If two identical balls each of mass m and having charge q are suspended by silk thread of length ℓ from the same point o ,then the distance between the balls is given by :

$$\frac{F}{m g} = \tan \theta \cong \frac{x}{2 l}$$

$$=> X = 2l(\frac{F}{m g})$$

Two pith balls each of mass m and charge q are suspended from a point by weightless threads of length ℓ . Both the threads are separated by an angle θ with the vertical. If the value of θ is negligible, the distance between two pith balls will be

(1)
$$\left[\frac{q^2 l}{2 \pi \epsilon_o m g}\right]^{\frac{1}{3}}$$
 (2) $\left[\frac{q^2 l}{4 \pi \epsilon_o m g}\right]^{\frac{1}{3}}$

(3)
$$\left[\frac{q l^2}{4 \pi \varepsilon_o m g}\right]^{\frac{1}{3}} (4) \left[\frac{q l^2}{2 \pi \varepsilon_o m g}\right]^{\frac{1}{3}}$$

If the whole arrangement is taken in a satellite in space where there is no gravity, then the angle between two strings is 180°. Hence, the tension in each string is given by:

$$T = \frac{1}{4\pi\epsilon_o} \frac{q^2}{4 l^2}$$

Two small balls having equal positive charge Q C on each are suspended by two insulating strings of equal length L meter, form a hook fixed to a stand. The whole set up is taken in satellite into space where there is no gravity (state of weightlessness). Then the angle θ between the two strings is:

 $(1) 0^{0}$

 $(2) 90^{0}$

 $(3) 180^{\circ}$

(4) $0^{\circ} < \theta < 180^{\circ}$

If the balls are suspended in a liquid of density ρ and the distance between the balls remains same, then the dielectric constant of the liquid is given by:

$$K = \frac{\sigma}{\sigma - \rho}$$

(Where T density of material of ball)

$$F = (F_{med}) K$$

Therefore,

$$\frac{F}{\operatorname{mg}} = \frac{F_{med} K}{\operatorname{mg}} = \frac{F}{mg} = \frac{F_{med}}{\operatorname{mg}} = \frac{F_{med}}{\operatorname{mg}} = \frac{F_{med}}{\operatorname{mg}} = \frac{F_{med}}{\operatorname{mg}}$$

The dielectric constant K of an insulator can-not be:

(1) 1

(2) 0

(3) ∞

(4) 80

The electric field intensity on the Surface of a charged conductor is:

- (1)Zero
- (2) Directed normally to the surface
- (3)Directed tangentially to the surface
- (4)Directed along 45⁰ to the surface

At some point in space the electric field is 5 N C⁻¹. The electric lines of force crossing a unit area placed at right angles to electric field at this point is

(1)
$$\epsilon_0$$

(2)
$$\epsilon_0 / 4\pi$$

(3)
$$4\pi \in_{0}$$

Six charges + Q each are placed at the corners of a regular hexagon of side a. The electric field at the center of hexagon is:

(2)
$$\frac{1}{4\pi \varepsilon_o} \frac{6Q^2}{a^2}$$

$$(3)\frac{1}{4\epsilon_o\pi}\frac{Q^2}{a^2} \qquad (4)\frac{1}{4\epsilon_o\pi}\frac{6Q^2}{a\sqrt{2}}$$

An isolated metal sphere of radius r is given a total charge q. The potential energy of sphere is:

(1)
$$q^2/4\pi\epsilon_o r$$
 (2) $q/4\pi\epsilon_o r$

(3)
$$q / 8\pi \epsilon_o r$$
 (4) $q^2 / 8\pi \epsilon_o r$

Three charges 2 q, - q, - q are located at the vertices of an equilateral triangle. At the cir- cum centre of the triangle:

- (1) The field is zero but potential is not zero
- (2) The field is non zero but the potential is zero.
- (3)Both, field and potential are zero
- (4) Both, field and potential are non zero.

The work done in carrying a charge of 5 μ C from a point A to B is 8 m J. The difference of potential between A and B is :

(1)160 V

(2)16 V

(3)1.6 k V

(4)16 k V

When a charge of 3 C is placed in an uniform electric field, it experiences a force of 3000 N within this field. Potential difference between two points separated by a distance of 1cm is:

- (1) 10 volt
- (3) 1000 volt (4) 3000 volt

(2) 90 volt

The electric potential due to an electric dipole at an axial point distant r from the dipole is related to r as:

$$(1) r^{1}$$

$$(2) r^{-1}$$

$$(3) r^2$$

$$(4) r^{-2}$$

The magnitude of electric field strength, E such that an electron placed in it would experience an electrical force equal to its weight, is given by:

$$(2)$$
 m g / e

(3) m g /
$$c^2$$

Two point charges A and B are situated in air as shown in the following figure. What is work done in moving B so that distance between the two charges is reduced to 0.1m?

Two spheres A and B of radius a and b respectively are at the same potential. The ratio of the surface charge density of A to B is:

(1)
$$\frac{a}{b}$$
 (2) $\frac{b}{a}$ (3) $\frac{a^2}{b^2}$ (4) $\frac{b^2}{a^2}$

Two free protons are separated by a distance of 1 Å. If they are released the kinetic energy of each proton when at infinite separation is:

(1)
$$23 \times 10^{19} J$$

(2)
$$11.5 \times 10^{-19} \text{ J}$$

$$(3) 46 \times 10^{-19} J$$

(4)
$$5.6 \times 10^{-12} J$$

A charge q is placed at the centre of the line joining of two equal charges Q each. The system of three charges will be in equilibrium if q is equal to:

$$(1) - Q / 2$$

$$(2) + Q / 2$$

$$(3) - Q / 4$$

$$(4) - 4 Q$$

A uniform wire of length 5 m is carrying a steady current. The electric field inside it is 0. 2 V m ⁻¹. The potential difference across the ends of the wire is:

(1) 1 V

(2) 0.5 V

(3) 0.1 V

(4) 5 V

A charge q is divided into two parts q_1 and $(q - q_1)$. What is the ratio q / q_1 so that the force between two parts placed a given distance apart is maximum:

The electric potential at the surface of an atomic nucleus (Z=50) of radius $9.0 \times 10^{-15} \, \text{m}$:

(1) 80 V

 $(2) 8 \times 10^6 V$

(3) 9 V

 $(4) 9 \times 10^{5} V$

Two point charges placed at a certain distance r in air exert a force of F on each other. Then the distance r 'at which these charges will experience the same force in a medium of dielectric constant K is:

$$(1) r$$
 $(2)r / K$

(3)
$$r / \sqrt{K}$$
 (4) $r \sqrt{K}$

Charges + q , - 4 q and + 2 q are arranged at the corners of an equilateral triangle of side 0.15m, if q = 1 μ C, their mutual potential energy is :

(1) 0.4 J

(2) 0.5 J

(3) 0.6 J

(4) 0.8 J

Point charges 4 q, - 2 q, + q and - 3 q are placed at the corners of a square of side a. The potential at point O (the point of intersection of

$$(2) \ \frac{1}{4\pi\epsilon_o} \left(\frac{10q}{a}\right)$$

(3)
$$\frac{1}{4\pi\epsilon_o} \left\{ \frac{2\sqrt{2}}{a} q \right\}$$
 (4) $\frac{1}{4\pi\epsilon_o} \left\{ \frac{5q}{a} \right\}$

A hollow sphere of copper is having a uniform charge density of 0.5 μ Cm $^{-2}$, its radius is 0.1 m. The potential at the centre of sphere is :

(1) Zero

(2) $1800 \pi V$

(3) $180 \pi V$

(4) 4.5 k V

ABC is an equilateral triangle of side 1 m. charges of + 1 μ C and - 1 μ C respectively are placed at points B and C. The electric field at A is:

- (1) 9 x 10 2 N C⁻¹ (2) 18 x 10 3 N C⁻¹
- (3) $9 \times 10^{3} \text{ N C}^{-1}$ Parallel to BC
- (4) 9 x 10 3 N C $^{-1}$ Parallel to CB

Two metal plates having a potential difference of 800 V are 2 cm apart. It is found that a particle of mass

 $1.96 \times 10^{-15} \, \text{kg remain suspended in}$ the region between the plates. The charge on the particle must be

(e = elementary charge):

(1) 3 e

(2) 4 e

(3) 6 e

(4) 8 e

An electric dipole of moment p is placed normal to the lines of force of electric field E. The work done in deflecting it through an angle of 180° is:

$$(2) + 2 p E$$

$$(3) - 2 p E$$

The ratio of momentum of an electron and an alpha particle which are accelerated from rest by a potential difference of 100 V is:

(1) 1
$$(2) \sqrt{\frac{2m_e}{m_\alpha}}$$
(3)
$$\sqrt{\frac{m_e}{m_\alpha}}$$
(4)
$$\sqrt{\frac{m_e}{2m_\alpha}}$$

A solid metallic sphere has a charge + 3 Q. Concentric with this sphere is a conducting spherical shell having charge - Q. The radius of the sphere is **a** and that of the spherical shell is **b**, (**b** > **a**). What is

R (a < R < b) from the centre?

the electric field at a distance

$$(1) \frac{Q}{2\pi \epsilon_0 R} \qquad (2) \frac{3 Q}{2\pi \epsilon_0 R}$$

(3)
$$\frac{3 Q}{4 \pi \epsilon_0 R^2}$$
 (4) $\frac{4 Q}{2 \pi \epsilon_0 R^2}$

A proton is released from rest at a distance at 10^{-4} Å from the nucleus of mercury atom (Z = 80). The kinetic energy of the proton when it is far away from the nucleus is :

(1) 12 e V

(2) 12 k e V

(3)1.2 MeV

(4)12 M e V.

Two thin concentric hollow conducting Spheres of radii R_1 and R_2 bears Charges Q_1 and Q_2 respectively. If $R_1 > R_2$, then the potential at a point distance r such that

R₁ > r > R₂ is:
(1)
$$\frac{1}{4\pi\epsilon_o} \frac{Q_1 + Q_2}{r}$$
 (2) $\frac{1}{4\pi\epsilon_o} (\frac{Q_1}{r} + \frac{Q_2}{R_2})$

(3)
$$\frac{1}{4\pi\epsilon_o} \left(\frac{Q_1}{R_1} + \frac{Q_2}{R_2}\right)$$
 (4) $\frac{1}{4\pi\epsilon_o} \left(\frac{Q_1}{R_1} + \frac{Q_2}{r}\right)$

Two thin concentric hollow conducting Spheres of radii R_1 and R_2 bears Charges Q_1 and Q_2 respectively. If $R_1 > R_2$, then the electric field Strength at a point distance r such that $R_1 > r > R_2$ is:

(1) zero
$$(2) \frac{1}{4\pi\epsilon_o} \frac{Q_1}{r^2}$$

(3)
$$\frac{1}{4\pi\epsilon_o} \frac{Q_2}{r^2}$$
 (4) $\frac{1}{4\pi\epsilon_o} \frac{Q_1 + Q_2}{r^2}$

Two small spheres carry charge of + 3 n C, and - 12 n C respectively. The charges are distance **d** apart. The force they exert on one another is F_1 . The spheres are made to touch one another and then separated to distance d apart. The force they exert on one another now is F_2 then F_1 / F_2 is :

(1) 1 (2) 2

(3) 1 / 2 (4) 16:9

An electric dipole consists of two opposite charges each of magnitude 1.6 x 10⁻¹⁹ coulomb at separation 1 Å. The dipole moment is:

(1)
$$1.6 \times 10^{-19} \text{ C m}$$
 (2) $1.6 \times 10^{-29} \text{ C m}$

(3)
$$3.2 \times 10^{-29} \text{ C m}$$
 (4) $0.8 \times 10^{-29} \text{ C m}$

An electron enters with a velocity of 5 x 10 ⁶ m / sec along the positive direction of an electric field of intensity 10 ³ N C ⁻¹ If mass of electron is 9.1 x 10 ⁻³¹ kg , then the time taken by the electron to come temporarily to rest, is:

(1)
$$5.8 \times 10^{-8} \text{ s}$$
 (2) $1.45 \times 10^{-8} \text{ s}$

$$(3) \infty$$
 $(4) 2.9 \times 10^{-8} s$

Charges of + (10/3) x 10⁻⁹ C are placed at each of the four corners of a square of side 8 cm. The potential at the intersection of the diagonals is

(1)
$$150\sqrt{2}$$
 volt (2) $1500\sqrt{2}$ volt

(3)
$$900\sqrt{2}$$
 volt (4) 900 volt

An electron placed at a distance of 0.5 m from a charge placed at origin, experiences a force of $9.6 \times 10^{-16} \, \text{N}$ along positive x - axis. The electric field at the position of electron is:

- (1) $6 \times 10^{3} \text{ NC}^{-1} \text{ along } + \text{ ve } \text{x axis}$
- (2) $6 \times 10^{3} \text{ NC}^{-1} \text{ along ve x axis}$
- (3) $15.36 \times 10^{-34} \text{ NC}^{-1} \text{ along + ve } x \text{axis}$
- (4) 15.36 x 10 $^{-34}$ N C⁻¹ along
 - -ve x-axis.

Equal charges q are placed at the four corners A,B,C,D of a square of length a, The magnitude of the force on the charge at D will be:

(1)
$$\frac{3 q^2}{4 \pi \epsilon a^2}$$
 (2) $\frac{4 q^2}{4 \pi \epsilon a^2}$

(3)
$$(\frac{1+2\sqrt{2}}{2})\frac{q^2}{4\pi\epsilon_0 a^2}$$

(4)
$$(2 + \frac{1}{\sqrt{2}}) \frac{q^2}{4 \pi \epsilon_0 a^2}$$

There is an electric field E in

x - direction. If the work done on a moving charge 0.2 C through a distance of 2 meters along a line making an angle 60° with the x- axis is 4.0 J What is the value of E?

(1) 3 N / C (2) 4N / C

(3) 5 N / C (4) 20 N / C