Δx is
 - 1.

- 2. -11
- 4. -3

- 48. If $A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 7 \\ -4 & 1 \end{bmatrix}$ then $(A+B)^T$ is
 - 1. $\begin{bmatrix} 1 & 1 \\ 10 & 5 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 10 \\ 1 & 5 \end{bmatrix}$ 3. $\begin{bmatrix} -1 & 10 \\ -1 & 5 \end{bmatrix}$ 4. $\begin{bmatrix} -1 & -1 \\ 10 & 5 \end{bmatrix}$

- 49. If $A = \begin{bmatrix} 1 & -3 \\ -5 & 7 \end{bmatrix}$, then adj A is
 - 1. $\begin{bmatrix} 1 & -5 \\ -3 & 7 \end{bmatrix}$ 2. $\begin{bmatrix} 7 & -5 \\ -3 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} -1 & -5 \\ -3 & -7 \end{bmatrix}$ 4. $\begin{bmatrix} 7 & 3 \\ 5 & 1 \end{bmatrix}$

- 50. The cofactor of O in $A = \begin{bmatrix} 3 & -2 & 5 \\ 1 & 6 & 0 \\ 2 & 7 & -4 \end{bmatrix}$ is
 - 1. -25

0

- 51. If $(\sqrt{3}+1)^3 = 10+6\sqrt{3}$, then the value of $(\sqrt{3}+1)^3-(\sqrt{3}-1)^3$ is
 - 12√3 1.
- 2. 0
- 20
- 4. $20 + \sqrt{3}$

- The middle term in the expansion of $\left(x^3 + \frac{1}{x^2}\right)^6$ 52.
 - $10 x^3$ 1.
- 2. $20 x^3$ 3. $\frac{20}{x^3}$
- 4. 20

- If $\vec{a} = i + 3j 2k$ and $\vec{b} = 2i j + 3k$, then $\vec{a} \cdot \vec{b}$ is
 - -5

- 2. 11
- 4. -7
- The work done by the force 2i j + 6k when it displaces the particle from (5, 3, -2) to (7, -4, 8) is
 - 72 1.

- 2. 48
- 3. -71
- 4. 71
- The sine of the angle between the vectors $\overrightarrow{a} = i + j + k$ and $\overrightarrow{b} = 2i 3j 4k$ is
 - 1. $\sqrt{\frac{62}{87}}$

- 2. $\sqrt{\frac{87}{62}}$ 3. $\frac{-5}{\sqrt{87}}$ 4. $\sqrt{\frac{10}{63}}$
- 56. If $\cos \theta = \frac{5}{13}$ and θ is acute angle, then the value of $3\cos \theta 2\sin \theta$ is
 - $1 = \frac{9}{13}$

- 4. -3

- 57. If $x \sin 30^\circ Sec 30^\circ \tan 30^\circ = \tan^2 60^\circ$, then the value of x is
- 2. $\frac{-22}{3}$ 3. $\frac{11}{6}$
- $4. \frac{3}{22}$

- 58. The value of $sin 225^{\circ} + cos(-135^{\circ})$ is
 - 1. $\sqrt{2}$ 2. $-\sqrt{2}$ 3. $\frac{1}{\sqrt{2}}$
- 4. $\frac{-1}{\sqrt{2}}$
- 59. The simplified value of $\frac{\sin(180^{\circ} A)\cot(90^{\circ} A)\cos(360^{\circ} A)}{\tan(180^{\circ} + A)\tan(90^{\circ} + A)\sin(-A)}$ is
 - sin A 1.
- 2. -sin A
 - 3. 1
- cosec A

- 60. The simplified value of $\frac{\sin 2A}{1+\cos 2A}$ is
 - 1. 2tan A
- 2. sin A
- 3. cot A
- tan A

- 61. If $\tan A = \frac{3}{4}$ and $\tan B = \frac{1}{7}$, then the value of (A+B) is

- 2. $\frac{25}{23}$
- 3. $\frac{\pi}{4}$

- 62. The value of $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ}$ is
 - 1. 0

- $2. \cos 50^{\circ}$
- 4. $\sin 50^{\circ}$

- The value of $\cos^{-1} \left[\tan 135^{\circ} \right]$ is 63.
 - 0° 1.

- 2. 180° 3.
- 45°
- 90°
- The centroid of the triangle formed by the vertices (-10, 6), (2, -2) and (2, 5) is 64.
 - (-2, 3)
- 2. (2,3) 3. $\left(-3,\frac{9}{2}\right)$ 4. (-6,9)
- A point (-4, 3) divides the line AB externally in the ratio of 1:2. Given A(-1, -3) then the point B 65.
 - (6, -3)1.
- 2. (-10, 15)
- 3. (2, 9)
- 4. (2, -9)
- The area of triangle formed by the point, (3, -1), (2, 0) and (K, 4) is 10 Sq. Units, then the value of K 66.
 - 1. 12

- 2. 7
- 3. -22
- 4. 22
- The slope of the line joining the points (-2, 3) and (4, -6) is 67.

- $2, \frac{-3}{2}$ 3. $\frac{2}{3}$
- 4. $\frac{-2}{3}$
- The equation of straight line passing through (4, -1) and having equal intercepts is 68.
 - x + y 1 = 01.
- 2. x+y-5=0 3. x+y-3=0
- 4. x + y + 3 = 0
- The equation of the line passing through (5, -2) and parallel to the line 3x+2y+7=0 is 69.
 - 3x + 2y 11 = 01.

2. 3x-2y+11=0

3x-2y-19=03.

2x - 3y - 16 = 0

- 70. The value of $\lim_{x \to -2} \frac{x+2}{x^5+32}$ is
 - $1 = \frac{1}{80}$

- 2. 80
- 4. -80

- 71. The value of $\lim_{x \to 0} \frac{2x tan 3x}{\sin 2x + 3x^2}$ is
 - 1. $\frac{-1}{5}$ 2. 0
- 3. $\frac{1}{2}$
- 4. $-\frac{1}{2}$

- 72. If $y = e^x \log x$, then $\frac{dy}{dx}$ at x = 1 is
 - 1. e^x

- 3. 1
- 4. 0

- 73. If $y = tan^{-1}\sqrt{\frac{1+\cos x}{1-\cos x}}$, then $\frac{dy}{dx}$ is
 - 1. 2

- 2. -2
- 3. $\frac{-1}{2}$ 4. $\frac{1}{2}$

- 74. If $\sqrt{x^3} + \sqrt{y^3} = \sqrt{a^3}$, then $\frac{dy}{dx}$ is
 - 1. $\sqrt{\frac{x}{y}}$ 2. $-\sqrt{\frac{x}{y}}$
- 3. $\sqrt{\frac{y}{r}}$
- 4. $-\sqrt{\frac{y}{x}}$
- 75. The second derivative of y = log(sec x tan x) is
 - -sec x tan x1.
- 2. sec x tan x
- -sec x
- 4. sec x

- 76. Water flows into the cylindrical tank of radius 7mt at the rate of 294 cubic mt/sec, then the rate of height of water rising in the tank is
 - $\frac{\pi}{6}$ mt / sec

2. $\frac{6}{\pi}$ mt / sec

14406 mt / sec 3.

- 4. $\frac{21}{\pi}$ mt / sec
- The maximum value of the function $y = x + \frac{1}{x}$ is
 - 1. 0

- 2. 2
- 3. 1

- The value of $\int tan^2x \ dx$ is 78.
 - 1. tan x-x+c
- 2. $x tan \ x + c$ 3. $\left(sec^2 x\right)^2 + c$ 4. $-cot \ x x + c$

- The value of $\int \frac{\cos x}{1+\sin x} dx$ is
 - 1. $log(sec^2x + sec x tan x) + c$
- 2. log(sin x)+c

3. log(1+sin x)+c

4. $\frac{\left(1+\sin x\right)^2}{2}+c$

- $\int \sin^2 x \sin 2x \ dx \text{ is}$ 80.
 - 1. $\frac{\sin^2 x}{2} + c$
- $2. \quad \frac{\sin^4 x}{2} + c$
- 4. $\frac{-\sin^4 x}{2} + c$

PART - C CERAMICS TECHNOLOGY

81.	The	temperature during c	eme	nt grinding should	l not	exceed		
	1.	120°C	2.	150°C	3.	180°C	4.	200°C
82.	Sodi	um chloride acts as						
	1.	Set accelerator			2.	False setting		
	3.	Set retarders			4.	None of these		
83.	We c	call calcium oxide as		lime				
	1.	Matt	2.	Bulk	3.	Quick	4.	Sick
84.	Heat	of hydration is solely	rela	ited to the compou	ınd co	omposition of cem	ent t	hat is
	1.	C_2S, C_3S, C_3A, C_4AF	1		2.	C_3S C_4AF		
	3.	C_3A			4.	C_4AF		
85.		e stone used for the m less than 5% MgO	ıanu	facture of Portland	l cem	ent should have n	nore	than CaO
	1.	45%	2.	99%	3.	5%	4.	10%
86.	IST :	and FST of cement ca	n be	determined by us	ing	annaratus		
oo.				_	_			4 Di N
	1.	Vicats needle	2.	Blains Needle	3.	Sharp needle		4. Blunt Needle
87.	The	Cooling of clinkers sh	ould	l be done				
	1.	Rapid	2.	Slow	3.	Very Slow	4.	Critical

88.		At what temperature liquid phase is noted high when coal fuel is used during cement clinkerization in rotary kiln								
	1.	1250°C	2.	1350°C	3.	1425°C	4.	1000°C		
89.	The	Calorific Value of soli	d fu	el is determined by	у					
	1.	Nelson Calorimeter			2.	Bomb Calorimete	er			
	3.	Ramson Calorimete	r		4.	Simon's Calorim	eter			
90.	The	Moisture content of fi	eshl	y cut wood is						
	1.	15 – 20 %	2.	25 – 50 %	3.	55 – 60 %	4.	70 – 80 %		
91.	Nitro	ogen has Calor	rific	value						
	1	Low	2.	High	3.	No	4.	Medium		
92.	Gase	ous fuel produced by	degi	adation of biologic	al ma	atter is called				
	1.	Producer gas			2.	Water gas				
	3.	Natural gas			4.	Bio gas				
93.	The :	function of damper is	to							
	1.	Regulate draught			2.	Regulate breaking	ıg			
	3.	Regulate Feeding			4.	Regulate handlin	g			
94.	Rege	nerators are construc	cted	of						
	1.	Clay bricks			2.	Cement blocks				
	3.	Refractory bricks			4.	Wooden blocks				

)				Space For	Rough \	Work		
·	3.	Variation in firing			4.	Refiring	E	
	1.	Under firing			2.	Over firing		
101.	Pin	holes usually occur i	n gla	zes when they	are subj	ected to		
	1.	100	2.	150	3.	160	4.	250
100.	Colo	r stains are ground v	ery :	fine equal to A	STM mes	h no		
	1.	Compression	2.	Tension	3.	Expansion	4.	Contraction
99.	If a ;	glaze test piece bends e in	con	vexly towards	glazed sid	de in glost firinț	g, then	such glazes are said
	1.	ZrO_2	2.	SnO_2	3.	ZnO	4.	PbO
98.	Whic	ch oxide in glaze com	posi	tion creates				
	1.	ZnO	2.	Pb_3O4	3.	TiO_2		4. Al_2O_3
97.	Exar	nple for amphoteric o	xide	is				
	3.	Yellow fibrous jelly			4.	Green fibrous	jelly	
	1.	Brown fibrous jelly			2.	Red fibrous jel	ly	
96.	Peat	is						
	3.	Brown Wood Viscom	eter		4.	Brewestor Vis	comete	r
	1.	Plain wood viscomet	er		2.	Red wood Visco	ometer	
95.	ine	insulfument used to	aete	Imme the visc	osity of o	11 15		

102.	Addit	ion of electrolyte to glaze slip is								
	1.	Required	2.	Not required						
	3.	Not Known	4.	None of these						
103.	03. To convert white lead into litharge, the temperature required is									
	1.	$300-400^{o}C$	2.	$800-900^{o}C$						
	3.	$1000-1100^{o}C$	4.	110-150°C						
104.	04. The ratio of basic oxide with acidic oxide in the glaze mix is									
	1.	Limited	2.	Unlimited						
	3.	Equal	4.	Unequal						
105.	The o	ore name of naturally occurring iron oxide t	used	in color of glaze is						
	1.	Pyrolusite	2.	Celisite						
	3.	Barite	4.	Red Ochre						
106	Daint	ting Method of glaze coating application is a	donte	ed for						
100.				Stonewares						
	1.	Insulators	2.							
	3.	Tiles	4.	Wares to be decorated						
107.	07. If the diameter of the ball mill is 6ft, then its speed is									

1. 12 – 14 rpm

2. 17 – 20 rpm

3. 20 - 23 rpm

4. 23 – 27 rpm

108. Mesh No. indicates number of aperatures per

1. Square inch

2. Square foot

3. Linear inch

4. Linear foot

109.	Slip is mixed in												
	1.	Ribbon mixer	2.	Blunger	3.	Pug mill	4.	Muller mixer					
110.	The F	Process of shaping in	a co	oncave mould is kn	own	as							
	1.	Jiggering	2.	Jolleying	3.	Pressing	4.	Casting					
111.	. Which of the following press uses rubber mould												
	1.	Screw press			2.	Hydraulic Press							
	3.	Iso-static Press			4.	Hot iso-static Pre	ess						
112.	. Dust Laden air can be purified using a												
	1.	Cyclone separator			2.	Bag filter							
	3.	Gravity settler			4.	Tubular centrifu	ge						
113.	Whic	ch one of the following	g is	used for Conveying	g Slur	rry							
	1.	Screw Conveyor			2.	Bucket elevator							
	3.	Membrane Pump			4.	Belt Conveyor							
114.	The	hardness of filter pre	ssed	cakes is tested by	7								
	1.	Vicat apparatus			2.	Penitrometer							
	3.	Le-chatlier apparat	us		4.	Auto clave appar	atus	3					
115.	Beak	c down voltage is also	kno	own as									
	1.	Resistance			2.	Di-electric const	tant						
	3.	Di-electric strength	1		4.	Temperature to	leraı	nce					

116.	. P-Quartz converts into trydamite at									
	1.	573°C	2.	980°C	3.	750°C	4.	870°C		
117.	Di ele	ectric constant of ruti	le b	ody is						
	1.	76	2.	55	3.	80	4.	85		
118.	Bariu	ım titanate is								
	1.	Crystalline	2.	Piezo electric	3.	Capacitor	4.	All of these		
119.	Hard	ness of ZrO ₂ on Moh's	s sca	de is						
	1.	6	2.	6.2	3.	6.5	4.	6.9		
120.	:=	Moisture content	is r	naintained in wall	title	composition for p	ressi	ing		
	1.	1 – 2 %	2.	5 – 10 %	3.	15 – 20 %	4.	20 – 25 %		
121.	Vitrif	ied tile is of b	ody	type						
	1.	Terra cotta			2.	Earthenware				
	3.	Stoneware			4.	Porcelain				
122.		is a catalytic co	nver	tor						
	1.	Honey comb			2.	Spark plug				
	3.	Ferrite			4.	Capacitor				
123.	1	is a major con	stiti	uent of ferrite						
	1.	Manganese-di-oxide			2.	Calcium oxide				
	3.	Iron oxide			4.	Boron oxide				

Space For Rough Work

124.	The t	rade name of alumina is		
	1.	Carborandom	2.	Corondum
	3.	Albite	4.	Anorthite
125.	Facto	or which contribute to clay is		
	1.	Plate like particles	2.	Slate like particles
	3.	Template like particles	4.	Amplet like particles
126.	Kaoli	n's are		
	1.	Black burning clays	2.	White burning clays
	3.	Red burning clays	4.	Brown burning clays
127.	Whic	h of the following is drying aid		
	1.	Ammonium carbonate	2.	Sodium carbonate
	3.	Calcium carbonate	4.	Magnesium carbonate
128.	The	most common method of TiN thin film crea	tion	is
	1.	PVD 2. CVD	3.	Both 1 and 2 4. DVD
129.	Borio	des are compounds of		
	1.	Boron with metal	2.	Boron with non metal
	3.	Boron with silica	4.	Boron with zircon
130.	Meth	nods used for purification of clay is		
	1.	Electro – osmosis	2.	Froth floatation
	3.	Magnetic separation	4.	All of these

131.	Moly	bdenum disilicide is ı	ısed	in					
	1.	Micro electronics			2.	Macro electronics			
	3.	Digital electronics			4.	Analog electronics			
132.	Alum	ina increases							
	1.	Density			2.	Porosity			
	3.	Water absorption			4.	Permeability			
133.	TiN i	mparts color	ur						
	1.	Metallic gold			2.	Metallic silver			
	3.	Metallic blue			4.	Metallic green			
134.	Carb	onates lead to							
	1.	Less Shrinkage			2.	More shrinkage			
	3.	Medium shrinkage			4.	No shrinkage			
135.	Sand	stone is							
	1.	Igneous rock			2.	Sedimentary rock			
	3.	Metamorphic rock			4.	Not a rock			
136.	Adam	nantine is a							
	1.	Streak	2.	Hardness	3.	Colour 4.	Lust	ter	
137.	Geolo	ogy is a study of							
	1.	Rocks	2.	Minerals	3.	Structure of earth	4.	All of these	

Space For Rough Work

138.	The dip and strike of earth are measured by using										
	1.	Contact goniometry			2.	Reflection goniom	.etry				
	3.	Clinometers compas	s		4.	Mariner's compas	s				
								,			
139.	A Pro	perty of mineral to tr	ansr	nit light through i	t is c	alled					
	1.	Transparent	2.	Translucent	3.	Opaque	4.	Ductility			
140.	Barit	e Crystallizer under		_ system							
	1.	Isometric	2.	Hexagonal	3.	Tetragonal	4.	Orthorhombic			
141.	Comp	positon of Kaolinite is	3								
	1.	$Al_2O_3 \cdot 3SiO_2$			2.	$A1_2O_3 \bullet H_2O$					
	3.	$Al_2O_3 \bullet H_2O \bullet SiO_2$			4.	$A1_2O_3 \cdot 2SiO_2 \cdot 2H_2$	$_{2}O$				
142.	Inter	facial angle =	i	nternal angle							
	1.	60°	2.	90°	3.	180°	4.	360°			
143.	Cera	mics is derived from		word							
	1.	Egypt	2.	Greek	3.	German	4.	French			
144	. Whic	ch one of the following	g wh	ite ware body is st	truct	urally weak					
	1.	Terracotta	2.	Earthenware	3.	Stoneware	4.	Porcelain			

145.	Porce	elains are						
	1.	Opaque	2.	Translucent	3.	Transparent	4.	Malleable
146.	Quar	tz imparts to V	Vhite	e ware bodies				
	1.	Strength			3.	Fluidity	4.	Brittleness
147.	The I	Property of clay to hol	d to	gether is known as	l			
	1.	Green Strength	2.	Dry Strength	3.	Fired Strength	4.	Breaking Strength
140	Which	h and of the following				414		
1 4 0.	WILC	h one of the following	is n	iot a giaze applicat	ion n	netnoa		
	1.	Dipping	2.	Pouring	3.	Spraying	4.	Etching
149.	Vitrif	ied tiles are fired in						
	1.	Tunnel kiln	2.	Shuttle kiln	3.	Roller hearth kili	n	4. Pusher kiln
150.		is the intermediate	Coo	ting between body		mla ma		
130.		_ is the intermediate	Coa	ting between body	and	giaze		
	1.	Enamel	2.	Engobe	3.	Lacquer	4.	Resin
l51.	Exces	ssive shrinkage leads	to					
	1.	Sticking	2.	Cracking	3.	Stroking	4.	Melting

152.	2. The methods of increasing thermal shock resistance in any body										
	1.	Increase Porosity			2.	Increasing therm	al c	onductivity			
	3.	Decreasing thermal	expa	ansion	4.	All the these					
153.		_ is a refractory mat	erial								
	1.	Quartz	2.	Feldspar	3.	Calcite	4.	Hematite			
154.	Calc	ined bauxite melts at		temperature							
	1.	2050° <i>C</i>			3.	1650° <i>C</i>	4.	1750° <i>C</i>			
		2030 C		1500 C							
155	/T\L =	adventages of voing	moa :	in frash refractory	hato	h is to get					
155.	5. The advantages of using grog in fresh refractory batch is to get										
	1.	Less Shrinkage on	heat	ting	2.	Less Pyrometric cone equivalent					
	3.	Less refractoriness	unde	er load	4.	High thermal shock resistance					
156.	The	Calcination temperat	ure	of refractory mate	erial	is					
	1.	500-600°C	2.	$700-800^{o}C$	3.	$1300-1400^{o}C$	4.	$2000 - 2100^{\circ}C$			
157	Car	bon refractory is fired	in t	he absence of oxy	gen a	t					
137	. Cai	bon renactory is med	111 0.	no abbonico di ony	5011 0						
	1.	$1100 - 1300^{\circ}C$	2.	$1400 - 1500^{\circ}C$	3.	$1600 - 1700^{\circ}C$	4.	$1750 - 1800^{\circ}C$			
158	. In t	he manufacturing of	chro	me – magnesite t	ricks	the ratio maintai	ned	is			

3. 70:30

2. 60:40

4. 80:20

50:50

1.

159.	Silica	a refractories are									
	1.	Acidic	2.	Basic	3.	Neutral	4.	Special			
160.		refractories are	use	ed in the construc	tion	of glass tank furn	ace				
	1.	AZS Electro cast	2.	Graphite	3.	Silica	4.	Special			
161.		is mixed with f	irec	lay to produce ins	ulatio	on bricks					
	1.	Saw dust	2.	Ball Clay	3.	Grog	4.	Poly vinyl alcohol			
162.	. Chemical Formula of kyanite is										
	1.	$3A1_2O_3 \cdot SiO_2$	2.	$3(Al_2O_3 \cdot SiO_2)$	3.	$A1_2O_3 \cdot 3SiO_2$	4.	$A1_2O_3 \cdot SiO_2$			
162	Surf	ace tension of water a	nt 0.6	OG is							
103.											
	1.	76 MN/M	2.	73 MN/M	3.	72 MN/M	4.	68 MN/M			
164.	Vapo	r phase techniques a	re u	sed to produce							
	1.	High purity particles	S		2.	Sub Micron size	part	icle			
	3.	Well dispersed parti	cles		4.	All of the above					
165.	The 1	boiling point of ethyl	alco	hol							
	1.	100°C	2.	65°C	3.	49°C	4.	79°C			
166.	the i	improves the co interface	mpa	ttibility of solids w	ith th	ie liquid medium,v	vhen	tney are absorbed at			
	1.	Surfactant	2.	Colourant	3.	Stain	4.	Opacifier			

167.		is a organic bind	ler					
	1.	Kaolin	2.	Ball Clay	3.	Bentonite	4.	PVA
168.	Enzy	matic degradation of	a biı	nder can be contro	lled b	y		
	1.	Plasticizer			2.	Preservative		
	3.	Foaming agent			4.	Lubricant		
169.	Gene	ral formula of glass	is					
	1.	$Ax_2O \cdot ByO \cdot 6SiO_2$			2.	$AxO \cdot B_2O \cdot 3SiO_2$		
	1.					2 2		
	3.	$A_2x \cdot B_2y \cdot 5SiO_2$			4.	$Ax_3O \cdot By_3O \cdot 4Sic$	O_2	
170.	Chen	nical formula of pota	sh l	ime glass is				
	1.	$Na_2O \cdot CaO \cdot 6SiO_2$			2.	$K_2O \cdot CaO \cdot 6SiO$	2	
		2						
	3.	$K_2O \cdot PbO \cdot 6SiO_2$			4.	MgO · CaO · 6SiC) ₂	
171.	Na_2	O in glass is conside	ered	as				

172. Optical glass without lead has

Network former

Indeter Mediators

1.

3.

- 1. Lower refractive index
- 3. Medium refractive index

2. Higher refractive index

2. Network modifier

4. Accelerator

4. None of these

173.	s. In general Cullet is crushed to size									
	1.	One inch	2.	Two inch	3.	Four inch	4.	Five inch		
174.	Appa	ratus used for the de	term	ination of softenin	g poi:	nt of glass is				
	1.	Littleton	2.	Hillton	3.	Millton	4.	Alston		
175.	Conv	ection Current helps	to n	nake the glass						
	1.	Homogeneous			2.	Non homogeneou	S			
	3.	Solid			4.	Liquid				
176.	The o	lefect cord is due to								
	1.	Unequal Cooling	2.	Reheating	3.	Tempering	4.	Equal Cooling		
177.	Glass	s is an excellent								
	1.	Conductor			2.	Semi-Conductor				
	3.	Insulator			4.	Resistor				
178.	Fire 1	Polish improves the		3						
	1.	Surface of glass			2.	Microstructure of	glas	ss		
	3.	Density of glass			4.	Viscosity of glass				
179.	Whic	h one of the following	is t	he average particle	e size	of ground Portlan	d ce	ement		
	1.	90μ	2.	100μ	3.	44μ	4.	20μ		
	1.	<i>γ</i> γ μ	۷.	100μ	J.	$\tau \tau \mu$	т.	20μ		
180.	The s	specific gravity of lime	estoi	ne used in OPC is						
	1.	1.1 to 2.2	2.	3.6 to 3.8	3.	1.6 to 1.8	4.	2.6 to 2.8		